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Theme

Define the concept of continuous-time random processes
« scalar-valued random processes
» vector-valued random processes

Discuss nonstationary and stationary situations, the nature of
the probability density functions (pdf), mean and covariance

* nonstationary means that statistics change with time
« stationary means that statistics are constant over time

For stationary random processes we define the “autocorrelation
function” and the “power spectral density”

Demonstrate how to analyze linear time-invariant (LTI) systems
driven by stationary random processes

Define and discuss a modeling tool, the continuous-time white
noise process



What Do We Observe?
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« Example of random sequence: The numerical outcome of
sequentially throwing a die, i.e. {3,6,6,2,3,1, 2,5, 5,5, ...}

« Example of a random process: Wind disturbances acting on
physical systems

* We concentrate on continuous-time random processes (RPSs)

* We shall examine random sequences later



Example: Sailboat Motion

« Wind speed is an example of
a random process. There

are random wind speed e
variations about the mean
wind speed.

« The wind speed will
iInfluence the speed of the
sailboat, so that its velocity wind speed, m/sec

will also be a random 4
prOCGSS 1 \S N[ U7 r_néan wind
* The sailboat speed will

- >
depend on the sailboat time
dynamics and the
randomness of the wind k- /Ah--- Ao/ _.

mean speed

speed >

time




Example: Aircraft Pitching

« Vertical wind gusts are an
example of a random
process

« Resulting aircraft pitch angle
IS also a random process

« Aircraft pitch angle depends

on aircraft dynamics

iInfluenced by the vertical

wind gusts teh angle time ™
4 g{t) deg/sec

g



Dynamical Systems with Random

Inputs

/\/\// Dynamical

System
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We will study how dynamic systems behave when their input,

u(t), is a random process

We should expect that the output, y(t), will also be a random

process

We must learn how to characterize, in a mathematical

framework, random processes

We must discover how dynamic systems interact with their input
random processes and how they generate their output random

Processes



Continuous-Time Random Processes

Think of a random process (RP) as a
collection, or ensemble, of time-
functions, any one of which may be
observed on any trial of an experiment

Denote the ensemble of functions by
{x(t)}, and of any observed member of
the ensemble by x(t)

On repeated trials of experiment, say
at times t, and t,, x(t,) and x(t,) are
random variables

Example: the RP may represent the
temperature from 9:00 to 10:00 am, on
July 13, in Boston (different
temperature observed each year)




Stationary Random Processes

Attime ¢=1t;: random variable x()=x,,
with pdf p(x,,¢)

Attime ¢t=t¢,: random variable x(,) = x,,
with pdf p(x,, t,)

If the statistical properties of the ensemble
{x(t)} change with time, then we callthe
random process "non - stationary”, and we
write the pdf as p(x(?), t)

If the statistical properties of the ensemble
{x(t)} do not change with time, then we
call the random process " stationary",

and we write the pdf as p(x(?))

\
L
D

v




lllustration

« Non-stationary random process: the temperature profile, in
Boston, on November 28 from 3:00 am to 11:00 pm (it will
depend on the time)

- Stationary random process: the temperature profile on
November 16, in Boston, from 9:00 to 10:00 am



Statistics of Random Processes

NONSTATIONARY RANDOM PROCESS
e Time -varying mean: m(t)

m(t) = E{x()} = [x()p(x(t), 0Kix(1) A f\
| - 2 T
e Time -varying variance: o“(t)
o? (1) = E{x() =m@®)’ {= [(x(t) = m(®))’ plx (1), ))dx(1) i
STATIONARY RANDOM PROCESS Ny ”\f‘\'t
e Constant mean: m \\j\ I/\\,\/:t
=
m=E{x(t)} = jX(t)p(X( t))x(t) o

e Constant variance: o2

o = E{x(t)— m) }: j(x(t)—m)zp(x(t))dx(t)
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Nonstationary Correlation Function

NONSTATIONARY RANDOM PROCESS, x(?)
Time - varying pdf: p(x(z),t)

Assume: E{x(t)}=0 V¢

Consider: x; = x(t,), x, = x(t,)

The two RVs x; and x, have a joint density function

p(x1, %)= plx(t), i, x(t), ty)
The autocorrelation function . (¢,t,) Is defined by

wxx(tl) tz) = E{X(fl)x(tz)}:
- jjx(tl)x(tz)p(x(tl)’ ty x(t), t Yx(t)dx(t,)

Note that . (¢,¢,) will depend on the absolute
values of time, ¢ and¢,
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Stationary Autocorrelation Function

