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Syllabus: 
 

Classical Estimation Theory 
… 

Chap. 3 - Cramer-Rao Lower Bound [1 week] 
Estimator accuracy; Cramer-Rao lower bound (CRLB); CRLB for signals in white 
Gaussian noise;  Examples; 
 

Chap. 4 - Linear Models in the Presence of Stochastic Signals [1 

week] Stationary and transient analysis; White Gaussian noise and 

linear systems;  Examples; Sufficient Statistics; Relation with MVU 

Estimators; 
 
Chap. 5 - Best Linear Unbiased Estimators [1 week]  
Definition of BLUE estimators;  White Gaussian noise and bandlimited systems; 
Examples; Generalized minimum variance unbiased estimation;  
 

continues… 
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A very special class of systems: 
 

FACT: 

The determination of the MVU Estimator is in general a difficult task. 

 

 

A class of systems that allows the determination of this estimator easily… 

LINEAR SYSTEMS 

The statistical performance is also easy to compute  

and an efficient solution is obtained. 

 

The key point is on the formulation of a problem as a linear one. 
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MVU Estimator for the Linear Model: 
 

Theorem 4.1 – If the data observed can be modeled as 

 

 

where x is a N x 1 vector of observations, H is a known N x p observation matrix (with 

N>p) and rank p, θ is a p x 1 vector of parameters to be estimated, and w is an N x 1 

noise vector with PDF N(0, σ2Ι), then the MVU is 

 

       (1) 

and  the covariance matrix of  estimate is  

 

       (2) 

 x = Hθ + w

   
θ̂ = HTH( )−1

HT x

   
C
θ̂
= σ 2 HT H( )−1

.
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MVU Estimator for the Linear Model: 
 

Proof outline: 

As discussed in Chapter 3, it is possible to determine the MVU estimator if the equality 

constraints of the CRLB are satisfied. 

From the signal model, it follows that the log-likelihood function is  

 

 

And 

 

 

 

 

Using the relations (deduce them, good exercise…) 

   
ln p x;θ( ) = − ln 2πσ 2( )N / 2

−
x − Hθ( )T x − Hθ( )

2σ 2

   

∂ ln p x;θ( )
∂θ

= −
1

2σ 2

∂

∂θ
xT x − 2xT Hθ +θ T HT Hθ%& '(.

   

∂bTθ
∂θ

= b ∂θ T Aθ
∂θ

= 2Aθ
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MVU Estimator for the Linear Model: 
 

Proof outline (cont): 

It follows 

 

 

Under the assumptions of the theorem, HTH is invertible 

 

 

Note that it is in the format introduced in the previous chapter, from where (1) and (2) 

follows immediately. 

         

 

Major constraints: 

 what if HTH is not invertible? 

 what if HTH is ill-conditioned? 

   

∂ ln p x;θ( )
∂θ

=
1
σ 2 HT x − HT Hθ%& '(.

   

∂ ln p x;θ( )
∂θ

=
HT H
σ 2 HT H( )−1

HT x −θ%
&'

(
)*
. ∂ ln p x;θ( )

∂θ
=I θ( ) g x( )−θ%& ()

+

,
-
-

.

/
0
0
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Example - Fourier Analysis: 
 

Cyclic components in white Gaussian noise 

Signal model: 

 

 

Defining  

 

 

 

 

 

 

The model can be reformulated as a linear system, with solution if M < N/2 

 

[ ] [ ] [ ] ( )21 1
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 x = Hθ + w



PO 1213 

 

Important fact: The columns of H are orthogonal.  

Define 

 

 

Moreover, the discrete Fourier Transform (DFT) relations can be applied, i.e. 

 

 

 

 

 

 

From where it follows 

    
H = h1 h2 ... h2M

!
"

#
$
, it follows hi

T h j = 0, i ≠ j .

.
2

T N
=H H I

1

0

1

0

1

0

2 2cos cos
2

2 2sin sin
2

2 2cos sin 0, , .

N
ijn

N
ijn

N

n

in jn N
N N
in jn N
N N
in jn i j
N N

π π
δ

π π
δ

π π

−

=

−

=

−

=

⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑

∑ for all

Example - Fourier Analysis (cont.): 
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The MVU estimator is 

 

 

 

§ 

 

or finally 

 

 

 

with covariance 

 

[ ]

[ ]

1

0

1

0

2 2ˆ cos ,

2 2ˆ sin .

