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Theme

• We will provided a direct proof of the continuous-time Kalman-

Bucy filter equations without making any gaussian assumptions

• We shall constrain the structure of the state-estimator to be 

governed by linear, time-varying, vector differential equations 

with “undetermined” coefficients

• We shall evaluate the “undetermined” estimator coefficients by 

formulating and solving a (matrix) optimization problem requiring

• unbiased state-estimates

• minimum mean-sum-square-error (MSSE) of the state 

variable estimates

• and with the help of gradient matrices

• Similar techniques can be used to prove the discrete-time 

Kalman filter, again without making any gaussian assumptions 

on the probability density functions
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Summary Of Kalman-Bucy Filter

  Plant - sensor dynamics:  x(t0 ), (t), (t)  all independent,  

(1)  
dx(t)

dt
A(t)x(t) B(t)u(t) L(t) (t); x(t0 ) ~ N x 0, 0 ; E (t) 0

(2)  z(t) C(t)x(t) (t); E (t) 0

E (t) ( ) (t) (t ); E (t) ( ) (t) (t )

  KBF state - estimator

(3)  
dˆ x (t)

dt
A(t) ˆ x (t) B(t)u(t) H(t) z(t) C(t)ˆ x (t) ; ˆ x (t0 ) x 0

  KBF gain matrix  H(t)

(4)  H(t) (t)C (t) 1(t)

  KBF covariance matrix,  (t) (t) 0,   satisfies the matrix 

    Riccati differential equation

(5)  
d (t)

dt
A(t) (t) (t)A (t) L(t) (t)L (t)

(t)C (t) 1(t)C(t) (t); (t0 ) 0
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Visualization of the KBF
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Alternate Derivation of the KBF: Key Idea

• We do not make the gaussian assumption

• All we need are the means and covariances of the initial state, 

x(to), the plant white noise, (t), and the sensor white noise, (t)

• Since the state is an n-dimensional vector, described by LTV 

differential equations, let us try to generate also an n-

dimensional state-estimate, also governed by LTV differential 

equations driven by the available signals, the control vector u(t)

and the sensor measurement vector z(t)

• These estimator LTV differential equations contain time-varying 

matrix and vector parameters that must be determined

• The estimator parameters will be chosen so that the state-

estimation error vector is “small” in some precise sense (that 

must be defined) 



6

General Assumed Filter Structure

  Plant and sensor equations:   x(t) Rn, z(t) Rm

(6)  
dx(t)

dt
A(t)x(t) B(t)u(t) L(t) (t)

(7)  z(t) C(t)x(t) (t)

  Postulated general state - estimator (filter) structure,

    where  ˆ x (t) Rn is state - estimate of x(t),

(8)  
dˆ x (t)

dt
F(t)ˆ x (t) G(t)u(t) M(t)z(t) v(t)

  Need to find " optimal"  values for the matrices  F(t), G(t), M(t),  and 

    the vector v(t),  as well as the initial state - estimate  ˆ x (t0 )

  Define "state -estimate error" vector,  ˜ x (t)

(9)  ˜ x (t) x(t) ˆ x (t)
d˜ x (t)

dt

dx(t)

dt

dˆ x (t)

dt

  Estimation error dynamics, from eqs. (6) to (9), satisfy the stochastic

    differential equation

(10)   
d˜ x (t)

dt
F(t) ˜ x (t) A(t) F(t) M(t)C(t) x(t) B(t) G(t) u(t)

v(t) L(t) (t) M(t) (t); ˜ x (t0 ) x(t0 ) ˆ x (t0 )
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Visualization of General Filter
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Criteria for Optimality
  Estimation error dynamics, from eq. (10), 

(11)   
d˜ x (t)

dt
F(t) ˜ x (t) A(t) F(t) M(t)C(t) x(t) B(t) G(t) u(t) v(t)

L(t) (t) M(t) (t)

  Desired attributes of state- estimator: determine F(t), G(t), M(t), v(t), ˜ x (t0 )

    such that 

(a): the estimation error has zero mean for all time

(b):  the Mean- Sum -Squared -Error (MSSE) is minimum at each time

  Zero -mean estimation error implies

(12)  E ˜ x (t) 0,
d

dt
E ˜ x (t) 0 E

d˜ x (t)

dt
0 t

  The MSSE is defined as the cost J  (to be minimized)

