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Syllabus: 
 

Classical Estimation Theory 
… 
 

Chap. 6 - Maximum Likelihood Estimation [1 week] 

The maximum likelihood estimator; Properties of the ML estimators; Solution for ML 

estimation; Examples; Monte-Carlo methods; 

 

Chap. 7 - Least Squares [1 week] 

The least squares approach; Linear and nonlinear least squares; Geometric 

interpretation; Constrained least squares;  Examples; 

 
Chap. 8 – Bayesian Estimation [1 week] 

Philosophy and estimator design; Prior knowledge; Bayesian linear model; Bayesian 

estimation on the presence of Gaussian pdfs; Minimum Mean Square Estimators; 

continues… 
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Least Squares Approach: 
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Least Squares Approach: 

  
J θ( ) = x n"# $% − s n"# $%( )2

n=0

N −1
∑ = ε 2 n"# $%n=0

N −1
∑

 
 
The least squares estimator (LSE) is obtained minimizing the LS error criterion 
 
 
 
where the dependency on θ is via s[n]. 
 
Note: 
 

 No probabilistic assumptions have been made about the data x[n]; 
 

 Method valid both for Gaussian and for non-Gaussian disturbances; 
 

 Performance optimality of the LSE can not be guaranteed; 
 

 Method applied when: 
   
  a precise statistical characterization of the data is unknown; 
  
  optimal estimator can not be found; 
  
  … 
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It is immediate that      With a solution given by 
 
 
 
 
Thus the minimum cost of the criterion verifies 

Linear Least Squares: 
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The least squares approach for 
a scalar parameter, we must 
assume 
 
 
The criterion to minimize is 
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The gradient is      With a solution given by 
 
 
 
 
The minimum cost of the criterion verifies 

Linear Least Squares: 

   
J θ( ) = x n"# $% − s n"# $%( )2

n=0

N −1
∑ = x − Hθ( )T x − Hθ( ) = xT x − 2xT Hθ + θ T HTT Hθ.

 
 
The extension of the least squares approach for a vector parameter is immediate. 
 
For the signal s =[s[0] s[1] … s[N-1]] 
The criterion to minimize is 

   

∂J θ( )
∂θ

= −2HT x + 2HTT Hθ.
   
θ̂ = HTT H( )−1

HT x

   
0 < Jmin θ( ) = xT x − xT H HTT H( )−1

HT x < xT x.
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Geometrical Interpretation: 

   
θ̂ = HTT H( )−1

HT x

 
 
Note that the solution obtained 
 
can be rewritten as 
 
 
 
 
 
 
Denoting as the error vector    , the previous expression can be interpreted as  
that the error vector must be orthogonal to the columns of H. 
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HT x
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HTT Hθ − x( ) = 0

 ε = Hθ − x

h1 

h2 

ε 

x 

  ε ⊥ S 2

  S 2



PO 1213 

Extensions to Least Squares: 
 

 
Other extensions of the least squares approach are also very popular 
 
Weighted Least Squares: 
 

 criterion 
  
 solution 

 
 minimum  

 
 W can be set as the inverse covariance matrix, leading to an  
   optimal solution in the  case of correlated Gaussian noise. 

 
 
Order-recursive Least Squares (see pp. 232) 
 

 same criterion but the observation and parameter matrices vary their length  

  
JW θ( ) = x − Hθ( )T W x − Hθ( )
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Extensions to Least Squares: 
 

 
Order-recursive Least Squares (cont.) 

 solution 
 
 
 
 
 
 
 
 
 
 

 minimum  
 
Example:  
Line fitting 
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Example: 
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Sequential Least Squares: 
 

 
In many estimation, detection, or identification problems data are obtained as samples of 
the output of a process. 
 
It would be advantageous that the least squares solution could be written as a recursive 
solution. 
 
Lets revisit our old DC level in Gaussian noise example: 
 
At time N-1, the data set available is x=[x[0] x[1] … x[N-1]] and the MVU estimator 
solution is given by 
 
 
If a new sample is obtained, i.e. x[n] is available, the estimator is given by 
 
 
 
That can  be rewritten as  
 
 
 
Much remains to be said, see next chapters… 
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Sequential Least Squares: 
 

 
 
 
Recursive solution 
 
Correction term, reflecting that with more one sample more is known on the parameter. 
 
