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Syllabus: 
 

Classical Estimation Theory 
… 

Chap. 4 - Linear Models in the Presence of Stochastic Signals [1 week]  

Stationary and transient analysis; White Gaussian noise and linear systems;  Examples; 
 

Chap. 5 - Best Linear Unbiased Estimators [1 week]  

Definition of BLUE estimators;  White Gaussian noise and bandlimited 

systems; Examples; Generalized MVU estimation;  

 
Chap. 6 - Maximum Likelihood Estimation [1 week] 

The maximum likelihood estimator; Properties of the ML estimators; Solution for ML 

estimation; Examples; Monte-Carlo methods; 

 
 

continues… 
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An alternative strategy: 
 

FACT: 

It occurs that the MVU estimator, if it exists, can not be found. 

 

e.g. the PDF for the data is not known, the user would not like to assume a 

model for the PDF, or the problem can be mathematically untreatable. 

 

An alternative strategy can be pursued is to study the class of 

Best Linear Unbiased Estimators 

Only suboptimal performance can be achieved. 

 

The performance degradation, relative to the MVU estimator, is unknown but 

the resulting performance can be enough for the problem at hand. 
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BLUE structure: 
 

 
The Best Linear Unbiased Estimator consists of restrict the estimator to be a linear 
function of the data, i.e. 
 
 
where the an’s are constants to be determined. 
 
Optimality in general is lost. 
 
Examples revisited: 
 
DC level in  
WGN 
 
 
 
 
 
 

                  Mean of 
                  Uniform noise 

  
θ̂ = anx n"# $%n=0

N −1
∑

All unbiased  
estimators 

  θ̂ = x

Linear 

Nonlinear Nonlinear 

MVU=BLUE 
  θ̂ = x

Linear 

BLUE 

  
θ̂ =

N +1
2N

max x n( )
MVU 
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Finding the BLUE: 
 

 
To find the BLUE we constrain the estimator  
 

•  to be linear  

•  to be unbiased 

•  to minimize its variance 

  
θ̂ = anx n"# $%n=0

N −1
∑

  
E θ̂"# $% = an E x n"# $%"# $%n=0

N −1
∑ = θ (6.2)

  
var θ̂( ) = E anx n"# $%n=0

N −1
∑ − E anx n"# $%n=0

N −1
∑"#(

$
%)( )

2"

#
(

$

%
)

 
Defining a=[a0 a1 … aN-1]T and x=[x0 x1 … xN-1]T this last expression can be simplified: 
 
 
 
 
 
 
The problem of finding the BLUE can be stated as, for 

   

var θ̂( ) = E aT x − aT E x#$ %&( )2#
$'

%
&(
= E aT x − E x#$ %&( )( )2#

$'
%
&(
=

= E aT x − E x#$ %&( ) x − E x#$ %&( )T a#
$'

%
&(
= aTCa. (6.3)

   

min aTCa
subject to  aT E x!" #$ = θ

  a ∈RN
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Finding the BLUE: 
 

 
 Given the scalar parameter θ, the expected value of the samples can be assumed as  

    E[x[n]]=s[n]θ, 
 
where s[n] is known.  
 
 
 
Thus the previous problem can be stated as  
 
 
 
 
The method of Lagrangian multipliers can be used to solve this problem. Define the 
Lagrangian function as 
 
 
 
The gradient of J relative to a is  

   

min aTCa
a ∈RN s.t. aTs = 1

  
an E x n!" #$!" #$n=0

N −1
∑ = ans n!" #$n=0

N −1
∑ θ = θ , (from 6.2)

   
J a,λ( ) = aTCa + λ aTs −1( ), λ ∈R

   

∂J a,λ( )
∂a

= 2Ca + λs = 0
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Finding the BLUE: 
 

 
Solving for a produces 
 
 
Using the constrain as 
 
 
 
Finally, the solution is 
 
 
 
 
 
Taking into account that E[x]=sθ, finally the estimator 
 
 
 
 
Thus it is unbiased, as required.  

  
a = − λ

2
C−1s

   
aTs = − λ

2
sTC−1s = 1, or λ = −

2
sTC−1s

.

