Industrial Automation

(Automação de Processos Industriais)

Discrete Event Systems

http://www.isr.ist.utl.pt/~pjcro/courses/api1011/api1011.html

Prof. Paulo Jorge Oliveira pjcro @ isr.ist.utl.pt Tel: 21 8418053 or 2053 (internal)

API P. Oliveira Page 1

Syllabus:

Chap. 5 – CAD/CAM and CNC [1 week]

• • •

Chap. 6 – Discrete Event Systems [2 weeks]

Discrete event systems modeling. Automata.

Petri Nets: state, dynamics, and modeling.

Extended and strict models. Subclasses of Petri nets.

. . .

Chap. 7 – Analysis of Discrete Event Systems [2 weeks]

API P. Oliveira Page 2

Some pointers to Discrete Event Systems

History: http://prosys.changwon.ac.kr/docs/petrinet/1.htm

Tutorial: http://vita.bu.edu/cgc/MIDEDS/

http://www.daimi.au.dk/PetriNets/

Analyzers, http://www.ppgia.pucpr.br/~maziero/petri/arp.html (in Portuguese)

and http://wiki.daimi.

Simulators: http://www.informatik.hu-berlin.de/top/pnk/download.html

Bibliography: * Cassandras, Christos G., "Discrete Event Systems - Modeling and

Performance Analysis", Aksen Associates, 1993.

* Peterson, James L., "Petri Net Theory and the Modeling of Systems",

Prentice-Hall, 1981.

* Petri Nets and GRAFCET: Tools for Modelling Discrete Event Systems

R. DAVID, H. ALLA, New York: PRENTICE HALL Editions, 1992

Generic characterization of systems resorting to input / output relations

State equations:

$$\dot{x}(t) = f(x(t), u(t), t)$$

$$y(t) = g(x(t), u(t), t)$$

in continuous time (or in discrete time)

Examples?

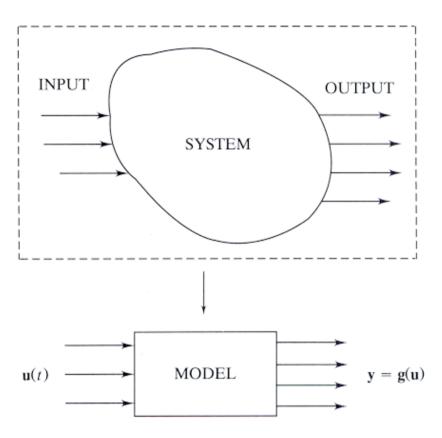


Figure 1.1. Simple modeling process.

Open loop vs close-loop (⇔ the use of feedback)

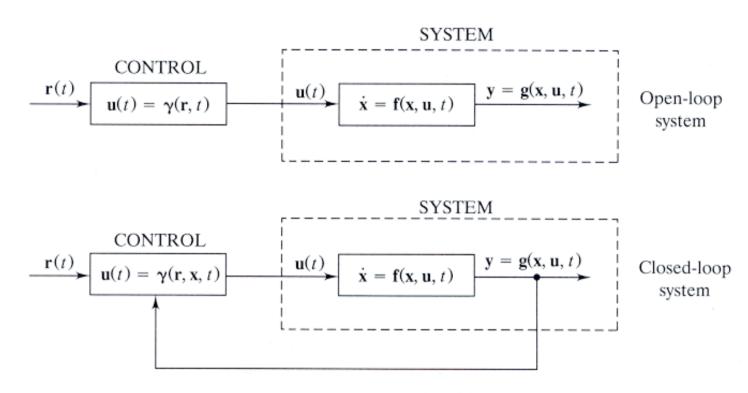


Figure 1.17. Open-loop and closed-loop systems.

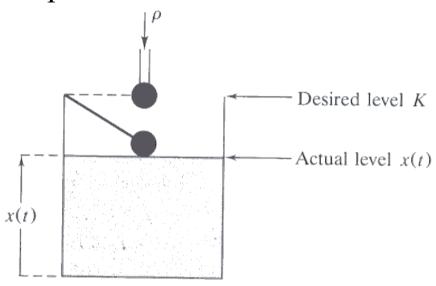
Advantages of feedback?

(to revisit during SEDs supervision study)

API P. Oliveira Page 5

API

Example of close-loop with feedback



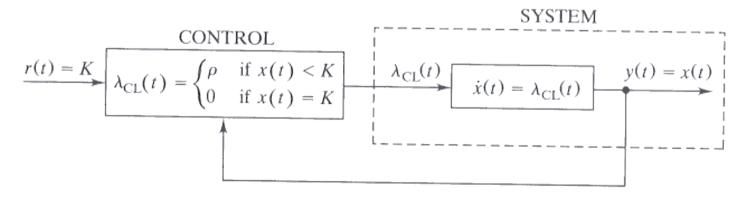


Figure 1.18. Flow system of Example 1.11 and closed-loop control model.

