

Advanced Control Systems Detection, Estimation, and Filtering

Graduate Course on the Mechanical Engineering PhD Program
Spring 2012/2013

3rd Problem Set

This problem set consists on the detailed synthesis and analysis of a optimal estimation problem. Physical insight for the solutions obtained is important.

Problem

Consider the problem of estimating the state variables of a Direct-Current (DC) motor described by the transfer function

$$G(s) = \frac{\varpi(s)}{u(s)} \frac{\theta(s)}{\varpi(s)} = \frac{a}{s(s+b)},$$

where $\theta(t)$ is the motor rotor angle, $\omega(t)$ is the angular velocity, and u(t) is the command voltage at the motor input. For numerical computations consider a=100 rad s⁻¹ V⁻¹ and b=30 s⁻¹.

Part 1

- 1) Write a state model for the motor described by the transfer function G(s).
- 2) Resorting to the step-invariant discretization method obtain a discrete time equivalent model, given the sampling period h=0.01s.
- 3) Characterize the resulting model in terms of stability and invariance. How are these properties for the continuous and discrete time versions related? And in the general case of non-linear systems?
- 4) Simulate the discrete time systems for an interval of 10 seconds, considering that the input is given by $\mathbf{u}(k)=\sin(2~\pi~k~h)$ V, k=1...1000. The motor starts the experiment at rest with the rotor angle at 30 π /180 rad. This test, given the absence of stochastic phenomena is usually denominated as "sanity check".

Parte 2

After extensive laboratory tests it was found that the angular position is corrupted by zero mean white Gaussian noise with variance $(0.1~\pi/180)^2$ rad². The velocity is corrupted by zero mean white Gaussian noise with variance $(0.05~\pi/180)^2$ (rad s⁻¹)².

- a) Compute how this stochastic process evolves, given that the motor starts at rest with the initial angular position described as a random Gaussian variable with expected value $30 \,\pi / 180 \,\text{rad}$ and variance $(0.5 \,\pi / 180)^2 \,\text{rad}^2$.
- b) Show the evolution of the state variables resorting to 10 MATLAB simulations. Comment on the results obtained.

Part 3

Given the uncertainties previously described, a stationary Kalman filter should be designed to obtain optimal estimates on the state variables. To achieve that purpose consider that a angular sensor is installed on the motor axis, providing measurements with null mean error and variance

- $(5 \pi / 180)^2 \text{ rad}^2$.
- a) Design a block diagram, as detailed as possible, to describe the Kalman filter and its connection to the "real" system.
- b) Compute the evolution of the expected values of the state variables considered.
- c) Compute the evolution of the state estimate error covariance, for the state variables considered.
- d) Implement in MATLAB the proposed block diagram and simulate for a reasonable time interval the evolution of the motor and of the estimator. Consider also the original continuous time model of the motor. Comment on the results.
- e) Compute the stationary Kalman filter gains and compare them with the results previously obtained. Discuss the results obtained.

Parte 4

Assume that a more accurate sensor becomes available, now with a variance (0.1 π /180)² rad².

- f) Based on the expressions obtained in c) and e) compute the new values for the estimation error covariance and the Kalman filter gains. Discuss the results.
- g) Obtain the transfer functions from the angular measurement inputs to the angular position estimates. Discuss the stability and bandwidth of the systems obtained, resorting to a Bode diagram, for the two cases studied previously.

Solutions due in May 13th 2013

Bom trabalho;)
Paulo Oliveira
IST, May 1st 2013