(13)  J E ˜ x i
2(t)

i 1

n

E ˜ x (t) ˜ x (t) E tr ˜ x (t) ˜ x (t)

tr E ˜ x (t) ˜ x (t) tr e(t)

    where  e (t) E ˜ x (t) ˜ x (t)   is the covariance matrix of the estimation

    error vector  ̃  x (t),   for any given choice of the free parameters in (11)
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The Class of Unbiased Estimators

  Take the expected value of both sides of eq. (11), and since both

    noises  (t) and (t)  have zero mean,  we find that 

(13)   E
d˜ x (t)

dt
F(t)E ˜ x (t) A(t) F(t) M(t)C(t) E x(t)

B(t) G(t) u(t) v(t)

  Use the "unbiasdness"  requirement of eq. (12) in eq. (13):

(14)  0 = A(t) F(t) M(t)C(t) E x(t) B(t) G(t) u(t) v(t)

  In general,  E x(t) 0, u(t) 0,   so to satisfy eq. (14) select

(15)  A(t) F(t) M(t)C(t) 0 F(t) A(t) M(t)C(t)

(16)  B(t) G(t) 0 G(t) B(t)

(17)  v(t) 0

(18)  ˜ x (t0 ) 0 ˆ x (t0 ) x 0

  From eqs. (15) to (18) we see that the state- estimator (8) reduces to

(19)  
dˆ x (t)

dt
A(t) M(t)C(t) ˆ x (t) B(t)u(t) M(t)z(t); ˆ x (t0 ) x 0
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Unbiased Estimate and Error Dynamics

  An alternate way to write eq. (19) is

(20)  
dˆ x (t)

dt
A(t) ˆ x (t) B(t)u(t) M(t) z(t) C(t) ˆ x (t) ; ˆ x (t0 ) x 0

  Note that the structure of the "unbiased estimator"  (20) is the same as

    the structure of the KBF, except that an arbitrary gain matrix M(t)

    multiplies the " residual"  vector r(t) z(t) C(t) ˆ x (t)

  The corresponding (unbiased) state - estimation error now satisfies 

    (substitute eqs. (15) to (18) into eq. (11))

(21)  
d˜ x (t)

dt
A(t) M(t)C(t) ˜ x (t) L(t) (t) M(t) (t); ˜ x (t0 ) 0

  Clearly,  the error covariance matrix  e (t) E ˜ x (t) ˜ x (t)   will depend

    on the choice of the gain matrix  M(t)
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Structure of Unbiased Estimator
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Discussion

• Notice that both the Kalman-Bucy filter (KBF) and the class of 

unbiased estimators involve

• building an exact model of the plant and sensors

• replacing all random quantities with their mean

• updating the derivative of the state-estimate vector by first 

forming the residual vector and then multiplying it with a gain 

matrix, M(t) or H(t), resulting in a multivariable feedback 

system

• The only difference up to now is that we have a “precise recipe”

for calculating the KBF gain matrix, H(t), while in the unbiased 

estimator class this gain matrix, M(t), is still arbitrary

• Next, we form and solve an optimization problem that 

determines the “optimal” value of M(t), in the sense that it 

minimizes the Mean-Sum-Square-Error (MSSE)

• the “optimal” value of M(t) turns out to be identical to the KBF 

gain H(t)!
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The Error Covariance Depends on M(t)

  The estimation error stochastic dynamics are repeated below:

(21)  
d˜ x (t)

dt
A(t) M(t)C(t) ˜ x (t) L(t) (t) M(t) (t); ˜ x (t0 ) 0

  Since eq. (21) is a linear system, driven by two independent white 

    noises (t) and (t),  and since  E ˜ x (t) 0,  we readily deduce

    the matrix Lyapunov differential equation of  e (t) E ˜ x (t) ˜ x (t)

(22)  
d e (t)

dt
A(t) M(t)C(t) e (t) e (t) A(t) M(t)C(t)

L(t) (t)L (t) M(t) (t)M (t); e (t0 ) 0

  To minimize the MSSE,  we must make  tr e (t)   as small as 

    possible,  for each  t,   in view of eq. (13).  From eq. (22) we have

(23)  tr
d e (t)

dt
tr A(t) M(t)C(t) e (t) tr e (t) A(t) M(t)C(t)

tr L(t) (t)L (t) tr M(t) (t)M (t)
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Minimizing the MSSE