N
k n

N
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kna x n
N N
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∑
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θ̂ = HTH( )
−1
HTx = 2

N
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2
N
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Tx


2
N
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T x
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ˆ
2 .C
N
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=
θ

I

Example - Fourier Analysis (cont.): 
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Example: System Identification 
 

Signal model, where the Finite Impulse  

Response (FIR) is to be estimated.  

The user can apply the input signal  u: 

 

 

In matrix form, considering x=[x0 … xN-1]T, the input/output relations of this linear system 

can be written as 

 

 

 

 

 

Or in compact form, once again 

   
x n!" #$ = h k!" #$u n − k!" #$k=0

p−1
∑ + w n!" #$ , n = 0,..., N −1, w n!" #$  N 0,σ 2( ) .

x =

u 0!" #$ 0 ... 0

u 1!" #$ u 0!" #$ ... 0

   
u N −1!" #$ u N − 2!" #$ ... u N − p!" #$

!

"

&
&
&
&
&
&

#

$

'
'
'
'
'
'

h 0!" #$
h 1!" #$


h p−1!" #$

!

"

&
&
&
&
&
&

#

$

'
'
'
'
'
'

+w w = w0 wN−1
!
"&

#
$'
T

.

 x = Hθ + w

H(z) u[n] x[n] 

w[n] 
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The MVU estimator is once again 

 

 

Note that accuracy depends on the input signal applied. How to choose it? 

Problem: Choose u[n] to minimize           subject to the constraint 

that             is fixed. 

 

Introducing the crosscorrelation (autocorrelation) 

 

 

 

Choosing a Pseudorandom Noise (PRN) makes this last matrix diagonal 

 

( ) ( )1 12
ˆ

ˆ , .T T TC σ
− −

==
θ

θ H H H x H Hwith covariance

Example - System Identification (cont.): 
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Extension to non-white Gaussian noise: 
 

Theorem (Generalization of Theorem 4.1) – If the data observed can be modeled as 

 

 

where x is a N x 1 vector of observations, H is a known N x p observation matrix (with 

N>p) and rank p, θ is a p x 1 vector of parameters to be estimated, and w is an N x 1 

colored noise vector with PDF  N(0, C)  (C ≠ σ2Ι), then the MVU is 

 

       (1bis) 

and  the covariance matrix of  estimate is  

 

       (2bis) 

 x = Hθ + w

( ) 11 1ˆ T T−− −=θ H C H H C x

   
C
θ̂
= HTC−1H( )−1

.
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Extension to non-white Gaussian noise: 
 

Proof: The covariance matrix and its inverse are both positive semi-definite. Thus 

 

A noise whitening operation can be performed. For that purpose lets compute the 

covariance of 

 

If we define the new variable x’ as  

 

Applying the usual solution to this linear model (transformed) results in 

 

 

For a covariance  

 

   C−1 = DT D, where D ∈RNxN

   
E Dw( ) Dw( )T!
"#

$
%&
= DCDT = DD−1DT −1

DT = I .

  !x = Dx = DHθ + Dw = !H θ + !w .

   
θ̂ = "H T "H( )−1

"H T "x = HTDTDH( )−1
HT DTDx = HTC−1H( )−1

HTC−1x

   
C
θ̂
= "H T "H( )−1

= HT DT D "H( )−1
= HTC−1 "H( )−1

.
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Sufficient Statistics: 
 

General MVU Estimation: 

 Assume that the CRLB is not satisfied with equality! 

  There is no efficient estimator. 

   How do we find the MVU estimator (if it exists)? 

     

   

Example: To compute the value of a DC signal in noise, given n samples, i=0,…,N-1. 

Consider 

 

 

 

 

All sets are sufficient since the unknown parameter can be found. S3 is the minimal one. 

[ ] [ ] [ ]{ }
[ ] [ ] [ ]{ }

[ ]{ }

1

2

1
3 0

0 , 1 ,..., 1

0 1 ,..., 1
N

n

S x x x N

S x x x N

S x n−

=

= −

= + −

= ∑

Use  the concept of Sufficient Statistics. 
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Sufficient Statistics: 
 

Theorem 5.1 (Neyman-Fisher Factorization) – If we can factor the PDF p (x;θ) as  

 

       (3) 

where g(.) is a function depending on x only through T(x) and h (.) is a function depending 

only on x, then T(x) is  sufficient statistic for θ. Conversely, if T (x) is a sufficient statistic for 

θ  then the PDF can be factored as in (3). 