STATIONARY RANDOM PROCESS, «x(t)
Time -independent pdf: p(x(2))
e Assume: E{x(t)}=0 Vt
o Let 1, =1, +7, andconsider x; = x(t)), x, = x(t, + 7)

e The two RVs x; and x, have a joint density function

p(xy, xy, 7)= p(x(t), t;; x(t, + 7), 8, + 7) = p(x(t,), x(t, + ), T)
which now only depends on the time - difference ¢
e The autocorrelation function . (7) is defined by

Vo (T) = E{x(1)x(t+ 1)} =
- J‘J‘x(t)x(t+ T)p(x(t), x(t + 1), T)dx(t)dx(t+ 7)
e Note thatin stationary random processes .. .(7)

will only depend on the time -interval z and not on
the absolute value of time ¢

A
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A

x(t) e Stationary random process, x(t)
e Mean: E{x(t)} =x = constant for all ¢
Assume x =0 for convinience

| |

| |

| |

I » o Variance: E&?(t) = o2 = constant for all ¢
t t+t time {X ()} A

DEFINITION
e Autocorrelation function of x(?):  w..(7)
V(7)) = E{x(O)x(t+ 1)}
e Autocorrelation function depends only on
interval r and notontime ¢
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e Given, zero-mean stationary
random process, x(t), with
autocorrelation function . (7)

DEFINITION
e The power spectral density (PSD)
function ¢, (@) of x(z) is the Fourier
transform of the autocorrelation
function v _.(7)

bo(@)= [ (e’ dr

Bjhx(o)

[,
/N

— I I —>

—OA 0 OA
AREA=POWER OF x(t) IN FREQUENCY
RANGE, -oa<o<oa
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First-Order Markov Process

e Simplest example of a

random process

W (0)= e P17 g0

2
2P0
¢xx(a)) — "5 2
o+
1 . .
o ,_3 = correlation time- constant

e = bandwidth of PSD
e Note:

2 fo’

- -Blr|  —Jjor
J:o G%e _z.e dr = 2 2 :¢xx(a))
Vo () D=+ p
1 2,802 : _
— e %dw = ote P17 = T
nte? 1 B Vo (7)
%K_J

Dx (0)
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The Ergodic Hypothesis

A stationary random process is ergodic if we can calculate its
statistics by averaging over time a single “representative”
outcome (time function)

“‘Representative” means that the time function must reflect all
the attributes of the random process (wiggles etc)

The set of constant random functions is not ergodic, since no
outcome is representative

e Mean calculation: m = E{x(t)} = lim i jTTx(t)dt
I'—>x -

e Variance: o_° EE{(x(t)—m) }— [im —.f (x(t) - m) dt

e Autocorrelation function (with m = 0):

Vult) = Ex (D)) = lim — [ xx(t+ o)de
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Calculating Autocorrelation Functions
Using Tapped-Delay Lines

The autocorrelation function
can be approximated by using
a tapped-delay line

Then, the power spectral
density (PSD) function can be
approximated using discrete
Fourier transforms (DFT)

x(t)

¢
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e Given LTI SISO system
Y(s) = h(s)u(s)

e Assume h(s) strictly stable

e Random process inputs will

generate a random process
output

e \Want statistical characterization
of output random process at
steady - state

PROBLEM
e Given PSD ¢, (») of input u(t)
e FiNd PSD ¢, (») of output y(z)

LTI Dynamical
System, h(s)
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Important Remark

It is very easy to analyze stochastic LTI systems in the
frequency domain

Very simple algebraic relations linking
» the PSD of the input random process signal

« the magnitude of the of the SISO LTI system transfer
function as a function of frequency

to the PSD of the (steady-state) output random process

We can recover statistical time-domain properties (variance,
autocorrelation function) of the output random process by the
Inverse Fourier transform of the output PSD
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Continuous-Time White Noise (WN)

DEFINITION
e Zero-mean, unit intensity white noise, &(z) T"’&(T):S(T)
: >
EXS)}=0, co&t)&(t)]=E{St)&(r)f=S(t ) 0 *
e Autocorrelation function of WN is unit impulse
A ¢ {0)=

E{EW)E(t+T)} =y .o(1) = 5(7)
e PSD function of WN is constant for all @ >
¢§§(a)) =1 Vo

« Continuous-time WN is physical fiction; it is completely
unpredictable

* WN has infinite variance
 WN has zero time-correlation
* WN has infinite power

« But, very useful in modeling

20



WN as Limit of 1st-order Markov Process

e We can model WN as the limit of a 1st- order Markov process with decreasing
correlation time - constant, L
e Consider the 1st-order Markov random process, x(¢), with autocorrelation function
W, (T)= g ¢ P17l Note that: f;g e Plilgr=1 vB>0
and associated power spectral density
2
@)=~

e Then, the unit intensity white noise £&(¢) is the limiting process as f— «

Wxx(T)
Adxx (o)
1




Comments on White Noise

White noise can approximate a “broadband” noise process, with
constant power density over a wide frequency-range, and which
eventually “rolls-off” at very high frequencies