  The derivative and the trace operators  are linear and they commute

(24)  tr
d

dt
e(t )

d

dt
tr e(t)

    so, from eq. (23), we obtain

(25)  
d

dt
tr e(t ) tr A(t) e(t) tr M(t)C(t) e(t ) tr e(t)A (t)

tr e(t)C (t)M (t) tr L(t) (t )L (t) tr M(t) (t)M (t)

  Since the covariance e(t)   is positive semidefinite, all its diagonal

    elements  are nonnegative, and so   tr e(t) 0.  To make 

tr e (t) MSSE as small as  possible, we should select

    M(t ) to minimize  
d

dt
tr e(t) ,  i.e. make it as  negative as poss ible,

    or, equivalently, minimize the RHS  of eq. (25)



15

The Optimization Problem

  The formal optimization problem is:

(26)  min
M(t)

d

dt
tr e(t)   or, equivalently,

(27)        min
M(t)

tr A(t) e (t) tr M(t)C(t) e(t) tr e(t )A (t)

tr e(t)C (t)M (t) tr L(t) (t )L (t) tr M(t) (t)M (t)

  Since the trace is a scalar- valued function of a matrix, and since we

    seek to minimize with respect to a matrix, it would be nice if we 

    could solve the minimization problem (27) by setting

M(t)
. 0,   and then solve the resultant equation.

  TECHNICAL PROBLEM:  How do we compute the derivative of a scalar-

    valued func tion with respect to a matrix?  BY GRADIENT MATRICES!
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Digression: Gradient Vectors

• Recall that if we are given a scalar-valued function of n

variables, then its gradient vector is the n-dimensional column 

vector of its partial derivatives with respect to each variable

  Review:  Scalar - valued function of a vector  f (x), x Rn

f (x) f (x1, x2 ,...,xn )

  Gradient vector: 
f (x)

x
Rn

f (x)

x

f (x)

x1
f (x)

x2
...
f (x)

xn

f (x1, x2 ,..., xn )

x1
f (x1, x2 ,..., xn )

x2
...

f (x1, x2 ,..., xn )

xn
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Digression: Gradient Matrices

• Given an nxm matrix, we can define a scalar-valued function of the n.m

matrix elements.  Then the gradient matrix is an nxm matrix whose 

elements are the partial derivatives with respect to the associated 

matrix element.  See [3], also [1], p. 22, and [2]. 

  Given an n m matrix  X  with elements  xij , i 1,2,...,n; j 1,2,...,m

  Let  f (X) f (x11, ...,x1n , x21, ...,x2n , ...,xn1,..., xnm )  be a scalar -

    valued function of the elements  xij of X

  The gradient matrix of  f (.)  with respect to the matrix   X  is the

    n m matrix,  denoted by  
f (X)

X
,  and defined by

f (X)

X

f (.)

x11

f (.)

x12

...
f (.)

x1m
f (.)

x21

f (.)

x22

...
f (.)

x2m
... ... ... ...
f (.)

xn1

f (.)

xn2

...
f (.)

xnm
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Useful Gradient Matrices

• We summarize certain useful 

gradient matrices that we 

shall need in the derivation 

of the Kalman-Bucy filter

• See Ref. [3] for detailed 

derivations

• In all cases, tr[A], denotes 

the sum of the diagonal 

elements of a square matrix 

A

• Recall, tr[A+B]=tr[A]+tr[B]

and  tr[A]=tr[A´]

• In trace of matrix products, 

say tr[ABC], only ABC must 

be square, not A, B, or C

A
tr A I; A: n n

A
tr BA

A
tr A B B 

A
tr B A

A
tr A B B

A
tr AC

A
tr C A C 

A
tr AC C

A
tr BAC B C 

A
tr ABA 2AB
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The Optimal Filter Gain,  M*(t)

  Rec all our optimization problem

(27)        min
M(t)

tr A(t) e (t) tr M(t)C(t) e(t) tr e(t )A (t)

tr e(t)C (t)M (t) tr L(t) (t )L (t) tr M(t) (t)M (t)

