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Syllabus: 
 

Classical Estimation Theory 
… 

Chap. 5 - Best Linear Unbiased Estimators [1 week]  

Definition of BLUE estimators;  White Gaussian noise and bandlimited systems; 

Examples; Generalized MVU estimation;  

 

Chap. 6 - Maximum Likelihood Estimation [1 week] 

The maximum likelihood estimator; Properties of the ML estimators; 

Solution for ML estimation; Examples; Monte-Carlo methods; 
 

Chap. 7 - Least Squares [1 week] 

The least squares approach; Linear and nonlinear least squares; Geometric 

interpretation; Constrained least squares;  Examples; 
continues… 
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Motivating example: 
 

 
Example (DC level in white Gaussian noise modified): 
 
For this example the methods previously introduced will not work… 
 
Signal model: 
 
Where A is the unknown level to be estimated and w[n] is zero mean white Gaussian with 
unknown variance A. 
 
First, lets try to find the CRLB. The PDF is: 
 
 
 
The derivative of the log-likelihood function is  
 

  
x n!" #$ = A+ w n!" #$ , n = 0,..., N −1

   

p x; A( ) = 1

2π A( )N / 2
exp −

1
2A

x[n]− A( )2

n=0

N −1
∑

$

%&
'

()
(1)

   

∂

∂A
ln p x; A( ) = − N

2A
+

1
A

x[n]− A( ) +n=0

N −1
∑

1
2A2 x[n]− A( )2

n=0

N −1
∑

=
?

I A( ) g x( ) − A( ) It appears that it is not possible… 
So, an efficient estimator does not exist. 
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An example: 
 

 
Example (DC level in white Gaussian noise modified) (cont): 
 
However, from the second derivative, it is possible to compute the CRLB to be  
 
 
 
 
Secondly, to find the MVU estimator based on the theory of sufficient statistics, one must 
factorize (1) in the form 
 
 
It is possible, if one considers 

  
var Â( ) ≥ A2

N A+1 / 2( )
.
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An example: 
 

 
Example (DC level in white Gaussian noise modified) (cont): 
 
So a sufficient statistics is 
 
 
 
It is required to find a function of the sufficient statistics that produces an unbiased 
estimator, i.e. 
 
 
 
 
Taking into account the auxiliary result 
 
 
 
 
We have that 

  
E g x2[n]

n=0

N −1
∑( )#

$%
&
'(
= A

   
T x( ) = x2[n]

n=0

N −1
∑

  
var x n!" #$( ) = E x n!" #$ − E x n!" #$( )( )2!

"&
#
$'
= E x2 n!" #$!" #$ − 2E x n!" #$( )E x n!" #$( ) + E2 x n!" #$( )

  
E x2 n!" #$!" #$ = var x n!" #$( ) + E2 x n!" #$( ) (in our case E x2 n!" #$!" #$ = A+ A2 )
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An example: 
 

 
Example (DC level in white Gaussian noise modified) (cont): 
 
Since 
 
 
 
 
It is impossible to find a solution for a generic unknown parameter A, i.e. 
 
 
 
A final alternative is to find the optimal estimator would be to determine 
 
 
 
 
That appears to be a formidable task! 
 
We exhausted the optimal approaches studied… We can propose other estimators, but 
without any guarantee of optimality.    

  
E x2[n]

n=0

N −1
∑#$%

&
'(
= NE x2[n]

n=0

N −1
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&
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$
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An example: 
 

 
Example (DC level in white Gaussian noise modified) (cont): 
 
Those estimators should be at least approximately optimal, i.e. 
 
 
For instance, lets consider the estimator (why? explanation will be provided next…) 
 
 
 
 
This estimator is biased, since 
 
 
 
 
 
 
But it can be verified that is is consistent, i.e.  

  

E Â!" #$→ A

var Â( )→ CRLB

  
Â = −

1
2
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1
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1
N

x2[n]
n=0

N −1
∑ → E x2[n]$% &' = A+ A2 and therefore Â→ A
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An example: 
 

 
Example (DC level in white Gaussian noise modified) (cont): 
 
Consider that      and lets linearise this function,  
near u0=E[u]=A+A2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus this estimator is asymptotically unbiased. 

   
And what about its variance?… 

  

g u( ) ≈ g u0( ) +
dg u( )

du
u=u0

u − u0( ) (using Taylor's series expansion)

Â ≈ A+

1
2

A+
1
2

1
N

x2[n]
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N −1
∑ − A+ A2( )$

%
&

'

(
)

E Â$% '( ≈ A.

  
Â = g u( ), where g u( ) = − 1

2
+ u + 1

4
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An example: 
 

 
Example (DC level in white Gaussian noise modified) (cont): 
 
It is given by 
 
 
 
 
 
 
But var(x2[n])=4A3+2A2, so that 
 
 
 
 
 
 
Thus this estimator asymptotically equals the CRLB!!! 
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Discuss the impact of one such methodology that provides asymptotic  results. 
The value for science and for engineering 
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An asymptotically optimal solution: 
 

 

What to do, if the MVU estimator does not exist or can not be found? 