« we avoid complex models at these high-frequencies

Continuous white noise is the “most” unpredictable continuous
random process, because of its infinite variance and zero time-
correlation

e one can neither estimate nor predict white noise, even
though it has been observed for ever

Pure continuous-time white noise does not exist in nature
* remember, it has infinite power

Also, continuous-time white noise is not an “ordinary”
mathematical function, so it is easy to make mistakes using
white noise in non-rigorous mathematical proofs

* it belongs to the so-called class of “distribution functions”

« nevertheless, it is a very useful modeling tool )



White Noise Can Approximate
Broadband Noise

Broadband noise

x-g0 [ ()

Bandwidth - 1 rad/sec

ﬁ) \
=,

|
|
0 1 B>>1 B

&
LI,
£
[1

e Broadband noise RP x(z) has

_ e Exact calculation:

large bandwidth, S much larger ,

than the bandwidth of the bp(0)=18(jo) |” P (@)
LTI system g(s) e Approximate calculation:

e Can approximate output RP
PSD, ¢,,(»), assuming that
Input RP x(z) Is white noise

(@) =| gljo) |” =
valid for g>>1
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Prewhitening

o Input WN, &%)

V/g;g(r) =0(1); ¢§§(w) =1
B e Output RP y(t) has PSD given by
nput WN. eit1| ) [Output RP, Y1) by (@) =h(jo)h(-jo)=|h(jo)|*. 1_
dzz(0)

 We can always model a physical (colored) stationary random
process y(t) as the output of a fictitious LTI SISO dynamical

system, with transfer function h(s), driven by a fictitious white
noise input, &(t)

« This modeling concept is called “prewhitening”

24



Modeling Using Prewhitening

Assume that y(z) is ergodic RP
Measure (experimentally) approximate
autocorrelation function, w,, (7)

Take inverse Fourier transformof v, (7)

and determine approximation to the PSD

of y(v), 4,, (@)

B

D>
Input WN, &(t)

h(s)

Find a stable and minimum - phase transfer function, 4(s), such that
its squared frequency-response Ai(jw) approximatesthe PSD, i.e.

| h(jo) |*= 4, (o)

Determine, if required, a state - space representation for the transfer

function A(s)

Think of y(z) as the output of the fictitious #4(s) driven by the (also

fictitious) unit intensity white noise &(t)

D>



h(s)

‘ > >
Input WN, &(t) Output RP, y(t)

Variance: E{yz(t)}: o’
i ion: _ —plz|
Autocorrelation function: w . (7)=0c"e

2 fo?
w® +,B2

Power spectral density: ¢, (o) =

Transfer Function: A(s) = o2
s+ f

Ref. [1], p.44
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-

Output RP, y(t)

h(s)

‘ >
Input WN, £(t)

Variance: E{y2 (t)}: o’

Autocorrelation function: y,(z)=c’e”'"l 1+ 8] 7 |)

3 2
Power spectral density: ¢,, (o) = pa
2 2
(a) +,B)2
3/2
Transfer function: h(s)=— 200 >
s*+2Bs+ B

Ref. [1], p.44
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Another Second-Order Example

-

h(s)

‘ >
Input WN, £(t) Output RP, y(t)

Variance: E{y2 (t)}: o’

Autocorrelation function: v, (7) =
Power spectral density: ¢, (w)=0c""

Transfer function: Ai(s)=o-

Ref. [8], p. 72

2

o-  _

— e @nltl COS( 1-c*w, | 7| 0"
cos® J
) a’w’ + b

o’ +2a),2l(2g2 ~Do? +a),f

as+b

s% + 2¢m,5 + a),f
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Modeling Implications

P
Input WN, £(t)

h(s)

fictitious

J”
Cnlaran >

fictional iy, reg| life
models

g(s)

Colored
RP, y(t)

The output random process, y(t), of a “real” system g(s) to a
colored input random process, X(t), can also be modeled by the
cascaded system g(s)h(s), where h(s) is the “prewhitening”
system for the random process x(t)

29



Remarks

Continuous-time random processes are essential in modeling
the impact of random disturbances and “noise” on physical
systems

It is crucial to appreciate, and fully understand, the time-domain
and frequency-domain properties of stationary random
processes, via the associated autocorrelation and PSD function

The power spectral density of stationary random processes is a
very powerful tool when we analyze the input and output
signals, of a SISO LTI system, as random processes

Even though a physical fiction, continuous-time white noise is a
powerful modeling tool

All SISO results will be extended to the multi-input multi-output
(MIMO) case, fully taking advantage of state-space
representations