  Now we compute the gradient matrix of  .   with respect to  M(t)  and

    set it equal to zero.  Use the notation M * (t)   to denote the "optimal"

(28)  0
M(t )

tr M(t)C(t) e(t)
M(t )

tr e(t)C (t)M (t)

M(t )
tr M(t) (t)M (t)

(29)  0 e(t)C (t) e (t)C (t) 2M *(t) (t)

  Therefore, the optimal gain matrix  M * (t)  is given by

(30)  M *(t) e (t)C (t) 1(t)
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The Optimal Covariance, *e(t)

  Recall,  eq. (22), the matrix Lyapunov differential equation that 

    describes the error covariance,  e (t) E ˜ x (t) ˜ x (t)  for any  M(t)

(31)  
d e (t)

dt
A(t) M(t)C(t) e (t) e (t) A(t) M(t)C(t)

L(t) (t)L (t) M(t) (t)M (t); e (t0 ) 0

  Substitute the optimal gain  M * (t) from eq. (30) into eq. (31), and

    use  e
*(t)  to denote the resulting " optimal"  error covariance

(32)   
d e

*(t)

dt
A(t) e

*(t) e
*(t)A (t) L(t) (t)L (t)

e
*(t)C (t) 1(t)C(t) e

*(t) e
*(t)C (t) 1(t)C(t) e

*(t)

e
*(t)C (t) 1(t) (t) 1(t)C(t) e

* (t)

(33)  
d e

*(t)

dt
A(t) e

* (t) e
*(t)A (t) L(t) (t)L (t) e

* (t)C (t) 1(t)C(t) e
*(t)

  Clearly the covariance equation (33) and the filter gain equation (30)

    are identical to those of the KBF (see eqs. (4) and (5)), with

(34)  H(t) M * (t), (t) e
*(t)   QED
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The Optimal Estimation Error Dynamics

  From eq. (21) the "optimal"  state - estimate error dynamics,

    with  M(t) H(t),   the optimum KBF gain matrix,  are

(35)  
d˜ x (t)

dt
A(t) H(t)C(t) ˜ x (t) L(t) (t) H(t) (t); ˜ x (t0 ) 0, or

(36)  
d˜ x (t)

dt
A(t) ˜ x (t) L(t) (t) H(t) C(t) ˜ x (t) (t) ; ˜ x (t0 ) 0

  Hence, the error dynamics are a replica of the KBF loop driven by

    the two white noises  (t)  and  (t)
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Discussion

• The method of proof presented does not require any gaussian 

assumptions

• It demonstrates that the KBF is the optimal linear estimator 

in a “least-squares” sense, i.e. it minimizes the MSSE cost

• Of course, in the nongaussian case, we are not generating 

the true conditional pdf of the state, nor its true conditional 

mean and covariance (this requires nonlinear estimators)

• Actually, one can prove that the linear KBF is optimal if we 

minimize a cost different from the MSSE

• Similar techniques can be used to prove the optimality of the

discrete-time Kalman filter
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Other Criteria

  In the previous derivation,  we have minimized the MSEE cost

J E ˜ x (t) ˜ x (t) tr e (t)  

  The KBF remains optimal,  [2],  if we minimize the so - called " weighted

    least - squares" cost

Jw E ˜ x (t)Q(t) ˜ x (t) tr Q(t) e (t) ; Q(t) Q (t) 0

  The KBF also remains optimal,  [2],  if we minimize the determinant 

    of the error covariance matrix, i.e.

Jd det e (t)

• The fact that linear Kalman filters are optimal with respect to 

several criteria is the reason for their popularity and for the fact 

that there are several ways of proving the same result
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Concluding Remarks

• Provided a direct proof of the continuous-time Kalman-Bucy filter 

without making any gaussian assumptions

• We constrained the structure of the state-estimator to be 

governed by linear, time-varying, vector differential equations 

with “undetermined” coefficients (matrices and vectors)

• We evaluated the “undetermined” coefficients by formulating 

and solving a (matrix) optimization problem requiring

• unbiased state-estimates

• minimum mean-sum-square-error (MSSE) of the state 

variable estimates

• and with the help of gradient matrices

• BOTTOM LINE:  The Kalman-Bucy filter is the optimal linear 

state-estimator
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