   

aopt = −
C−1s

sTC−1s
, with a variance var θ̂( ) = aT

optCaopt =
sTC−1CC−1s

sTC−1s( )2 =
1

sTC−1s
.

   
θ̂ = aT

optx =
sTC−1x
sTC−1s

, Its expected value is E θ̂( ) = sTC−1E x#$ %&
sTC−1s

=
sTC−1sθ
sTC−1s

= θ !
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Example: 
 

 
Example (DC level in white Gaussian noise revisited): 
 
Model of signal: 
 
Where w[n] is zero mean white noise with variance σ2 (and an unspecified PDF), the 
problem is to estimate A. 
 
Because E[x[n]]=A, we have s=1, where 1=[1 1 … 1]T. 
 
 
 
The BLUE is     and the variance is  
 
 
 
Hence the sample mean is the BLUE independent of the PDF of data. It is the MVU 
estimator for the Gaussian case. 
 
 
And in general: is it optimal?...  

  
x n!" #$ = A+ w n!" #$ , n = 0,..., N −1

   

Â =
1T 1
σ 2 Ix

1T 1
σ 2 I1

=
1
N

x n"# $% = x
N =0

N −1
∑ ,

   

var Â( ) = 1

1T 1
σ 2 I1

=
σ 2

N
.
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Example: 
 

 
Example (DC level UNCORRELATED noise): 
 
Model of signal: 
 
Where w[n] is zero mean uncorrelated noise with var(w[n])=σ2. Once again, the 
problem is to estimate A. 
 
We have again s=1, and C=diag(σ0

2 σ1
2…σN-1

2), and C-1=diag(1/σ0
2 1/σ1

2…1/σN-1
2).. 

 
The BLUE is     and the variance is  
 
 
 
 
 
 
The BLUE weights those samples more heavily with smallest variances, in an attempt to 
equalize the noise contribution from each sample… 
 
Is it optimal? In what cases?...  

  
x n!" #$ = A+ w n!" #$ , n = 0,..., N −1

   

Â =
1T C−1x
1T C−11

=

x n"# $%
σ n

2N =0

N −1
∑

1
σ n

2N =0

N −1
∑

  

var Â( ) = 1
1
σ n

2N =0

N −1
∑
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Extending BLUE to a Vector Parameter: 
 

 
To find the BLUE for a p x 1 vector parameter, we constrain the estimator  
 

•  to be linear  

•  to be unbiased 

•  to minimize its variance 

   
θ̂i = ainx n"# $%n=0

N −1
∑ i = 1,2,..., p or θ̂ = Ax, A ∈R p  x N

   
E θ̂"# $% = AE θ̂"# $% = θ

  
var θ̂i( ) = E ainx n"# $%n=0

N −1
∑ − E ainx n"# $%n=0

N −1
∑"#(

$
%)( )

2"

#
(

$

%
)

The problem of finding the BLUE can be stated as, for 
 
 
 
 
 
 
where  

   

min var θ̂i( ) = a i
TCa i

subject to  a i
T E x"# $% = θ

  
E x!" #$ = Hθ.
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Extension to non-white Gaussian noise: 
 

Theorem 6.1(Gauss-Markov Theorem) – If the data observed are of the general linear 

model form 

 

 

where H is a known N x p observation matrix (with N>p) and rank p, x is a N x 1 vector of 

observations, θ is a p x 1 vector of parameters to be estimated, and w is an N x 1 noise 

vector with zero mean and covariance C (for an arbitrary PDF), then the BLUE is 

 

       (1bis) 

and  the covariance matrix of  estimate is  

 

       (2bis) 

 x = Hθ + w

( ) 11 1ˆ T T−− −=θ H C H H C x

   
C
θ̂
= HTC−1H( )−1

.
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