Discrete Event Systems: Examples

Set of events:

$$E=\{N, S, E, W\}$$

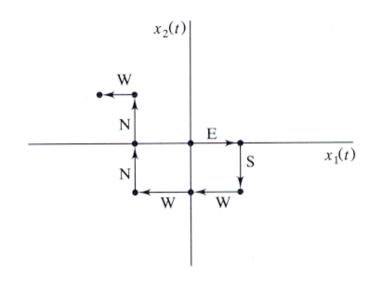


Figure 1.20. Random walk on a plane for Example 1.12.

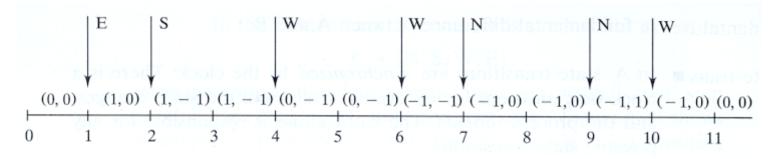


Figure 1.21. Event-driven random walk on a plane.

Characteristics of systems with continuous variables

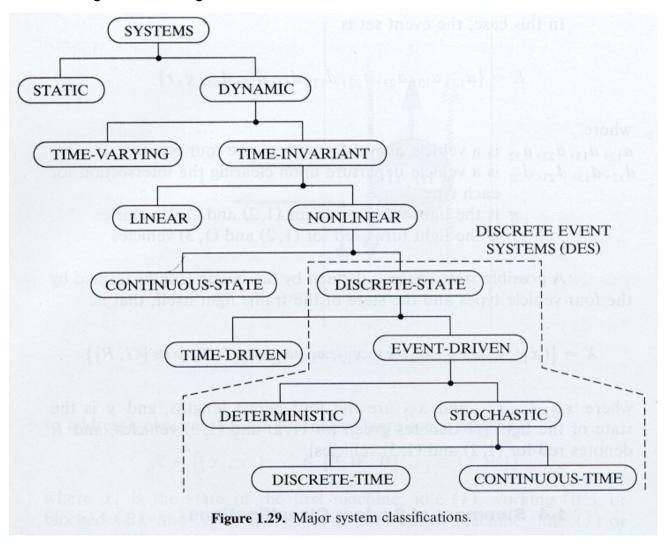
- 1. State space is continuous
- 2. The state transition mechanism is *time-driven*

Characteristics of systems with discrete events

- 1.State space is discrete
- 2. The state transition mechanism is event-driven

Polling is avoided!

Taxonomy of Systems



API P. Oliveira Page 9

Levels of abstraction in the study of Discrete Event Systems

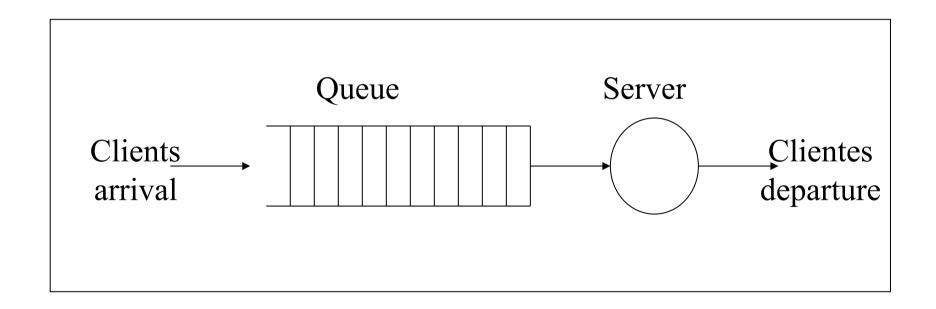
Languages

Timed languages

Stochastic timed languages

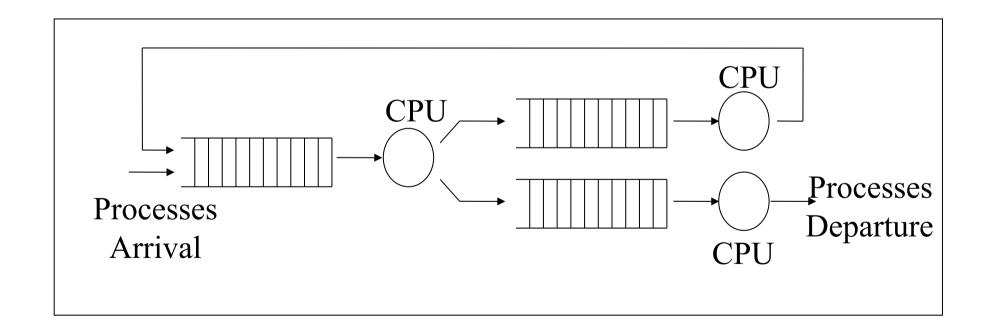
Discrete Event Systems: Examples

Queueing systems



Discrete Event Systems: Examples

Computational Systems



Systems' Theory Objectives

- Modeling and Analysis
- *Design* e synthesis
- Control / Supervision
- Performance assessment and robustness
- Optimization