 

Proof outline (=>): 

•  p(x,T(x);θ) must have a minimum at x=x0, denoted as T(x0)=T0; 

•  If y=g(x), for the vector random variable x,  

•  Knowledge of the value of a sufficient statistics 

makes the conditional PDF not to depend on the 

parameters 

( ) ( )( ) ( ); ,p g T hθ θ=x x x

( ) ( ) ( )( ) .p y p y g dδ= −∫ x x x

( )( )0| ;p T T θ=x x
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Sufficient Statistics: 
 

Proof outline (cont): 

Using conditional  

probability definition: 

 

 

Where the factorization was used in the last step. The denominator can be written as 

 

 

 

The integral is zero in Rn  except over the surface where T(x)=T0. where it is constant. 

 

 

 

Which does not depend on θ. Hence, we conclude that T(x) is a sufficient statistic. n 
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∫ ∫
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0
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h T T

p T T
h T T d

δ
θ

δ

−
= =

−∫
x x

x x
x x x
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Sufficient Statistics: 
 

Proof outline (<=): 

Consider the joint PDF 

 

Because T(x) is a sufficient statistic, the conditional PDF does not depend on θ. We can 

let 

Substituting in the previous expression 

 

Setting w(x) to 

 

Allows one to write 

 

 

Thus based on the factorization a sufficient statistic can be found 

 

( )( ) ( )( ) ( )( ) ( ) ( )( )0 0 0 0, ; | ; ; ; .p T T p T T p T T p T Tθ θ θ θ δ= = = = = −x x x x x x x

( )( ) ( ) ( )( )0 0|p T T w T Tδ= = −x x x x

( ) ( )
( ) ( )( )0

,
h

w
h T T dδ

=
−∫

x
x

x x x

( ) ( )( ) ( ) ( )( ) ( )( )0 0 0; ;p T T w T T p T Tθ δ δ θ− = − =x x x x x

( ) ( )( ) ( ) ( )( )
( ) ( )( )

( )( )0
0 0

0

; ;
h T T

p T T p T T
h T T d

δ
θ δ θ

δ

−
− = =

−∫
x x

x x x
x x x

( ) ( )( ) ( )0; ;p g T T hθ θ= =x x x n 
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Motivating Example: illustration 
 

DC Level in WGN: 

The RBLS can be used to find the MVU estimator in two different ways: 

1) Find any unbiased estimator of A, say                , and determine      .  

The expectation is taken with respect to  

2) Find some function g(.)  so that          is an unbiased estimator of A. 

First approach: 

Let          and determine  

 

We need auxiliary results for [x y]T a Gaussian random vector with mean  µ=[E[x] E[x]] T  

 

 

 

 

(see Appendix 10A for details.) 


A= x 0!" #$ Â= E


A |T!" #$

p

A |T( ).

( )Â g T=


A= x 0!" #$   

Â = E x 0!" #$ | x n!" #$n=0

N −1
∑!

"'
#
$(

[ ] [ ] ( )
( )

[ ]( )cov ,
|

var
x y

E x y E x y E y
y

= + −
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DC Level in WGN (cont.): 

1)  Find any unbiased estimator of A, say    , and determine     .  

The expectation is taken with respect to  

Applying the previous results to x=x[0] and 

 

 

 

 

Hence the PDF of [x y]T is N(µ, C), where 


A= x 0!" #$

x
y

!

"
#
#

$

%
&
&
=
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Motivating Example: 
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Motivating Example: 
 

DC Level in WGN (cont.): 

1)  Find any unbiased estimator of A, say   , and determine       .  

The expectation is taken with respect to  

Hence we have finally 

 

 

Which is the MVU estimator. Usually this option is mathematically intractable. 

 

2) Find some function g(.)  so that              is an unbiased estimator of A. 

 

We need to find some function                       so that it is an unbiased estimator. 

 

That is the case of  


A= x 0!" #$ Â= E


A |T!" #$

p

A |T( ).

  
Â = E x | y!" #$ = A+

σ 2

Nσ 2 x n!" #$n=0

N −1
∑ − NA( ) = 1

N
x n!" #$n=0

N −1
∑

( )Â g T=

Â= g x n!" #$n=0

N−1
∑( )

[ ]1

0

1ˆ .N

n
A x n

N
−

=
= ∑

  
=

1
N

x n!" #$n=0

N −1
∑ .
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RBLS Theorem: 
 

Definition: a statistic is complete if there is only one function of the statistic that is 

unbiased.  

 

Theorem 5.1 (Rao-Blackwell-Lehmann-Scheffe) – If      is an unbiased estimator of θ and 

T(x) is a sufficient statistic for θ, then                               is 

1.  A valid estimator for θ	



2.  Unbiased 

3.  Of lesser or equal variance than that of     , for all θ.	



Additionally, if the sufficient statistic is complete, then     is the MVU estimator. 