30



e All definitions and results for the scalar case readily extend to the
case of vector- valued random processes

e AVRP x(t) eR" is a n-dimensional column vector
Xy (1) |

x(t) = X, (t)

| X (1)

whose elements, x,(?), are scalar-valued random processes

31



PDF and Mean For Nonstationary VRP

o Allelements x;(t);i=12,...,n are jointly -distributed RPs

¢ |n the nonstationary case the pdf of the VRP is the
scalar - valued function p(x(2), t) = p(x, (t), X, (t), ..., x,,(2), t)

X (1) |

. _ X (1) |
with mean Xx(t) = = FE{x(t)} = J'x(t)p(x(t), t)dx(t)

%00,
which is shorthand for
X (t)=E{x;(t)}=
= H [xl- )p(x1(2), x5 (1), ..., x, (1), t Ix, (1)dxy (1)...dx,, ()
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Covariance Matrix For Nonstationary VRP

e The nxn covariance matrix of the nonstationary vector random

process x(t) e R" is defined by
2(t) = cov[x(t); x(1)] = E{x(t) — X(1))x(t) — )_c(t))' }
— j (x(t) =X ())(x(t) — X (1)) p(x(t), t)dx(t)

e The nxn covariance matrix is symmetric and positive - semidefinite
20 Zn) . 2,0 ]

(1) = 2pt) Znt) .. 25,(1) . S=5()20

_Zln(t) ZZn(t) Znn(t)_
where, element - by - element,

()= E{xi(0) = 5 (0)(x;(0) = %,(0)) =
= [ [ [(xi(t) — X, (t))(xj (t)— X, (t))p(x1 (1), ... %, (1),  YIx, (¢)...dx,, (1)
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PDF and Mean For Stationary VRP

e Alelements x;(t);

i=12,...,n arejointly -distributed RPs

¢ In the stationary case the pdf of the VRP Is the

scalar - valued function, p(x(2)) = p(x, (t), x,(¢),....x,, (1))
which does not depend explicitly on time,

T
. _ 372
with mean x =

X

= F{x(t)} = jx(t)p(x(t), t)x(t) = constant

| "N

which Is shorthand for

X; = E{xi(t)}z

= [ [[xl (t)p(xl(t), xz(t),...,xn(t))dxl(t)dxz(t)...dxn(t)
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Covariance Matrix For Stationary VRP

e The nxn covariance matrix of the stationary vector random

process x(t) € R" is constant and is defined by
Y =cov[x(t), x(t)]= E {x(t) —X(1))(x(t)-%(1)) }
= j (x(1) = ()N x(t) = (1)) p(x(t))dx(t)

e The nxn covariance matrix is symmetric and positive - semidefinite

_211 212 PP Zln_
> 2 e 2

3= 12 22 2n - =3">0
_Zln 22}1 Znn_

where, element - by - element,
Zy = E{xi(t) X0, (0) -, (z))}:
= H .'(xi(t)—)_ci(t))(xj(t)—)_cj(t))p(xl (t),....x,(t) fx, (t)...dx, ()
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e For stationary zero-mean vector random processes,

the correlation matrix is defined by
V(1) = ESx(t)x'(t+ 7))}
with elements Wix, (1) = E{x,- (1)x;(t+ r)}
e The PSD matrix is denoted by @_.(w), whose elements are computed
by the Fourier transform of the associated correlation function

l//x,-xj (T)e_ijdT

0

oy (@)= [

e Formally,

o0

D)= [ Vel s ()= [ Duufw)e”"de
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Nonstationary case: &) € R is vector white noise, with
E{E1)}=0, cov[(); &(n)]= EAE(WSE (1)f = Z(1)-5(t 1)

Stationary case: &(t) e R" is vector white noise, with

E{S(1)}=0, cov|); &(r)]= EE)E (t)}=E-5(t-1)

and correlation matrix 5”55(1') =5-0(7)

and power spectral density matrix D..(w)=E

In either case, we refer to =(z) or = as the "intensity matrix
By the law of large numbers, white noise is gaussian
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Gaussian Vector Random Processes

In the nonstationary case, x(z) e R", the gaussian PDF takes the form

. : oA = (x(t) — 7 (1)) 5! 3
PS().0) = Gy s exp| 5 (0= 0) 27 (00|

Often, we use the abbreviation x(z) ~ N(x(z), 2(t))

In the stationary case, x(¢) eR”, the mean and covariance
are constant so that the gaussian PDF takes the form

S S R P
PO = s e =5 (00— 27 (x5

Often, we use the abbreviation x(t) ~ N(x,2)
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Remarks on Vector Random Processes

« We postpone till later the topic of how vector random processes
Interact with linear dynamic systems

« Such manipulations will require extensive use of state-space
methods and models
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