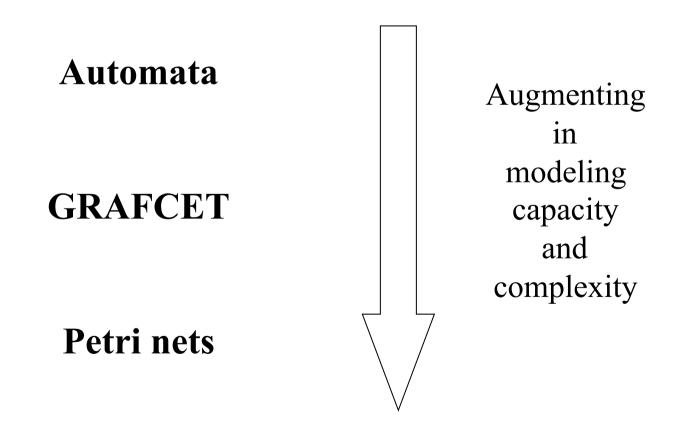
Applications of Discrete Event Systems

- Queueing systems
- Operating systems and computers
- Telecommunications networks
- Distributed databases
- Automation

API P. Oliveira Page 13

Discrete Event Systems

Typical modeling methodologies



API

Automata Theory and Languages

Genesys of computation theory

Definition: A **language** L, defined over the alphabet **E** is a set of *strings* of finite length with events from **E**.

Exemplos:
$$\mathbf{E} = \{\alpha, \beta, \gamma\}$$

$$L_1 = \{\varepsilon, \alpha\alpha, \alpha\beta, \gamma\beta\alpha\}$$

 $L_2 = \{\text{all } strings \text{ of length } 3\}$

How to build a machine that "talks" a given language?

or

What language "talks" a system?

Properties of languages

Kleene-closure E^* : set of all strings of finite length of E, including the null element ϵ .

Concatenation:

$$L_a L_b := \left\{ s \in E^* : s = s_a s_b, s_a \in L_a, s_b \in L_b \right\}$$

Prefix-closure:

$$\overline{L} := \left\{ s \in E^* : \exists_{t \in E^*} \ st \in L \right\}$$

Automata Theory and Languages

Definition: A deterministic automata is a 5-tuple

$$(E, X, f, x_0, F)$$

onde:

E - finite alphabet (or possible events)

X - finite set of states

f - state transition function $f: X \times E \rightarrow X$

 $\mathbf{x_0}$ - initial state $\mathbf{x_0} \subset \mathbf{X}$

F - set of final states or marked states $\mathbf{F} \subset \mathbf{E}$

Example of a automata

$$(E, X, f, x_0, F)$$

$$\mathbf{E} = \{\alpha, \beta, \gamma\}$$

$$\mathbf{X} = \{x, y, z\}$$

$$\mathbf{x_0} = \mathbf{x}$$

$$\mathbf{F} = \{\mathbf{x}, \mathbf{z}\}$$

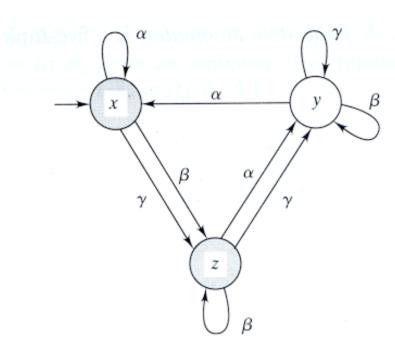


Figure 2.1. State transition diagram for Example 2.3.

