Industrial Automation

(Automação de Processos Industriais)

CAD/CAM and CNC

http://www.isr.ist.utl.pt/~pjcro/courses/api0809/api0809.html

Prof. Paulo Jorge Oliveira pjcro @ isr.ist.utl.pt Tel: 21 8418053 or 2053 (internal)

API P. Oliveira Page 1

Syllabus:

Chap. 4 - GRAFCET (Sequential Function Chart) [1 weeks]

• • •

Chap. 5 – CAD/CAM and CNC [1 semana]

Methodology CAD/CAM. Types of CNC machines.

Interpolation for trajectory generation.

Integration in Flexible Fabrication Cells.

. . .

Chap. 6 – Discrete Event Systems [2 weeks]

API P. Oliveira Page 2

Some pointers to CAD/CAM and CNC

History: http://users.bergen.org/~jdefalco/CNC/history.html

Tutorial: http://users.bergen.org/~jdefalco/CNC/index.html

http://www-me.mit.edu/Lectures/MachineTools/outline.html

http://www.tarleton.edu/~gmollick/3503/lectures.htm

Editors (CAD): http://www.cncezpro.com/

http://www.cadstd.com/ http://www.turbocad.com/ http://www.deskam.com/ http://www.cadopia.com/

Bibliography: * Computer Control of Manufacturing Systems, Yoram Koren,

McGraw Hill, 1986.

* The CNC Workbook : An Introduction to Computer

Numerical Control by Frank Nanfarra, et al.

API P. Oliveira Page 4

Brief relevant history

NC

1947 – US Air Force needs lead John Parsons to develop a machine able to Produce parts describes in 3D.

1949 – Contract with *Parsons Corporation* to implement to proposed method.

1952 – Demonstration at MIT of a working machine tool(NC), able to produce parts resorting to simultaneous interpolation on several axes.

1955 – First NC machine tools reach the market.

1957 - NC starts to be accepted as a solution in industrial applications, with first machines starting to produce.

197x – Profiting from the microprocessor invention appears the CNC.

Evolution in brief

CAD/CAM and CNC

- Modification of existing machine tools with motion sensors and automatic advance systems.
- Close-loop control systems for axis control.
- Incorporation of the computational advances in the CNC machines.
- Development of high accuraccy interpolation algorithms to trajectory interpolation.
- Resort to CAD systems to design parts and to manage the use of CNC machines.

CAD/CAM e CNC

Objectives:

- To augment the accuraccy, reliability, and the ability to introduce changes/new designs.
- To augment the workload.
- To reduce prodution costs.
- To reduce waste due to errors and other human factors.
- To carry out complex tasks (e.g. Simlutaneous 3D interpolation).
- Augment precision of the produced parts.

Advantages:

- To reduce the production/delivery time.
- To reduce costs associated to parts and other auxiliary.
- To reduce storage space.
- To reduce time to start production.
- To reduce machining time.
- To reduce time to market (on the design/redesign and production).

Limitations:

- High initial investment (30.000 to 1.500.000 euros)
- Specialized maintenance required
- Does not eliminates the human errors completely.
- Requires more specialized operators.
- Not so relevant the advantages on the production of small or very small series.

CAD/CAM e CNC

Methodology CAD/CAM

To use technical data from a database in the design and production stages. Information on parts, materials, tools, and machines are integrated.

CAD (Computer Aided Design)
Allows the design in a computer environment.

CAM (Computer Aided Manufacturing)

To manage programs and production stages on a computer.

IST / DEEC / ACSDC

Chap. 5 – CAD/CAM and CNC

API P. Oliveira Page 11

Tools:

API P. Oliveira Page 12

Tools:

Atention to the constraints on the materials used!...

- Speed of advance
- Speed of rotation
- Type of tool

Tools:

Specific tools to perform different operations.