 

An alternative consists of exploiting the… 

 
Maximum Likelihood Principle. 

It can be understood as a “turn the crank” method. 

 

Only suboptimal performance can be achieved. 

 

It is the most popular approach to obtaining practical estimators.  

Its optimality is verified  for large enough data sets. 
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Motivating example revisited: 
 

 
Example (DC level in white Gaussian noise modified): 
 
The method consists only on the computation of the maximum of the (log) likelihood 
function. In our case, it is required to solve: 
 
 
 
 
 
 
 
 
 
 
 
 
 
From where our previous unexplained estimator results  
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Maximum Likelihood Principle: 

In practice it is seldom known in advance how large N must be. 

 

Analytical expression for the PDF of the MLE is usually impossible to derive. 

 

Thus, to assess the MLE performance, computer simulations are usual. 

   
θ̂ ~

a

N θ , I −1 θ( )( )

 

Theorem 7.1 (Asymptotic Properties of the MLE) – If the PDF p(x;θ) of the data x 

satisfies some regularity conditions, then the MLE of the unknown parameter is 

asymptotically distributed (for large data records) according to 

 

where I(θ) is the Fisher information evaluated at the true value of the unknown parameter 
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Properties of MLE: 
 

Proof outline: 

 

The following regularity conditions are assumed: 

1)  The first and second-order derivative of the log-likelihood are well defined. 

2)    

First, it is required to show that the MLE is consistent. Related with the Kullbak_Leibner 

information (and also with measure of the difference between two probability 

distributions) 

 

 

 

Where equality occurs for θ1=θ2. 

  

E
∂ ln p x n"# $%;θ( )

∂θ

"
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'
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'

p x n!" #$;θ1( )dx[n]∫ ≥ 0 (1)
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Properties of MLE: 
 

Proof outline: 

 

Now, maximizing the log-likelihood 

 

Where the last relation is due to the fact that, by the law of large numbers, it converges to 

the expected value. The MLE is consistent and is maximized for             , i.e. 

 

 

Moreover is the maximum, due to suitable continuity argument and the  relation (1). Using 

the Taylor series expansion, one obtains 

 

 

 

Where the last quantity is approx. 0 if near an maximum.  

   

1
N

ln p x;θ( ) = 1
N

ln p x n"# $%;θ( )n=0

N −1
∑ → ln p x n"# $%;θ( ) p x n"# $%;θ0( )dx[n]∫

   

∂ ln p x;θ( )
∂θ

θ=θ̂

≈
∂ ln p x;θ( )

∂θ
θ=θ0

+
∂2 ln p x;θ( )

∂θ 2

θ=θ0

θ̂ −θ0( ) ≈ 0

  
ln p x n!" #$;θ0( ) p x n!" #$;θ0( )dx[n]∫ ≥ ln p x n!" #$;θ1( ) p x n!" #$;θ0( )dx[n]∫

 θ̂ = θ0
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Properties of MLE: 
 

Proof outline: 

This relation can therefore be approximately written as 

 

 

 

 

 

 

From where it can be concluded, using the law of large numbers and the IID of the 

samples, that  

    

N θ̂ −θ0( ) =

1
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θ̂ ~

a

N θ0 , I −1 θ0( )( )
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MLE PDF: 
 

 

In general is very difficult (or impossible) to obtain the PDF of the MLE.  

 

How to study its performance? 

 

Use Monte Carlo Method 

 

1 . Simulate the noise characteristics, the signal model, and compute the estimates. 

2. Repeat M times these realizations. (How to select M?) 

3. Compute the experiments ensemble mean and covariance, using 

 

 

 
   

E Â!" #$


=
1
M

Âii=1

M
∑

var Â( )
=

1
M

Âi − E Â!" #$
'

(
)
*i=1

M
∑

2
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Invariance Property: 

  
α̂ = g θ̂( )

 

Theorem 7.2 (Invariance Property of the MLE) – The MLE of the parameter α=g(θ), 

where the PDF p(x;θ) is parameterized by θ, is given by 

 

Where    is the MLE of θ. The MLE is obtained by maximization of p(x;θ), If g is not a one-

to-one function,  then      maximized the modified likelihood fuction 

 

 

Proof outline (simple case: g() one to one WGN, IID, expected value): 

The MLE for the transformed parameter can be found minimizing the log-likelihood, i.e. 

 

 

Thus 

 

 θ̂

 α̂

   

pT x;α( ) =
θ : α = g(θ ){ }

max p x;θ( ).

  

∂

∂α
x[n]− g−1 α( )( )2

n=0

N −1
∑ = k + k ' x[n]− g−1 α( )( )n=0

N −1
∑

∂

∂α
g−1 α( ) = 0, k,k ' > 0 .

  
x[n]

n=0

N −1
∑ − Ng−1 α( ) = 0, g−1 α( ) = 1

N
x[n] = x

n=0

N −1
∑ α = g x( ).
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Numerical Determination of the MLE: 
 

The MLE in general can not be found in close form. 