$$f(x, \alpha) = x$$

$$f(x, \beta) = z$$

$$f(x, \gamma) = z$$

$$f(x, \alpha) = x$$
 $f(x, \beta) = z$ $f(x, \gamma) = z$
 $f(y, \alpha) = x$ $f(y, \beta) = y$ $f(y, \gamma) = y$

$$f(y, \beta) = y$$

$$f(y, \gamma) = y$$

$$f(z, \alpha) = y$$

$$f(z, \beta) = z$$

$$f(z, \alpha) = y$$
 $f(z, \beta) = z$ $f(z, \gamma) = y$

Example of a stochastic automata

$$(E, X, f, x_0, F)$$

$$\mathbf{E} = \{\alpha, \beta\}$$

$$X = \{0, 1\}$$

$$\mathbf{x_0} = 0$$

$$F = \{0\}$$

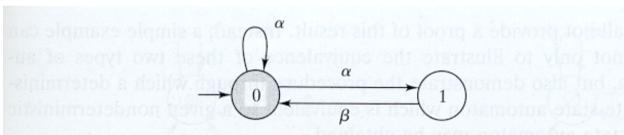


Figure 2.4. State transition diagram for the nondeterministic automaton of Example 2.7.

$$f(0, \alpha) = \{0, 1\}$$
 $f(0, \beta) = \{\}$
 $f(1, \alpha) = \{\}$ $f(1, \beta) = 0$

Given a language

$$G=(E, X, f, x_0, F)$$

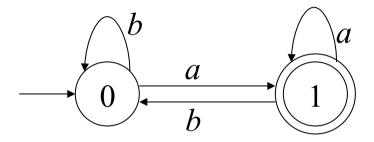
Generated language

$$L(G) := \{s \in E^* : f(x_0,s) \text{ is defined}\}$$

Marked language

$$L_m(G) := \{ s \in E^* : f(x_0, s) \in F \}$$

Example: marked language of an automata



$$L_m(G) := \{a, aa, ba, aaa, baa, bba, \ldots\}$$

Note: all strings with events $a \in b$, followed by event a.

Automata equivalence:

The automata G_1 e G_2 are equivalent if

$$L(G_1) = L(G_2)$$
e

$$\boldsymbol{L}_{\mathrm{m}}(G_1) = \boldsymbol{L}_{\mathrm{m}}(G_2)$$

Example of an automata:

Objective: To validate a sequence of events

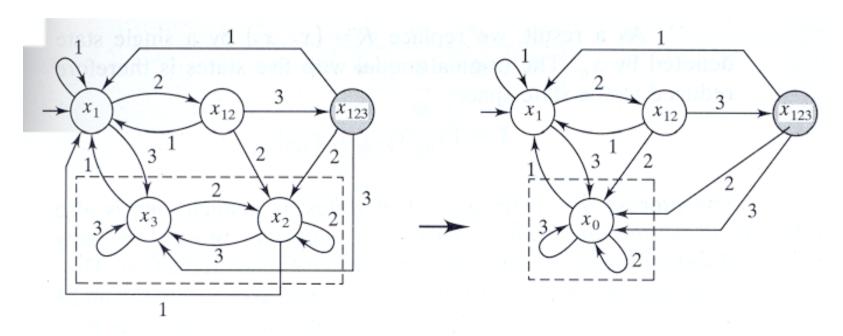
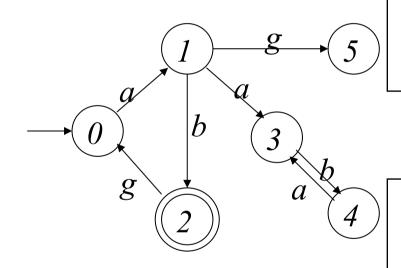


Figure 2.6. State transition diagrams for digit sequence detector in Example 2.9.

Deadlocks (inter-blocagem)

Example:



The state 5 is a deadlock.

The states 3 and 4 constitutes a *livelock*.

How to find the *deadlocks* and the *livelocks*?

Methodologies for the analysis Of

Discrete Event Systems

Deadlock:

in general the following relations are verified

$$L_m(G)\subseteq \overline{L}_m(G)\subseteq L(G)$$

An automata G has a deadlock if

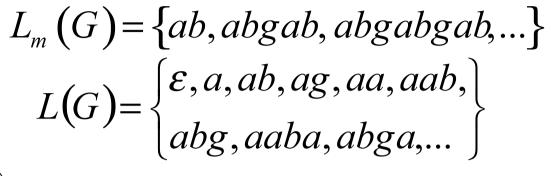
$$\overline{L}_m(G)\subset L(G)$$

and is not blocked when

$$\overline{L}_m(G) = L(G)$$

Deadlock:

Example:



$$(L_m(G)\subset L(G))$$

$$\begin{array}{c|c}
 & g \\
 & g \\
 & g \\
 & g \\
 & 2
\end{array}$$

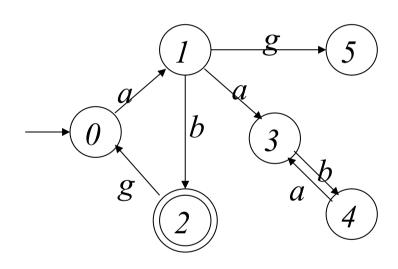
The state 5 is a deadlock.