API P. Oliveira Page 14

Tools: impact on the quality of finishing (mm)

API

ama

Evolution of tools performance:

API P. Oliveira Page 16

Industrial areas of application:

- Aerospace
- Maquinery
- Electricity (board production)
- Automobiles
- Instrumentation
- Moulds

Evolution of Numerical Control

- Data on paper ou received in serial port
- NC machine unable to perform computations
- Hardware interpolation
- Direct Numerical Control (DNC)
 - Central computer control a number of machines DNC ou CNC
- Computer Numerical control (CNC)
 - A computer is on the core of each machine tool
 - Computation and interoplation algorithms run on the machine
- Distributive numerical control
 - scheduling
 - Quality control
 - Remore monitoring

Numeric Control

Architecture of a NC system

Close-loop

Interpolation

Motivation: numerical integration

Area of a function

$$z(t) = \int_0^t p(\tau)d\tau \cong \sum_{i=1}^k p_i \Delta t$$

Introducing z_k , as the value of z at t=kDt

$$z_k = \sum_{i=1}^{k-1} p_i \Delta t + p_k \Delta t = z_{k-1} + \Delta z_k, \qquad \Delta z_k = p_k \Delta t$$

The integrator works at a rythm of f=1/Dt and the function p is given app. by:

$$p_k = p_{k-1} \pm \Delta p_k$$

To be able to implement the integrator in registers with n bits, p must verify $p_k < 2^n$.

Implementation of a DDA Digital Differential Analyzer

The p register input is +1, 0 ou -1.

The q register stores the area integration value

$$q_k = q_{k-1} + p_k.$$

If the q register value exceeds $(2^{n}-1)$, and overflow occurs and Dz=1:

$$\Delta z_k = 2^{-n} p_k$$

Defining C=f/2ⁿ, and given that f=1/Dt:

$$\Delta z_k = C p_k \Delta t$$

DDA for Linear Interpolation:

Let q=5 and assume 3 bits registers

Passo	q	Dz	SDz
 1	5		0
2	2	1	1
3	7		1
4	4	1	2
5	1	1	3
6	6		3
7	3	1	4
8	0	1	5
9	5		5
		•••	

$$f_0 = \left(\frac{\Delta z}{\Delta t}\right)_k = Cp_k$$
, where $C = \frac{f}{2^n}$

Exponential Deacceleration:

Let
$$p(t) = p_0 e^{-\alpha t}$$
 and $\frac{\Delta z}{\Delta t} = C p_k = C p_0 e^{-\alpha t}$.

The differential of p(t) is appr.

$$-\Delta p = \alpha p_k \Delta t$$

Example: $p(t)=15e^{-t}$

Setting C=a,

$$-\Delta p = \Delta z$$

Circular Interpolation:

Example: Circunference of radius 15, centered at the origin.

Let
$$(X-R)^2 + Y^2 = R^2$$
 or $X = R(1-\cos(\omega t))$
 $Y = R\sin(\omega t)$

The differential is

$$dX = \omega R \sin(\omega t) dt = d(-R \cos(\omega t))$$
$$dY = \omega R \cos(\omega t) dt = d(R \sin(\omega t))$$

Full DDA

CNC Axes Control

CNC Programming

Steps to execute a part

A) Read/interpret the technical drawings

CNC Programming

B) Choice of the most adequate machine tool for the several stages of machinning

Relevant features:

- The workspace of a machine versus the part to be produced
- The options available on each machine
- The tools available
- The mounting and the part handling
- The operations that each machine can perform

CNC Programming

C) Choice of the most adequate tools

Relevant features:

- The material to be machinned and its characteristics
- Standard tools cost less
- The quality of the mounting part is function of the number od parts to produce
- Use the right tool for the job
- Verify if there are backup tools and/or stored available
- Take into account tool aging

CNC Programming

Approximate Energy Requirements in Cutting Operations (at drive motor, corrected for 80% efficiency; multiply by 1.25 for dull tools).

to the spring	Specific energy		
Material	$W \cdot s/mm^3$	hp·min/in.3	
Aluminum alloys	0.4–1.1	0.15-0.4	
Cast irons	1.6-5.5	0.6–2.0	
Copper alloys	1.4–3.3	0.5–1.2	
High-temperature alloys	3.3-8.5	1.2–3.1	
Magnesium alloys	0.4-0.6	0.15-0.2	
Nickel alloys	4.9-6.8	1.8-2.5	
Refractory alloys	3.8-9.6	1.1–3.5	
Stainless steels	3.0-5.2	1.1–1.9	
Steels	2.7-9.3	1.0-3.4	

API P. Oliveira Page 30

CNC Programming

- D) Cutting data
 - Spindle Speed speed of rotation of the cutting tool (rpm)
 - Feedrate linear velocity of advance to machine the part (mm/minute)
 - Depth of Cut –deth of machinning in z (mm)

CNC Programming

E) Choice of the interpolation plane, in 2D ½ machines

CNC Programming

F₁) Unit system

imperial –inches (G70) or international milimeters (G71).

F₂) Command mode*

Absolut – relative to world coordinate system (G90)

Relative—mouvement relative to the actual position (G91)

* There are other command modes, e.g. helicoidal.

CNC Programming

G) MANUAL DATA INPUT

N	Sequence Number
G	Preparatory Functions
X	X Axis Command
Y	Y Axis Command
Z	Z Axis Command
R	Radius from specified center
A	Angle ccw from +X vector
I	X axis arc center offset
J	Y axis arc center offset
K	Z axis arc center offset
F	Feedrate
S	Spindle speed
T	Tool number
M	Miscellaneous function

API P. Oliveira Page 34

Example of a CNC program

N30 G0 T1 M6

N35 S2037 M3

N40 G0 G2 X6.32 Y-0.9267 M8

N45 Z1.1

N50 Z0.12

N55 G1 Z0. F91.7

N60 X-2.82

N65 Y0.9467

N70 X6.32

N75 Y2.82

N80 X-2.82

N85 G0 Z1.1

•••

Preparatory functions (inc.)

G00 - GO

G02 – Circular Interpolation (CW)

G01 – Linear Interpolation

G03 – Circular Interpolation (CCW)

Other preparatory functions

- G04 A temporary dwell, or delay in tool motion.
- G05 A permanent hold, or stopping of tool motion. It is canceled by the machine operator.
- G22 Activation of the stored axis travel limits, which are used to establish a safety boundary.
- G23 Deactivation of the stored axis travel limits.
- G27 Return to the machine home position via a programmed intermediate point
- G34 Thread cutting with an increasing lead.
- G35 Thread cutting with a decreasing lead.
- G40 Cancellation of any previously programmed tool radius compensation
- G42 Application of cutter radius compensation to the right of the workpiece with respect to the direction of tool travel.
- G43 Activation of tool length compensation in the same direction of the offset value
- G71 Canned cycle for multiple-pass turning on a lathe (foreign-made)

•...

Miscelaneous functions

- M02 Program end
- M03 Start of spindle rotation clockwise
- M04 Start of spindle rotation counterclockwise
- M07 Start of mist coolant
- M08 Start of flood coolant

Canned Cycles

G81 – Drilling cycle with multiple holes

Ciclos Especiais or Canned Cycles

G78 – Rectangular pocket cycle, used to clean a square shaped area

Tool change

Note: should be of easy access, when performed manually.

Example of CNC programming

Ver: http://www.ezcam.com/web/tour/tour.htm

Example of CNC programming

Advanced CNC programming languages

• Automatically program tool (APT)

Desveloped at MIT in 1954

• Derived from APT:

ADAPT (IBM)
IFAPT (France)
MINIAPT (Germany)

- Compact II
- Autospot
- SPLIT

Machine operation

Rules of Security

- Security is essential!
- The eyes must be always protected.
- The tools and parts must be handled and installed properly.
- Avoid the use of large cloths
- Cleand the parts with a brush. Never with the hands.
- Be careful with you and the others.

Machine operation

Verify tolerances and tools offsets for proper operation

Machine operation

Load program

Verify carefully the produced part.