 

But it can be found numerically. Grid search, gradient or Newton methods can 

be used.  

 

Conditions for nonlinear optimization methods are central to that discussion. 

 

For different data-sets, the target function changes and thus also the 

maximum changes. 

 

In general there is not or maximum, but a number of local maxima. 

 

How to avoid attraction to local maxima? Regions of attraction?... 
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Motivating example: 
 

 
Example (Exponential  in white Gaussian noise): 
 
Signal model: 
 
Where w[n] is zero mean white Gaussian noise with variance σ2 and the exponential 
factor r is to estimated. 
 

For the likelihood function, the MLE is the value of r that maximizes is : 
 
 
 
Or, equivalently, the value that minimizes 
 
 
Differentiating J(r) and setting to zero produces 
 
 
 
 
It is a nonlinear  equation in r and cannot be solved directly. 

  
x n!" #$ = rn + w n!" #$ , n = 0,..., N −1

   

p x; A( ) = 1

2πσ 2( )N / 2
exp −

1
2σ 2

x[n]− rn$
%&

'
()

2

n=0

N −1
∑

$

%
&

'

(
) (1)

  

∂J r( )
∂r

= 2 x[n]− rn#
$%

&
'(

nrn −1
n=0

N −1
∑ .

  
J r( ) = x[n]− rn"

#$
%
&'

2

n=0

N −1
∑ .
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Numerical Solution (basics): 
 

The use of iterative methods to maximize the log-likelihood function is an example of 

application of nonlinear optimization methods. See a good book (or class) on the field… 

 

 

 

For instance, one of the most basic method, is the Newton-Raphson method. From an 

initial guess Θ0, and from a Taylor series expansion results 

 

 

The following recursion resultsθ 

 

 

 

   

∂ ln p x;θ( )
∂θ

= g θ( ) = 0

  

g θ( ) ≈ g θ0( ) +
∂g θ( )
∂θ

θ=θ0

θ −θ0( ) ≈ 0

   

θ
k +1

= θ
k
−

∂2 ln p x;θ( )
∂θ 2

θ=θk

$

%

&
&
&

'

(

)
)
)

−1

∂ ln p x;θ( )
∂θ

θ=θk

θ0 θ1 θ2 

g(θ) 
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Motivating example: 
 

 
Example (Exponential  in white Gaussian noise): 
 
Computer simulation 
 
N=50, r=0.5, and σ2=0.01 
 
Maximum at r=0.493 
(a specific realization) 
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Numerical Solution (basics): 
 

The importance of 

 

 stability conditions,  

 

 convergence rates, and  

 

 domains of attraction  

 

can hardly be overemphasized. Engineering/scientific content… 

 

Other methods mentioned:  

 Scoring 

 Expectation / maximization (nice term paper subject) 
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Theorem 7.5 (Optimality of the MLE for the Linear Model) – If the observed data x are 

described by the general linear model 

 

where H is a known N x p matrix with N>p and of rank p, θ is a p x 1 parameter vector to 

be estimated, and w is the noise vector with PDF N(0,C), the the MLE of θ is  

 

And is also an efficient estimator in that it attains the CRLB and hence is the MVU 

estimator. The PDF of θ is 

Invariance Property: 

 x = Hθ + w

  
θ̂ = HTC-1H( )-1

HTC-1x.

   
θ̂  Ν θ, HTC-1H( )-1( ).
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Method of Scoring: 
 

The method of scoring is based on the approximation for one element found also in the 

Newton-Raphson method. Note that for IID samples we have 

 

 

 

So the iterations on NR method can be transformed in 

 

 

 

 

Resulting in a method that is  more stable. However it suffers from the same convergence 

problems as the NR method. 

   

θ
k +1

= θ
k
− I −1 θ( )

∂ ln p x;θ( )
∂θ

θ=θk

   

∂2 ln p x;θ( )
∂θ 2 =

∂2 ln p x[n];θ( )
∂θ 2n=0

N −1
∑ = NE

∂2 ln p x[n];θ( )
∂θ 2

%

&
'
'

(

)
*
*
= −Ni θ( ) = − I θ( ).
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Maximum Likelihood Principle: 

In practice it is seldom known in advance how large N must be.  

 

In the cases where the number of parameters increases, relative to the 

number of samples available, the assumptions fails and the MLE estimator 

can provide very poor estimates.  

   
θ̂ ~

a

N θ , I −1 θ( )( )

 

Theorem 7.1 (Asymptotic Properties of the MLE – Vector Parameter) – If the PDF 

p(x;θ) of the data x satisfies some “regularity” conditions, then the MLE of the unknown 

parameter θ is asymptotically distributed (for large data records) according to 

 

where I(θ) is the Fisher information evaluated at the true value of the unknown parameter 
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