The states 3 and 4 constitutes a *livelock*.

$$\overline{L}_m(G) \neq L(G)$$

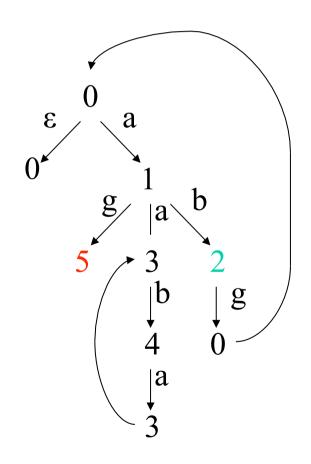
Alternative way to detect deadlocks:

Example:

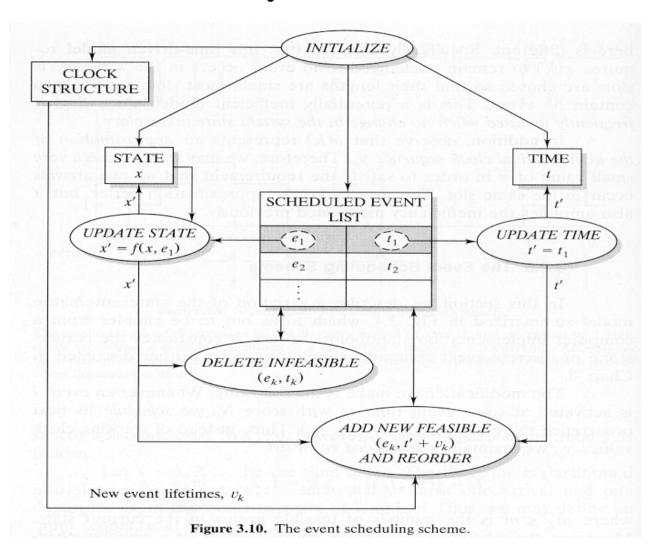


The state 5 is a deadlock.

The states 3 and 4 constitutes a *livelock*.



Timed Discrete Event Systems



API P. Oliveira Page 28

Petri nets

Developed by Carl Adam Petri in his PhD thesis in 1962.

Definition: A marked Petri net is a *5-tuple*

$$(P, T, A, w, x_0)$$

where:

P - set of places

T - set of transitions

A - set of arcs $A \subseteq (P \times T) \cup (T \times P)$

 \mathbf{w} - weight function $\mathbf{w} : \mathbf{A} \to \mathbf{N}$

 $\mathbf{x_0}$ - initial marking $\mathbf{x_0}: \mathbf{P} \to \mathbf{N}$

Example of a Petri net

$$\begin{split} &(P,\,T,\,A,\,w,\,x_0) \\ &P = \{p_1,\,p_2,\,p_3,\,p_4,\,p_5\} \\ &T = \{t_1,\,t_2,\,t_3,\,t_4\} \\ &A = \{(p_1,\,t_1),\,(t_1,\,p_2),\,(t_1,\,p_3),\,(p_2,\,t_2),\,(p_3,\,t_3),\,\\ &(t_2,\,p_4),\,(t_3,\,p_5),\,(p_4,\,t_4),\,(p_5,\,t_4),\,(t_4,\,p_1)\} \\ &w(p_1,\,t_1) = 1,\,w(t_1,\,p_2) = 1,\,w(t_1,\,p_3) = 1,\,w(p_2,\,t_2) = 1\\ &w(p_3,\,t_3) = 2,\,w(t_2,\,p_4) = 1,\,w(t_3,\,p_5) = 1,\,w(p_4,\,t_4) = 3\\ &w(p_5,\,t_4) = 1,\,w(t_4,\,p_1) = 1 \end{split}$$

Petri nets

Rules to follow (mandatory):

- An arc (directed connection) can connect places to transitions
- An arc can connect transitions to places
- A transition can have no places as inputs (source)
- A transition can have no places as outputs (sink)
- The same happens with the input and output transitions for places