 

To validate that a statistic is complete is in general very difficult, (see examples 5.6 and 

5.7). It must verify 

 

Only for the zero function and for v(T).  

Note: - For an example of an incomplete statistic check Example 5.7 
 

θ̂ = E

θ |T x( )!
"

#
$


θ


θ

θ̂

( ) ( ); 0, for all . (5.8)v T p T dTθ θ
+∞

−∞
=∫
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Methodology: 

Use Neyman-Fisher factorization  
theorem (5.1) to find sufficient statistic 

Determine if T(x) is complete 
see (5.8) 

Find function of T(x)  
that is unbiased 

T(x) 

( )( )ˆ MVU Estimatorg Tθ = =x
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Example: 
 

Mean of Uniform Noise: 

Data model:  x[n]=w[n], n=0,1,…,N-1 

Where w[n] is IID noise with PDF  U[0,β], for β>0. 

 

We wish to find the MVU estimator for the mean θ=β/2. 

 

The approach to find the CRLB can not be followed as the PDF does not satisfy the 

regularity conditions. A natural estimator is 

 

 

 

To determine if the sample mean is the MVU we will follow the methodology previously 

presented. 

  
θ̂ =

1
N

x n"# $%n=0

N −1
∑ , with var θ̂( ) = 1

N
var x n"# $%( ) = β 2

12N
.
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Example: 
 

Lets define the unit step function: 

 

 

Then,  

 

and the PDF is 

 

 

Alternative, we can write 

 

 

So that 

  

u x( ) =
1 for x > 0

0 for x < 0
.

!

"
#

$
#

  
p x n!" #$;β( ) = 1

β
u x n!" #$( ) − u x n!" #$ − β( )!
"

#
$ , where β = 2θ.

  

p x n!" #$;β( ) = 1
β N

u x n!" #$( ) − u x n!" #$ − β( )!
"

#
$n=0

N −1
∏ =

1
β N

0

0 < x n!" #$ < β

otherwise

n = 0,1,..., N −1 .
(

)
*

+
*

  

p x n!" #$;β( ) =
1
β N

0

max x n!" #$( ) < β,min x n!" #$( ) > 0

otherwise
,

&

'
(

)
(

p x n!" #$;β( ) = 1
β N

u β − max x n!" #$( )( )u min x n!" #$( )( )
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Example: 
 

Note that can be identified  

 

 

 

By the Neyman-Fisher factorization theorem, T(x)=max(x[n]) is a sufficient statistic for θ. 

Furthermore, it can be shown that the sufficient statistic is complete. We need next to find 

a function of T(x) that is not biased (denominated as order statistics). Lets write the 

cumulative distribution function 

 

 

The PDF follows as 

 

   

p x n!" #$;β( ) = 1
β N

u β − max x n!" #$( )( )
g T x( ),β( )

  
u min x n!" #$( )( )

h x( )
  

  
Pr T ≤ ξ{ } = Pr x 0#$ %& ≤ ξ,x 1#$ %& ≤ ξ,..., x N −1#$ %& ≤ ξ,{ } = Pr x n#$ %& ≤ ξ{ } =n=0

N −1
∏ Pr x n#$ %& ≤ ξ{ }N

.

  
pT ξ( ) =

d Pr T ≤ ξ{ }
dξ

= N Pr x n#$ %& ≤ ξ{ }N −1 d Pr x n#$ %& ≤ ξ{ }
dξ

.
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Example: 
 

But 

 

Integrating we obtain 

 

 

 

 

From where it results 

 

                             makes the expected value unbiased. 

 

The MVU estimator is  

  

d Pr x n!" #$ ≤ ξ{ }
dξ

= p
x n!" #$

ξ( ) =
1
β

0

0 < ξ < β
otherwise

(

)
*

+
*

,

  

pT ξ( ) =
0

N ξ
β

#

$%
&

'(

N −1
1
β

0

ξ < 0
0 < ξ < β
ξ > β

, and E T*+ ,- = ξN ξ
β

#

$%
&

'(

N −1
1
β

dξ
0

β

∫

/

0

1
1

2

1
1

  
E T!" #$ =

N
N +1

β =
2N

N +1
θ , thus θ̂ =

N +1
2N

T

  

θ̂ =
N +1
2N

max x[n]( )

with a variance... var θ̂( ) = β 2

4N (N + 2)
<<

β 2

12N
(sample mean var) for large N!
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