The gain is decreasing thus preserving a memory on the past samples. 
 
The value of the criterion can also be written recursively, i.e. 
 
 
 
Seems a paradox, but if our fitting is parfait does not increases…  
 
More points to be fitted with the same number of parameters.  
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Sequential Least Squares: 
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Estimator Update: 
 
 
 
Where 
 
 
 
 
Covariance Update: 
 
 
 
 

Sequential Least Squares: 
 

 
The optimal solution, in the case where a Gaussian noise occurs, with time varying 
variance 
 
Signal Model  x[n]=h[n]θ,  n=0,…,N-1,… 
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Sequential Least Squares: 
 
 
The signal model and the parameter estimation problem can be interpreted resorting to the 
dynamic model 
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Constrained Least Squares: 
 
This alternative method can be very useful if the problem at hand verifies some properties. 

  
 criterion 

 
 

  
 solution 

 
The constrained LSE is a corrected version of the unconstrained LSE. 
 
It can also be interpreted as the constrained signal estimate to be the projection of the 
unconstrained solution onto the constrained subspace. 
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Extensions to Least Squares: 
 
Other extensions: 
 
Total Least Squares (errors in variables, or orthogonal regression) 
 
 
 
 
 
 
 
 

 When could also be errors in the independent variables. 
 
Lasso – Least Absolute Shrinkage and Selection Operator 
 

 criterion 
  

 
 

 solution 

h 

x 

h 
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θ̂ = HTT H + λW−( )−1
HT x

W diagonal matrix with elements θ̂ i ,and W−  is the generalized inverse.

   

J θ( ) = x − Hθ( )T x − Hθ( )
s.t. θ ≤ t, with t > 0
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∑



PO 1213 

Nonlinear Least Squares: 
 
In general the signal model is 
 

 model  
 
where s() is in general a nonlinear function of the unknown parameters. The criterion to be 
minimized can be written as (if a quadratic error is selected) 
 

 criterion 
 
termed also as nonlinear regression problem, in statistics.  
 
 
Solution is general is not available, except if resorting to numerical methods. 
 
  
Two methods than can reduce the complexity can be identified:   
 

 1 – Transformation of parameters; 
 

 2 – Separability of parameters; 

  
J θ( ) = x − s θ( )( )T x − s θ( )( )

  
x = s θ( )T + w
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Nonlinear Least Squares: 
 
Transformation of parameters 
 
We seek a one-to-one transformation that produces a linear signal model in the new space: 
 
 
Where g() is a p-dimensional function of the unknown parameters, with inverse: 
 
 
 
Then the solution is 
 
 
 
The transformation g(), if it exists, is usually quite difficult. 
 
Only a few nonlinear least squares problems may be solved in this manner. 

 
α = g θ( )

  
s θ α( )( ) = s g−1 α( )( ) = Hα.

   
θ̂ = g−1 α( ) = g−1 HT H( )−1

HT x( )
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Nonlinear Least Squares: 
 
Separability of parameters 
 
Assume that the model is nonlinear but still is linear in some of the parameters. Thus 
 
 
Where  
 
 
 
 
The criterion 
 
 
 is linear in β and nonlinear in α. For a given α can be minimized, with (partial) solution 
 
 
 
 
The problem now reduces to the maximization of 
 
 
over α. 

 
s = H α( )β

  
θ =

α
β

$

%
&
&

'

(
)
)
=

( p − q) ×1
q ×1

$

%
&
&

'

(
)
)

   
β̂ = HT α( )H α( )( )−1

HT α( )x

   
J α ,β( ) = x − H α( )β( )T x − H α( )β( )

   
J α , β̂( ) = xT I − H α( ) HT α( )H α( )( )−1

HT α( )$
%

&
'

x



PO 1213 

Nonlinear Least Squares: 
 
General case 
 
When all the other methods fail, a Taylor series expansion can be used. The criterion 
 is then approximated… 
 
  
 
 
If we set up an iterative procedure (as in the Newton-Rawphson case) 
 
 
 
 
Where 
 
 
 
The solution can be trivially generalized to the vector case: 
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