API P. Oliveira Page 31

Example of a Petri net

$$(P, T, A, w, x_0)$$

$$P=\{p_1, p_2, p_3, p_4, p_5\}$$

$$T = \{t_1, t_2, t_3, t_4\}$$

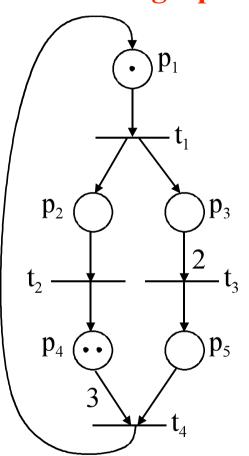
A={
$$(p_1, t_1), (t_1, p_2), (t_1, p_3), (p_2, t_2), (p_3, t_3), (t_2, p_4), (t_3, p_5), (p_4, t_4), (p_5, t_4), (t_4, p_1)}$$

$$w(p_1, t_1)=1, w(t_1, p_2)=1, w(t_1, p_3)=1, w(p_2, t_2)=1$$

 $w(p_3, t_3)=2, w(t_2, p_4)=1, w(t_3, p_5)=1, w(p_4, t_4)=3$
 $w(p_5, t_4)=1, w(t_4, p_1)=1$

$$x_0 = \{1, 0, 0, 2, 0\}$$

Petri net graph



Alternative definition of a Petri net

A marked Petri net is a 5-tuple

(P, T, I, O, μ_0)

where:

P - set of places

T - set of transitions

I - transition input function I: $P \to T^{\infty}$

 \mathbf{O} - transition output function $\mathbf{O} \colon \mathbf{T} \to \mathbf{P}^{\infty}$

 μ_0 - initial marking $\mu_0: P \to N$

Example of a Petri net and its graphical representation

Alternative definition

$$(P, T, I, O, \mu_0)$$

$$P=\{p_1, p_2, p_3, p_4, p_5\}$$

$$T = \{t_1, t_2, t_3, t_4\}$$

$$I(t_1) = \{p_1\} \qquad O(t_1) = \{p_2, p_3\}$$

$$I(t_2) = \{p_2\} \qquad O(t_2) = \{p_4\}$$

$$I(t_3) = \{p_3, p_3\} \qquad O(t_3) = \{p_5\}$$

$$I(t_4) = \{p_4, p_4, p_4, p_5\} O(t_4) = \{p_1\}$$

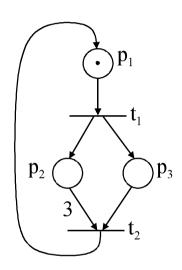
$$\mu_0 = \{1, 0, 0, 2, 0\}$$



Petri nets

The state of a Petri net is characterized by the marking of all places.

The set of all possible markings of a Petri net corresponds to its state space.



How does the state of a Petri net evolves?

Dynamics of Petri nets

A transition $t_i \in T$ is *enabled* if:

$$\forall p_i \in P: \ \mu(p_i) \geq \#(p_i, I(t_j))$$

A transition t_j Î T is enabled to fire, resulting in a new marking given by

$$\mu'(p_i) = \mu(p_i) - \#(p_i, I(t_j)) + \#(p_i, O(t_j))$$

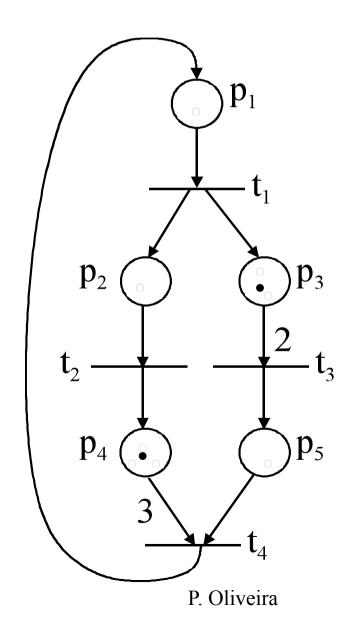
Example of evolution of a Petri net

Initial marking:

$$\mu_0 = \{1, 0, 1, 2, 0\}$$

This discrete event system can not change state.

It is in a deadlock!



Petri nets: Conditions and Events

Conditions:

- a) The server is idle.
- b) A job arrives and waits to be processed
- c) The server is processing the job
- d) The job is complete

Events

- 1) Job arrival
- 2) Server starts processing
- 3) Server finishes processing
- 4) The job is delivered

Event	Pre-conditions	Pos-conditions
1	_	Ъ
2	a,b	c
3	c	d,a
4	d	-

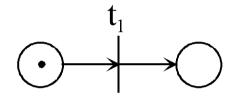
Petri nets: Conditions and Events

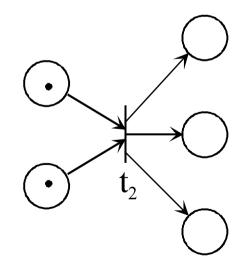
Event	Pre-conditions	Pos-conditions
1	-	Ъ
2	a,b	С
3	c	d,a
4	d	-



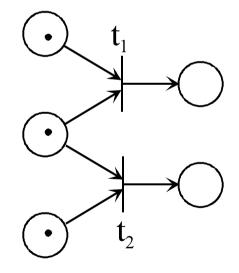
Modeling mechanisms

Concurrence



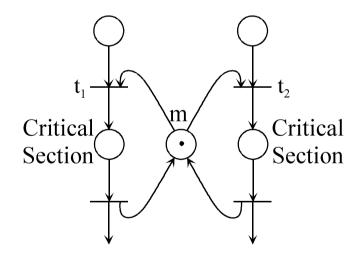


Conflict



Modeling mechanisms

Mutual Exclusion



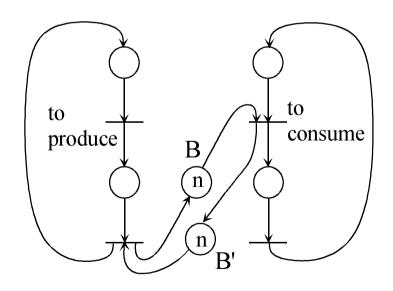
Producer / Consumer

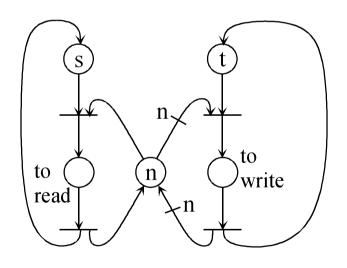


Modeling mechanisms

Producer / Consumer with finite capacity

Readers / Writers

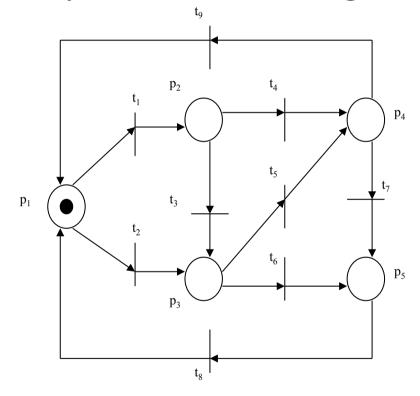




Example of a simple automation system modelled using PNs

An automatic soda selling machine accepts 50 c and \$1 coins and sells 2 types of products: SODA A, that costs \$1.50 and SODA B, that costs \$2.00.

Assume that the money return operation is omitted.

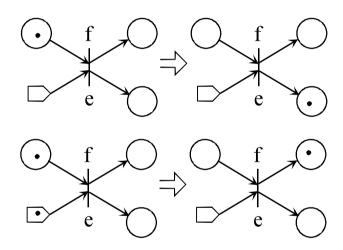


 p_1 : machine with \$0.00;

t₁: coin of 50 c introduced;

t₈: SODA B sold.

Switches [Baer 1973]

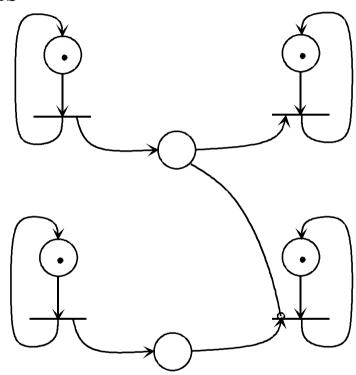


Possible to be implemented with restricted Petri nets.

Inhibitor Arcs

Equivalent to

nets with priorities

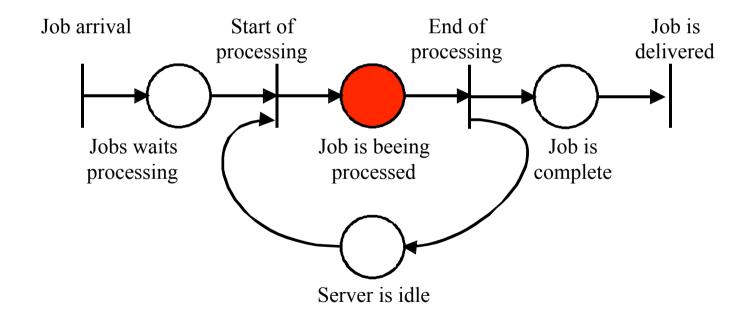


Can be implemented with restricted Petri nets?

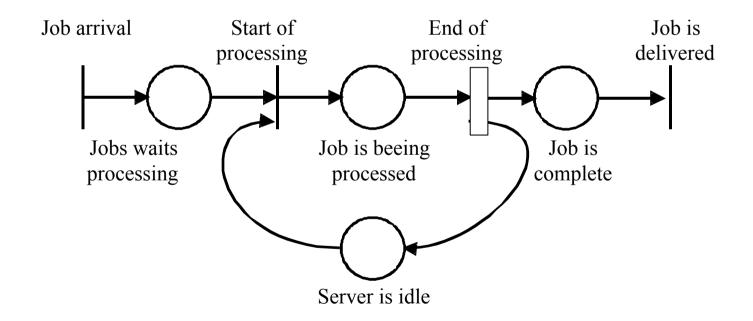
Zero tests...

Infinity tests...

P-Timed nets

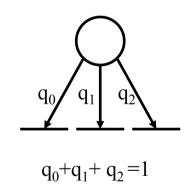


T-Timed nets

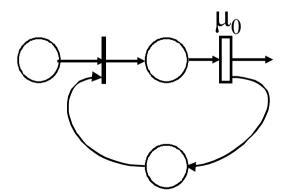


Stochastic nets

Stochastic switches



Transitions with stochastic timmings described by a stochastic variable with known pdf



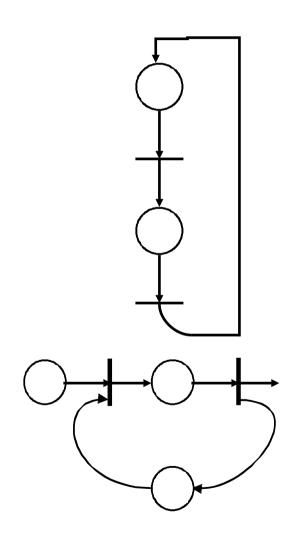
Discrete Event Systems Sub-classes of Petri nets

State Machine:

Petri nets where each transition has exactly one input arc and one output arc.

Marked Graphs

Petri nets where each place has exactly one input arc and one output arc.

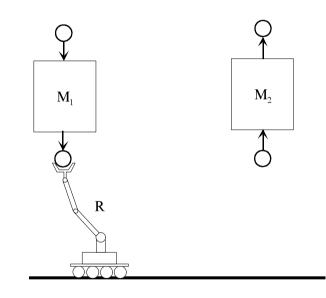


Example of DES:

Manufacturing system composed by 2 machines (M_1 and M_2) and a robotic manipulator (R). This takes the finished parts from machine M_1 and transports them to M_2 .

No buffers available on the machines. If R arrives near M_1 and the machine is busy, the part is rejected.

If R arrives near M₂ and the machine is busy, the manipulator must wait.



Machinning time: $M_1=0.5s$; $M_2=1.5s$; $R_{M1 \ @M2}=0.2s$; $R_{M2 \ @M1}=0.1s$;

Example of DES:

Variables of

$$M_1$$
 X_1 M_2 X_2 X_3

 M_1 M_2 R

Example of arrival of parts:

$$a(t) = \begin{cases} 1 & em & \{0.1, 0.7, 1.1, 1.6, 2.5\} \\ 0 & em & todos & os & outros & instantes \end{cases}$$

Example of DES:

Definition of events:

 a_1 - loads part in M_1

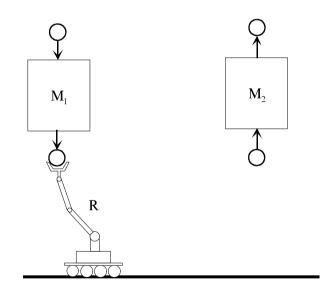
d₁ - ends part processing in M₁

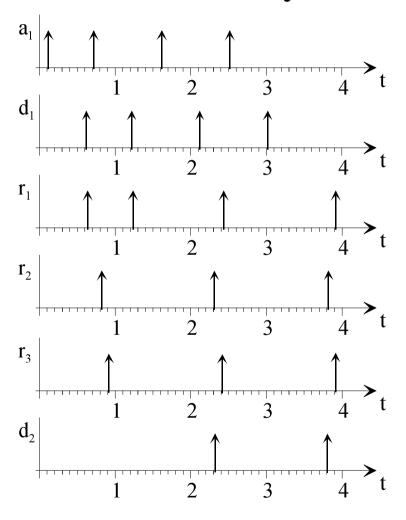
r₁ - loads manipulator

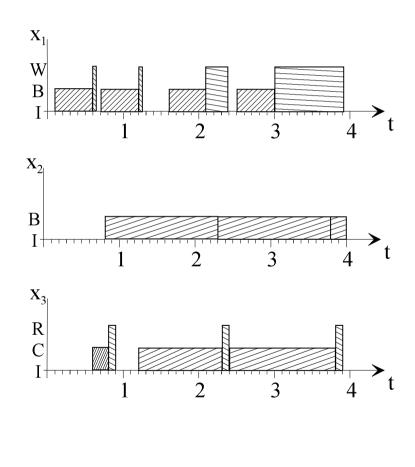
- unloads manipulator and loads M₂

d₂ - ends part processing in M₂

r₃ - manipulator at base







Example of DES:

