
35
00

26
64

 0
0

Reference manual

PL7 Micro/Junior/Pro

Detailed description of
Instructions and Functions
TLX DR PL7 40E eng V4.0

2

Related Documentation
Related Documentation

Presentation This manual is in 3 volumes:
l Volume 1: Description of the PL7 software

l General points
l Ladder language
l Instruction list language
l Structured text language
l Grafcet language
l DFB function blocks
l Function modules

l Volume 2:
l Basic instructions
l Advanced instructions
l Bit objects and system words

l Volume 3: Appendices
l Differences between PL7-2/3 and PL7-Micro/Junior
l Memory aids
l Reserved words
l Compliance with IEC standard 1131-3
l OLE Automation Server
l Performances
TLX DR PL7 40E 09/2000 3

Related Documentation
4 TLX DR PL7 40E 09/2000

Table of Contents
About the book . 11

Part I Description of PL7 software13
Presentation . 13

Chapter 1 Introducing PL7 software. .15
Presentation . 15
Presenting PL7 software . 16
Presenting PL7 languages . 17
PL7 software structure . 20
Function modules . 22

Chapter 2 Description of PL7 object language . 25
Presentation . 25
Definition of the main boolean objects . 26
Definition of main word objects . 27
Addressing bit objects . 29
Addresing input/output module objects for the TSX 37 . 31
Addressing of language objects for modules remoted on the FIPIO bus 34
Addressing of language objects for modules remoted on the FIPIO bus 36
Addressing of language objects associated with AS-i bus 38
Adressing word objects . 40
Overlay rules . 43
Function block objects. 44
Table type PL7 objects . 47
Indexed objects . 49
Grafcet objects . 51
Symbolizing . 52
Presymbolized objects . 54

Chapter 3 User memory. 55
Presentation . 55
Structure of Micro PL7 memory. 56
Memory structure for Premium PL7s. 59
Description of bits memory . 62
5

Description of word memory . 64
Characteristics of TSX 37 PL7 memory. 65
Characteristics of TSX/PCX 57 10/15/20/25 PL7 memories. 67
Characteristics of TSX/PCX 57 30/35 PL7 memories. 69
Characteristics of TSX 57 453 PL7 memory . 71

Chapter 4 Operating modes . 73
Presentation. 73
Dealing with power cuts and power restoration . 74
Dealing with a warm restart . 76
Dealing with a cold start. 78

Chapter 5 Software structure . 83
Presentation. 83

5.1 Description of tasks . 84
Presentation. 84
Presenting the master task . 85
Description of sections and subroutines . 86
Presenting the fast task . 90
Presenting event processing . 91

5.2 Mono task structure . 93
Presentation. 93
Mono task software structure. 94
Cyclic run . 95
Periodic run . 97
Checking cycle time. 100

5.3 Multi task structure. 101
Presentation. 101
Multitask software structure . 102
Sequencing tasks in a multitask structure . 104
Assigning input/output channels to master and fast tasks 105
Exchanging inputs/outputs in event processes . 106

5.4 Function modules . 108
Structuring in function modules . 108

Part II Description of PL7 languages 111
Presentation. 111

Chapter 6 Contact language. 113
Presentation. 113
General presentation of contact language. 114
Structure of a contact network . 115
Contact network label . 116
Contact network comments . 117
Contact language graphic elements . 118
Rules for programming a contact network . 121
6

Rules for programming function blocks . 122
Rules for programming operation blocks. 123
Running a contact network . 124

Chapter 7 Instruction list language .127
Presentation . 127
General presentation of instruction list language . 128
Structure for an instruction list program . 129
Label for a sequence in instruction list language . 130
Comments on a sequence in instruction list language 131
Presenting instructions in instruction list language . 132
Rule for using parentheses in instruction list language 135
Description of the MPS, MRD and MPP instructions . 137
Principles of programming pre-defined function blocks. 139
Rules for running an instruction list program. 141

Chapter 8 Structured text language .143
Presentation . 143
Presentation of structured text language. 144
Structuring a program in structured text language . 145
Label for a sequence in structured text language . 146
Comments on a sequence in structured text language 147
Bit object instructions . 148
Arithmetic and logic instructions . 149
Instructions for tables and character strings . 151
Instructions for numerical conversions . 154
Instructions for programs and specific instructions . 155
Conditional check structure IF...THEN . 157
Conditional check structure WHILE...END_WHILE. 159
Conditional check structure REPEAT...END_REPEAT. 160
Conditional check structure FOR...END_FOR . 161
Output instruction for the EXIT loop . 162
Rules for running a structured text program . 163

Chapter 9 Grafcet .167
Presentation . 167

9.1 General presentation of Grafcet . 168
Presentation . 168
Presenting Grafcet . 169
Description of Grafcet graphic symbols. 170
Description of specific Grafcet objects . 172
Grafcet possibilities . 174

9.2 Rules for constructing Grafcet. 175
Presentation . 175
Ilustration of Grafcet . 176
Using OR divergences and convergences . 177
7

Using AND divergences and convergences . 178
Using connectors . 179
Using directed links . 182
Grafcet comments . 183

9.3 Programming actions and conditions. 184
Presentation. 184
Programming actions associated with steps . 185
Programming actions for activating or deactivating . 187
Programming continuous actions. 188
Programming transition conditions associated with transitions 189
Programming transition conditions in ladder . 190
Programming transition conditions in instruction list language 191
Programming transition conditions in structured text language 192

9.4 Macro steps . 193
Presentation. 193
Presenting macro steps . 194
Making up a macro step. 195
Characteristics of macro steps. 196

9.5 Grafcet section. 198
Presentation. 198
Structure of a Grafcet section . 199
Description of preliminary processing . 201
Pre-setting the Grafcet. 202
Initializing the Grafcet . 203
Resetting Grafcet to zero . 204
Freezing Grafcet . 205
Resetting macro steps to zero . 206
Running sequential processing . 208
Description of subsequent processing . 210

Chapter 10 DFB function blocks . 213
Presentation. 213
Presenting DFB function blocks. 214
How to set up a DFB function block. 215
Defining DFB type function block objects . 217
Definition of DFB parameters. 219
Definition of DFB variables . 220
Coding rules for DFB types . 222
Creating DFB instances . 224
Rules for using DFBs in a program . 225
Using a DFB in a ladder language program. 226
Using a DFB in a program in instruction list or text language 227
Running a DFB instance . 228
Example of how to program DFB function blocks . 229
8

Index .233
9

10

About the book
At a Glance

Document Scope This manual describes the instructions and objects that can be addressed in pro-
grammable Micro, Premium and Atrium PL7 programming languages.

Validity Note The updating of this publication takes into account the functions of PL7V4 . Never-
theless it can be used to set up earlier PL7 versions.

Revision History

Related Docu-
ments

Product Related
Warnings

Contents

User Comments We welcome your comments about this document. You can reach us by e-mail at
TECHCOMM@modicon.com

Rev. No. Changes

1 first creation

2 This version include modifications on the maps : - D-SA-
0001074, D-SA-0001076, D-SA-0004462

Title of Documentation Reference Number

Title of related document Reference to related
document
TLX DR PL7 40E 09/2000 11

About the book
12 TLX DR PL7 40E 09/2000

TLX DR PL7 40E 09/2000
I
Description of PL7 software
Presentation

What’s in this
spacer

This spacer introduces the PL7 software. It describes the basic elementary ides for
programming Micro and Premium PL7s.

What’s in this
part?

This Part contains the following Chapters:

Chapter Chaptername Page

1 Introducing PL7 software 15

2 Description of PL7 object language 25

3 User memory 55

4 Operating modes 73

5 Software structure 83
13

Description of PL7 software
14 TLX DR PL7 40E 09/2000

TLX DR PL7 40E 09/2000
1
Introducing PL7 software
Presentation

Subject of this
chapter

This chapter introduces the main characteristics of PL7 software.

What’s in this
Chapter?

This Chapter contains the following Maps:

Topic Page

Presenting PL7 software 16

Presenting PL7 languages 17

PL7 software structure 20

Function modules 22
15

Introducing PL7 software
Presenting PL7 software

General points Designing and setting up applications for Micro and Premium PL7s is done using Pl7
software.

3 types of PL7 software are available:
l PL7 Micro
l PL7 Junior
l PL7 Pro

PL7 software The following table shows the differences between the 3 types of software.

Key:
M = Micro PL7s
P = Premium PL7s
- = not available

Write
conventions

In the continuation of the document:
l the notation PL7 or PL7 software is used to name any of the 3 types of PL7 soft-

ware, Micro, Junior and Pro.
l the Premium notation is used to name any of the processors TSX 57, PMX 57

and PCX 57.

Services PL7 Micro PL7 Junior PL7 Pro

Programming/ Debugging/Using M M/P M/P

User function blocks Creating - - P

Use - P P

Operating screens Creating - - M/P

Use - M/P M/P

Function modules - - P

Diagnostic DFB function block - - P
16 TLX DR PL7 40E 09/2000

Introducing PL7 software
Presenting PL7 languages

General points The PL7 software has 4 programming languages:
l ladder
l instruction list
l structured text
l Grafcet
The following table gives the possible uses of the languages according to the type
of PL7.

Key:
X = available
- = not available

These languages can be mixed within the same application. One section of program
can be written in ladder, another in text…

These languages set up:
l pre-defined function blocks (Timing, counters,….),
l application specific functions (analogue, communication, counting…),
l specific functions (time management, character strings…),

Language objects can be symbolized using the variables editor or on-line in the pro-
gram editors.

The PL7 software complies with the IEC 1131-3 standard (see (See Reference
Manual, Volumes 2 and 3)).

Language Micro PL7 Premium PL7

Ladder X X

Instruction list X X

Structured text X (only with Junior and Pro PL7
software)

X

Grafcet X (except for macro steps) X
TLX DR PL7 40E 09/2000 17

Introducing PL7 software
Ladder Ladder (LD) is a graphic language. It is used to transcribe diagrams to relays. It is
adapted in the combination process.

It offers basic graphic symbols: contacts, coils, blocks.
Writing numerical calculations is possible within the operation blocks.
Example of a contact network

Instruction list
language

Instruction list language (IL) is a Boolean "machine" language used to write logic and
numeric processes.

Example of how to program in instruction list language

LD : MAST - CHART

S.F3 S.F4 S.F5 S.F6 S.F7 S.F8S.F2S.F1F12F11 F9 F10 F8 F7 F6 F4 F3 F2
P X O R OPER COHP COHP

H V FB F (...)
 F5
N

(*Awaiting drying*)%L100

%I1.0 %M12 %I1.7

%MT4.Q %M17

%I1.10 %Q2.3 %M27 %MT0 %M25 %MW0.X

%M2 %I1.4
C

%MW15:=%MW18+500 IN MT Q
 SOUND MODE
 TB: 1 mn
 TMP: 9999
 MODIF: Y

OPERATE

%Q2.5

SR2

 IL : MAST - SR1

! %L0:
 LD

ANDN
OR (
AND
)
AND
ST

%I1.0
%M12
%MT4.Q
%M17

%I1.7
%Q2.5

! %L5:
 LD

ANDN
ANDN
IN
LD
AND
AND
[%MW15 :=

%I1.10
%Q2.3
%M27
%MT0
%MT0.Q
%M25
%MW0:X5
%MW18+500]

! %L10:
 LD

AND
SR2

%I1.2
%I1.4
18 TLX DR PL7 40E 09/2000

Introducing PL7 software
Structured text
language

Structured text language (ST) is an "IT" type language used to write structured logic
and numeric processes.

Example of how to program in structured text language

Grafcet language Grafcet language is used to represent the operation of a sequential automatic sys-
tem in a structured and graphic form.

Example of how to program in Grafcet language.

ST : MAST - SR10
(* Searching for the first element which is not zero in a table of 32 words
Determining its value (%MW10) , its rank (%MW11)
This search is done if %M0 is set to 1
%M1 is set to 1 if an element without a nought exists, unless it is set to 0 *)

IF %M0 THEN
 FOR %MW 99 := 0 TO 31 DO
 IF %MW100 [%MW99]< > 0 THEN
 %MW 10 : =%MW100 [%MW99];
 %MW 11 : =%MW 99;
 %M1 : = TRUE;
 EXIT; (*Exiting the loop FOR*)
 ELSE
 %M1 : = FALSE;
 END_IF;
 END_FOR;
ELSE
 %M1 : = FALSE;
END_ IF;

!

 GRAFCET : MAST - CHART

3 11

10

15

12
14

13
1

8

2

5

0

4

7

6

F11F8 F9F7F6F5F4F3F2 F10 F12
TLX DR PL7 40E 09/2000 19

Introducing PL7 software
PL7 software structure

General points PL7 software has two types of structure:
l Mono task this is the simplified default structure, where a single master task

made up of a program of several sections and sub-programs is carried out.
l Multi-task: this structure, which is better suited for applications running in real

time, is made up of a master task, a fast task and priority event processes.

Principle PL7 master and fast program tasks are made up of several parts called sections and
subroutines.

Each of these sections can be programmed in a language appropriate to the process
to be performed.

The following illustration shows an example of dividing a PL7 program.

Sas (LD)

MAST master task

Section in
ladder
language

Sas (LD)

CHART

Sas (LD)

Sas (LD)

Cleaning (ST)

Section in
Grafcet

Section in
ladder
language

Section in
text
language

Oven_1

SR0Subroutines

Alarm_sas (ST)
Section in
text
language

Alarm_Oven (ST)

Section in
ladder
language

Section in
text
language

Monitor_drying
(LD)

SR0Subroutines

FAST fast task

EVT0

event
processes
20 TLX DR PL7 40E 09/2000

Introducing PL7 software
This division into sections is used to create a structured program and to generate or
incorporate program modules easily.

Sub-routines can be called up from any section of the task to which they belong or
from other sub-routines in the same task.
TLX DR PL7 40E 09/2000 21

Introducing PL7 software
Function modules

General points The PL7 Pro software is used to structure an application for the Premium PL7 in
function modules.

A function module is a regrouping of program elements to carry out an automatic
system function.

You can define a multi level tree structure in the automatic system application inde-
pendently of the PL7 multitask structure.

At each level you can attach program sections written in ladder, text, instruction list
or Grafcet language, as well as animation tables and operating screens.

Function view The function view in modules enables you to have a view of coherent functions with
regard to the process to be ordered.

The structure view gives a view of the running order for program sections on the
PL7.

The following illustration shows the 2 possible views for an application.

Application Browser

Structure View

Program
Animation tables

Md_march
MACHINE_PROPORTIONING

Function View

MAST Task
FAST Task
Events

DFB types
Variables
Animation tables
File
Runtime Screens

Configuration
Program

MACHINE_PROPORTIONING

Program
Animation tables

Program
Animation tables

Program
Animation tables

Program
Animation tables

Program
Animation tables

Process

Fill in

Proportion

Mixer

Empty
22 TLX DR PL7 40E 09/2000

Introducing PL7 software
Services
associated with
the function view

The operating services are available in one view or the other. In particular, with a
single command, it is possible to force a function module to run or not.

In this case all sections attached to the function module are automatically forced.

Exporting/
importing
function
modules

You can export all or part of the tree structure in function modules.
In this case all program sections on different module levels are exported.
TLX DR PL7 40E 09/2000 23

Introducing PL7 software
24 TLX DR PL7 40E 09/2000

TLX DR PL7 40E 09/2000
2
Description of PL7 object
language
Presentation

Subject of this
chapter

This chapter describes all the PL7 language objects. These objects are used as op-
erands in the instructions.

What’s in this
Chapter?

This Chapter contains the following Maps:

Topic Page

Definition of the main boolean objects 26

Definition of main word objects 27

Addressing bit objects 29

Addressing input/output module objects for the TSX 3 31

Addressing of language objects for modules remoted on the FIPIO bus 34

Addressing of language objects for modules remoted on the FIPIO bus 36

Addressing of language objects associated with AS-i bus 38

Adressing word objects 40

Overlay rules 43

Function block objects 44

Table type PL7 objects 47

Indexed objects 49

Grafcet objects 51

Symbolizing 52

Presymbolized objects 54
25

 PL7 object language
Definition of the main boolean objects

Description The following table describes the main boolean objects.

Bits Description Examples Write ac-
cess

Immediate val-
ues

0 or 1 (False or True) 0 _

Inputs/outputs These bits are the "logic images" of the electrical states of the inputs/
outputs.
They are stored in the data memory and updated each time the task in
which they are configured is polled.

Note: The unused input/output bits may not be used as internal bits.

%I23.5
%Q51,2

No
Yes

Internal The internal bits are used to store the intermediary states during execu-
tion of the program.

%M200 Yes

System The system bits %S0 to %S127 monitor the correct operation of the PLC
and the running of the application program.

%S10 Accord-
ing to i

Function
blocks

The function block bits correspond to the outputs of the function blocks
or DFB instance.
These outputs may be either directly connected or used as an object.

%TM8.Q No

Word extracts With the PL7 software it is possible to extract one of the 16 bits of a word
object.

%MW10:X5 Accord-
ing to the
type of
words

Grafcet steps
and macro-
steps

The Grafcet status bits of the steps, macro-steps and macro-step steps
are used to recognize the Grafcet status of step i, of macro-step j or of
step i of the macro-step j.

%X21
%X5.9

Yes
Yes
26 TLX DR PL7 40E 09/2000

 PL7 object language
Definition of main word objects

Description The following table describes the main word objects.

Words Description Examples Write ac-
cess

Immediate
values

These are algebraic values with the same format as single and double
length words (16 or 32 bits), which are used to assign values to these words.

2542 _

Inputs/
outputs

These are the "logic images" of input/output electric values (e.g.: analogue
inputs/outputs).
They are stored in the data memory and are updated every time the task in
which they are configured is scanned.

%IW23.5
%QW51.1

no
yes

Internal They are used to store values during the program. They are arranged inside
the data space in the same memory field.

%MW10
%MD45

yes
yes

Constants They store constants or alphanumeric messages. Their content can only be
written or modified by the terminal.
They are stored in the same place as the program. They can therefore have
the FLASH EPROM memory as a support.

%KW30 yes (only
by the ter-
minal)

System These words ensure several functions:
l some find out about the state of the system (system and application op-

erating time,…).
l others are used to act on the application (running modes,…).

%SW5 according
to i

Function
blocks

These words correspond to current parameters or values of standard func-
tion blocks or DFB instances.

%TM2.P yes

Common They are meant to be exchanged automatically on all stations connected to
the communications network.

%NW2.3 yes

Grafcet Grafcet words are used to find out the activity time of steps. %X5,T yes
TLX DR PL7 40E 09/2000 27

 PL7 object language
Formatting
values

Word values can be coded in the following formats:

Type Size Example of value Lower limit Upper limit

Whole base 10 Single length. 1506 -32768 +32767

Double length 578963 -2 147 483 648 2 147 483 647

Whole base 2 Single length. 2#1000111011111011011 2#10...0 2#01...1

Double length 2#10001110111110110111111
111011111011111

2#10...0 2#01...1

Whole base 16 Single length. 16#AB20 16#0000 16#FFFF

Double length 16#5AC10 16#000000000 16#FFFFFFFF

Floating -1.32E12 -3.402824E+38 (1)
1.175494E-38 (1)

-1.175494E-38 (1)
3.402824E+38 (1)

Key

(1) excluded limits
28 TLX DR PL7 40E 09/2000

 PL7 object language
Addressing bit objects

Presentation Addressing internal, system and step bits observes the following rules:

Syntax The table below describes the different elements that make up addressing.

Examples:
l %M25 = internal bit number 25
l %S20 = system bit number 20
l %X6 = step bit number 6

% M, S or X i

Symbol Object type Number

Family Element Values Description

Symbol % - -

Object type M - Internal bits used to store intermediate states while the program is
running. They are arranged inside the data space in the same mem-
ory field.

O - System bits (See Reference Manual, Volume 2), these bits fulfil
several functions :
l some find out about the status of the system by reading bits %Si

(watch dog overflow,…).
l others are used to act on the application (initializing Grafcet,…).

X - Step bits, step bits (See Grafcet objects, p. 51) give the status of
step activities.

Number i - The maximum number value depends on the number of objects
configured.
TLX DR PL7 40E 09/2000 29

 PL7 object language
Bits extracted
from words

PL7 software is used to extract one of the 16 bits from single length words. The ad-
dress of the word is then completed by the bit row extracted according to the syntax
below:

Examples:
l %MW10:X4 = bit number 4 of internal word %MW10
l %QW5.1:X10 = bit number 10 of output word %QW5.1

Note: Extracting bits from words can also be done on indexed words.

WORD : X j

Position j= 0 - 15 bit
rank in the word.

Word address
30 TLX DR PL7 40E 09/2000

 PL7 object language
Addresing input/output module objects for the TSX 37

Presentation Addressing input/output module bit and word principal objects is done geographical-
ly. That means that it depends:
l on the number (address) of the rack,
l the physical position of the module in the bac,
l the module channel number.

Illustration Addressing is defined in the following way:

Syntax The table below describes the different elements that make up addressing.

% I,Q,M,K X, W, D, F X i r.

Symbol Object type Format Position Channel no. Rank

.

Family Element Values Description

Symbol % - -

Object type I
Q

-
-

Picture of the physical input of the module,
Picture of the physical output of the module,
This information is exchanged implicitly each cycle of the task to which it
is attached.

M - Internal variable
This reading or writing information is exchanged at the request of the ap-
plication.

K - Internal constant
This configuration information is available as read only.

Format (size) X - Boolean
For Boolean objects the X can be omitted.

W 16 bits Single length.

D 32 bits Double length.

F 32 bits Floating. The floating format used is the IEEE Std 754-1985 standard
(equivalent to IEC 559).
TLX DR PL7 40E 09/2000 31

 PL7 object language
Examples The table below shows some examples of addressing objects.

Standard format
modules

They are addressed as 2 modules in superimposed 1/2 format.

For example, a module with 64 I/O occupying positions 5 and 6 is seen as 2 1/2 for-
mat modules:
l a 1/2 module of 32 inputs on position 5,
l a 1/2 module of 32 inputs on position 6,
The table below describes coding for the channel position/number according to the
module.

Module position x 0 - 8
0 - 10

TSX 37 -10
TSX 37-21/22
Note: a module in standard format (taking up 2 positions) is addressed as
2 modules in the superimposed 1/2 format (see explanations below).

Channel no. i 0 - 31 or
MOD

Module channel number
MOD: channel reserved for managing the module and parameters com-
mon to all the channels.

Row r 0 - 127 or
ERR

Position of the bit in the word.
ERR: indicates a module or channel fault.

Family Element Values Description

Object Description

%I1.5 See input number 5 of the input/output module in position 1.

%MW2.0.3 Status word of row 3 of channel 0 of the input/output module on position 2.

%I5.MOD.ERR Information on input/output module fault on position 5.

Module 1/2 format Standard format

4O 8I 12I 28I/O 32I 32O 64I/O

Channel number 0 - 3 0 - 7 0 - 11 0 - 15 (I) 0 - 15 (I) 0 - 15 (O) 0 - 31 (I)

0 - 11 (O) 0 - 15 (I) 0 - 15 (O) 0 - 31 (O)

Addressing:
Channel position/
number
(x=position)

x.0
to
x.3

x.0
to
x.7

x.0
to
x.11

x.0
to
x.15

x.0
to
x.15

x.0
to
x.15

x.0
to
x.31

(x+1).0
to
(x+1).11

(x+1).0
to
(x+1).15

(x+1).0
to
(x+1).15

(x+1).0
to
(x+1).31
32 TLX DR PL7 40E 09/2000

 PL7 object language
Examples The table below shows two examples of addressing standard 28 I/O module objects
occupying positions 3 and 4.

Object Description

%I3.6 Input channel module number 6

%Q4.2 Output channel module number 2
TLX DR PL7 40E 09/2000 33

 PL7 object language
Addressing of language objects for modules remoted on the FIPIO bus

Presentation Addressing for the main bit and word objects for modules remoted on the FIPIO bus
is geographical. This means that it depends on:
l the connection point,
l the module type (base or extension),
l the channel number.

Illustration Addressing is defined as follows:

Syntax The table below shows the different elements which constitute addressing.

% I, Q, M, K X, W, D, F X Y i r.
Symbol Object type Format Rack Position Channel no. Rank

.

Family Element Values Meaning

Symbol % - -

Object type I
Q

-
-

Image of the module’s physical input,
Image of the module’s physical output,
This information is exchanged automatically on each cycle of the task to
which it is connected.

M - Internal variable
This read or write information is exchanged at the request of the application.

K - Internal constant
This configuration information is only accessible in read-only.

Format (size) X - Boolean
For boolean-type objects, the X may be omitted.

W 16 bits Single length.

D 32 bits Double length

F 32 bits Floating. The floating format used is that of IEEE standard 754-1985 (equiv-
alent IEC 559).

Module/channel
address and con-
nection point

p 0 or 1 Number of the processor’s position in the rack.

2 - Channel number of the processor’s built-in FIPIO link.

c 1 to 127 Number of the connection point.
34 TLX DR PL7 40E 09/2000

 PL7 object language
Examples The table below gives some examples of object addressing.

Module position m 0 or 1 0 : base module, 1: extension module.

Channel no. i 0 to 127
or MOD

MOD: channel reserved for management of the module and the parameters
shared by all channels.

Position r 0 to 255
or ERR

ERR: indicates a module or channel fault.

Family Element Values Meaning

Object Meaning

%MW\0.2.1\0.5.2 Position 2 status word for the image bit of input 5 of the remote input
base module located at connection point 1 of the FIPIO bus.

%I\0.2.1\0.7 image bit of input 7 of the remote input base module located at con-
nection point 1 of the FIPIO bus.

%Q\0.2.1\1.2 image bit of output 2 of the remote output extension module located
at connection point 1 of the FIPIO bus.

%I\0.2.2\0.MOD.ERR Fault information for the Momentum module located at connection
point 2 of the FIPIO bus.

%Q\1.2.3\0.0.ERR Fault information for channel 0 of module CCX17 located at connec-
tion point 3 of the FIPIO bus.

0

P
S
Y

2
6
0
0

0 2 3 4
T
S
X

5
7
2
0
3

1

P
S
Y

2
6
0
0

0 1 2 43

D
S
X

0
8
R

A
E
Y

8
0
0

o
o
C
o
m
m

L
o
o
p
s

TLX DR PL7 40E 09/2000 35

 PL7 object language
Addressing of language objects for modules remoted on the FIPIO bus

Presentation Addressing for the main bit and word objects for modules remoted on the FIPIO bus
is geographical. This means that it depends on:
l the connection point,
l the module type (base or extension),
l the channel number.

Illustration Addressing is defined as follows:

Syntax The table below shows the different elements which constitute addressing.

% I, Q, M, K X, W, D, F p.2.c m i r.
Symbol Object type Format Module/channel

address and
connection point

Module
number

Channel
number

Rank
.\\

Family Element Values Meaning

Symbol % - -

Object type I
Q

-
-

Image of the module’s physical input,
Image of the module’s physical output,
This information is exchanged automatically on each cycle of the task to
which it is connected.

M - Internal variable
This read or write information is exchanged at the request of the application.

K - Internal constant
This configuration information is only accessible in read-only.

Format (size) X - Boolean
For boolean-type objects, the X may be omitted.

W 16 bits Single length.

D 32 bits Double length

F 32 bits Floating. The floating format used is that of IEEE standard 754-1985 (equiv-
alent IEC 559).

Module/channel
address and con-
nection point

p 0 or 1 Number of the processor’s position in the rack.

2 - Channel number of the processor’s built-in FIPIO link.

c 1 to 127 Number of the connection point.
36 TLX DR PL7 40E 09/2000

 PL7 object language
Examples The table below gives some examples of object addressing.

Module position m 0 or 1 0 : base module, 1: extension module.

Channel no. i 0 to 127
or MOD

MOD: channel reserved for management of the module and the parameters
shared by all channels.

Position r 0 to 255
or ERR

ERR: indicates a module or channel fault.

Family Element Values Meaning

Object Meaning

%MW\0.2.1\0.5.2 Position 2 status word for the image bit of input 5 of the remote input
base module located at connection point 1 of the FIPIO bus.

%I\0.2.1\0.7 image bit of input 7 of the remote input base module located at con-
nection point 1 of the FIPIO bus.

%Q\0.2.1\1.2 image bit of output 2 of the remote output extension module located
at connection point 1 of the FIPIO bus.

%I\0.2.2\0.MOD.ERR Fault information for the Momentum module located at connection
point 2 of the FIPIO bus.

%Q\1.2.3\0.0.ERR Fault information for channel 0 of module CCX17 located at connec-
tion point 3 of the FIPIO bus.

1 TBX DSS 16220 TBX DES 1622

0 170 AAI 030 00

TBX LEP 030

170 FNT 110 01

0

1

2

FIPIO manager TSX 57253

0 T CCX 17 20 FTSX FPP 0103
TLX DR PL7 40E 09/2000 37

 PL7 object language
Addressing of language objects associated with AS-i bus

Presentation Addressing for the main bit and word objects associated with the AS-i bus is geo-
graphical. This means that it depends on:
l the number (address) of the rack where the interface card is positioned,
l the physical position of the interface card in the rack,
l the number (address) of the slave device on the AS-i bus.

Illustration Addressing is defined as follows:

Syntax The table below describes the different elements which constitute addressing.

% I ou Q xy.0 \ n i.
Symbol Object type Rack/module/channel

addrss for TSX SAY 100
Slave
number

Bit rank

\

Family Element Values Description

Symbol % - -

Object type I
Q

-
-

Image of the module’s physical input,
Image of the module’s physical output,
This data is exchanged automatically on every cycle of the task to which it
is connected.

Rack address x 0 or 1
0 to 7

TSX 5710/102/103/153, PMX 57102, PCX 571012).
Other processors

Module position y 00 to 14
(1)

Rack position number.
When the rack number (x) is other than 0, the position (y) has a 2 digit
code: 00 to 14; however, if the rack number (x) = 0, the non-meaningful ze-
ros are deleted (from the left) from "y" ("x" does not appear and "y" takes
1 digit for values of less than 9).

Channel no. 0 - The interface card TSX SAY 100 only has one channel.

Slave no. n 0 to 31 Physical address of slave.

Position i 0 to 3 Position of output or input image bit.

(1) : The maximum number of slots requires an extension rack to be used.
38 TLX DR PL7 40E 09/2000

 PL7 object language
Example The table below gives some examples of object addressing.

Object Description

%I3.0\2.2 Input 2 of slave 2, the module TSX SAY 100 being positioned at slot 3 of
rack 0.

%Q3.0\4.3 Output 3 of slave 4, the module TSX SAY 100 being positioned at slot 3
of rack 0.

0

P
S
Y

2
6
0
0

0 1 2 3 4

T
S
X

5
7
1
0
3

S
A
Y

1
0
0

0

1

2

3

4 P

P ABE-8R44SB11

XVA-S102

o
o
C
o
m
m

TLX DR PL7 40E 09/2000 39

 PL7 object language
Addressing word objects

Presentation Addressing words (except for input/output module and function block words) follows
the same syntax described below.

Illustration Addressing internal, constant and system words observes the following rules:

Syntax The table below describes the different elements that make up addressing.

% M, K or S B, W, D or F i

Symbol Object type Format Number

Family Element Values Description

Symbol % - -

Object type M - Internal words used to store values during the program. They are
arranged inside the given space in the same memory field.

K - Constant words store constant values or alphanumeric messages.
Their content can only be written or modified by the terminal. They
are stored in the same place as the program. They can therefore
have the FLASH EPROM memory as a support.

S - System words (See Reference Manual, Volume 2), these words
fulfil several functions:
l some find out about the state of the system by reading the %SWi

words (system and application operating time,…).
l others are used to act on the application (running modes,…).
40 TLX DR PL7 40E 09/2000

 PL7 object language
Examples:
l %MW15 = single length internal word number 15
l %MF20 = floating internal word number 20
l %KD26 = constant double word number 26
l %SW30 = system word number 30

Format B 8 bits Octet, this format is used exclusively for operations on character
strings.

W 16 bits Single length.: these 16 bit words can contain an algebraic value
between - 32 768 and 32 767,

D 32 bits Double length: these 32 bit words can contain an algebraic value
between -2 147 483 648 and 2 147 483 647. These words are
stored in the memory on two consecutive single length words.

F 32 bits Floating: the floating format used is the IEEE Std 754-1985 stan-
dard (equivalent to IEC 559). The length of the words is 32 bits,
which corresponds to single precision floating numbers.

Examples of floating values:
1285.28
12.8528E2

Number i - The maximum number value depends on the number of objects
configured.

Family Element Values Description

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0

Poids fort Poids faible

Rang du bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0

0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 0

Poids faible

Poids fort
TLX DR PL7 40E 09/2000 41

 PL7 object language
Addressing
words on the
network

Addressing words on the network is described in the manual Application communi-
cation.

Otherwise networks use specific objects: common words. These are single length
object words (16 bits) common to all stations connected on the communications net-
work.

Addressing: %NW{i.j}k

with: i = 0 - 127 network number, j = 0 - 31 station number and k= 0 - 3 word number
42 TLX DR PL7 40E 09/2000

 PL7 object language
Overlay rules

Principles Bytes, single, double length and floating words are arranged inside the space given
in the same memory field.

Thus overlay is possible between:
l the double length word %MDi and the single length words %MWi and %MWi+1

(the word %MWi being the least significant and the word %MWi+1 the most sig-
nificant of the word %MDi),

l the single length word %MWi and the bytes %MBj and %MBj+1 (with j=2 x i),
l the floating %MFk and the single length words %MWk and %MWk+1.

Illustration This illustration shows overlay of internal words.

Examples l %MD0 corresponds to %MW0 and %MW1 (see illustration above).
l %MW3 corresponds to %MB7 and %MB6 (see illustration above).
l %KD543 corresponds to %KW543 and %KW544.
l %MF10 corresponds to %MW10 and %MW11.

%MB1 %MB0

%MB3 %MB2

%MB5 %MB4

%MB7 %MB6

%MW0

%MW1

%MW2

%MW3

%MWi

%MWi+1

%MWk

%MWk+1

%MD0

%MD2

%MD1

%MDi

%MFk

%MD3
TLX DR PL7 40E 09/2000 43

 PL7 object language
Function block objects

General points Function blocks set up bit objects and specific words that can be accessed by the
program.

Example of a
function block

The following illustration shows a counter/count down function block.

Bit objects They correspond to block outputs. These bits can be accessed by Boolean test in-
structions.

Word objects They correspond:
l to block configuration parameters. These parameters can be accessed (e.g.:

pre-selection parameters) or not (e.g.: base time) by the program,
l to current values (e.g.: %Ci.V counting value in progress).

R

O

CU

CD

%Ci

%C.P:9999

E

D

F
MODIF:Y

Counter/count down block
44 TLX DR PL7 40E 09/2000

 PL7 object language
List of function
block objects
that can be
accessed by the
program

The following table describes all the function block objects.

Function
blocks

Symbol No. of
Maxi
Micro

No. of
Maxi Pre-
mium

Types of
objects

Description Address Write ac-
cess

Timer %TMi 64 255
(128 de-
fault)

Word Current value %TMi.V no

Preset value %TMi.P yes

Bit Timer output %TMi.Q no

Counter/Down
counter

%Ci 32 255
(64 de-
fault)

Word Current value %Ci.V no

Preset value %Ci.P yes

Bit Overflow output (empty) %Ci.E no

Pre-selection output
reached

%Ci.D no

Overflow output (full) %Ci.F no

Monostable %MNi 8 255
(32 de-
fault)

Word Current value %MNi.V no

Preset value %MNi.P yes

Bit Overflow output (empty) %MNi.R no

Word register %Ri 4 255
(4 default)

Word Access to register %Ri.I yes

Register output %Ri.O yes

Bit Register output full %Ri.F no

Register output empty %Ri.E no

Drum %DRi 8 255
(8 default)

Word Number of step in progress %DRi.S yes

Status of step j %DRi.Wj no

Activity time of step %DRi.V no

Bit Last defined step in
progress

%DRi.F no

Series 7 timeer %Ti 64 255
(0 default)

Word Current value %Ti.V no

Preset value %Ti.P yes

Bit Output in progress %Ti.R no

Timer output elapsed %Ti.D no
TLX DR PL7 40E 09/2000 45

 PL7 object language
Note: the total number of timers %TMi + %Ti is limited to 64 for a Micro, and 255
for a Premium.
46 TLX DR PL7 40E 09/2000

 PL7 object language
Table type PL7 objects

Bit table Bit tables are sets of adjacent bit objects of the same type and defined length: L

Example of bit tables : %M10:6

This table defines bit objects which can be put into the form of a bit table.

Word tables Word tables are sets of adjacent bit objects of the same type and defined length: L

Example of word tables: %KW10:5

Type Address Example Write access

Discrete input bits %Ix.i:L %I25.1:8 No

Discrete output bits %Qx.i:L %Q34.0:16 Yes

Internal bits %Mi:L %M50:20 Yes

Grafcet bits %Xi:L, %Xj.i:L %X50:30 No

Note: The maximum length of the tables depends on the object type
l For discrete input/output bits: the maximum size depends on the modularity

(number of module inputs/outputs).
l For internal or Grafcet bits: the maximum size depends on the sized defined

when configuring.

%M10 %M11 %M12 %M13 %M14 %M15

%M10:6

%KW10

%KW14

16 bits
TLX DR PL7 40E 09/2000 47

 PL7 object language
This table defines word objects which can be put into the form of a word table.

Character
strings

Character strings are sets of adjacent bytes of the same type and defined length: L

Example of character string: %MB10:5

This table defines bit objects which can be put into the form of a character string.

Type Format Address Example Write ac-
cess

Internal words Single length. %MWi:L %MW50:20 Yes

Double length %MDi:L %MD30:10 Yes

Floating point %MFi:L %MF100:20 Yes

Constant words Single length. %KWi:L %KW50:20 No

Double length %KDi:L %KD30:10 No

Floating point %KFi:L %KF100:20 No

Grafcet words Grafcet words %Xi.T:L, %Xj.i.T:L %X12.T:8 No

System words System words %SWi:L %SW50:4 Yes

Note: The maximum lengths of the tables depend on the object type.
l For internal, constant or Grafcet words: the maximum size depends on the

sized defined when configuring.
l For system words: only the words %SW50 to 53 can be set out in the form of

a table.

Type Address Example Write access

Internal words %MBi:L %MB10:8 Yes

Constant words %KBi:L %KB20:6 Yes

Note: the index i must be even.

%MB10

%MB14

8 bits
48 TLX DR PL7 40E 09/2000

 PL7 object language
Indexed objects

Direct
addressing

Addressing objects is called direct when the address of these objects is fixed and
defined when the program was written.

Example: %MW26 (internal word with address 26)

Indexed
addressing

In indexed addressing, the object’s direct address is completed with an index: the
contents of the index is added to the object address.

The index is defined either by:
l an internal word %MWi
l a constant word %KWi
l an immediate value

There is no limit to the number of "index words".

This type of addressing is used to run through a set of objects of the same type (in-
ternal words, constant words…), successively: the contents of the index is added to
the object address.

Example:
MW108[%MW2] : direct address word 108 + contents of word %MW2.
If the word %MW2 has the value 12 for its content, writing %MW108[%MW2] is
therefore equivalent to writing %MW120.

Describing
objects that can
be indexed

The following table defines the objects that can be indexed.

Type Format Address Example Write ac-
cess

Input bits Boolean %Ixy.i[index] %I21.3[%MW5] No

Output bit Boolean %Qxy.i[index] %Q32.4[%MW5] Yes

Internal bit Boolean %Mi[index] %M10[%MW5] Yes

Grafcet bit Boolean %Xi[index] %X20[%MW5] No

%Xj.i[index] %X2.3[%MW5] No

Internal words Single length. %MWi[index] %MW30[%MW5] Yes

Double length %MDi[index] %MD15[%MW5] Yes

Floating point %MFi[index] %MF15[%MW5] Yes

Constant word Single length. %KWi[index] %KW50[%MW5] No

Double length %KDi[index] %KD50[%MW5] No

Floating point %KFi[index] %KF50[%MW5] No
TLX DR PL7 40E 09/2000 49

 PL7 object language
Indexing double
words

The real address = direct address of the indexed double word + twice the content of
the index word.

Example: %MD6[%MW100]
Si %MW100=10, le word addressed will be 6 + 2 x 10 -->%MD26.

Index overflow The index will overflow as soon as the address of an indexed object exceeds the lim-
its of the field containing the same type of object, i.e. when:
l object address + index content lower than zero,
l object address + index content greater than the maximum limit configured

If the index overflows, the system resets the system bit %S20 to 1 and the object is
assigned with an index value of 0.

The following table gives the conditions for setting the system bit %S20 to 1 and 0.

Grafcet words Single length. %Xi .T[index] %X20 .T[%MW5] No

%Xj.i .T[index] %X2.3 .T[%MW5] No

Word table %MWi[index]:L %MW50[%MW5]:10 Yes

%MDi[index]:L %MD40[%MW5]:10 Yes

%KWi[index]:L %KW70[%MW5]:20 No

%KDi[index]:L %KD80[%MW5]:10 No

Note: The maximum values of the indexes depend on the types of object indexed.
l For discrete input/output bits: 0<i+index<m (m being the maximum number

of module inputs/outputs).
l For all other objects (except double length or floating objects): 0<i+in-

dex<Nmax , Nmax = maximum size depends on the size defined in the config-
uration.
For double length or floating words: 0<i+index<Nmax-1.

Type Format Address Example Write ac-
cess

Set to 1 Reset to 0

l set to 1 by the system when the index over-
flowed

l set to 0 by the user after modifying the in-
dex
50 TLX DR PL7 40E 09/2000

 PL7 object language
Grafcet objects

Bit objects The following table summarizes all the Grafcet bit objects available and describes
their role.

These bits are set to 1 when the step or the macro step is active, to 0 when it is in-
active.

Word objects The following table summarizes all the Grafcet word objects available and describes
their role.

 These words are incremented every 100 ms and take a value of between 0 and
9999.

Type Description

%Xi status of step i of the main graph (Chart).

%XMj status of the Grafcet macro step j.

%Xj.i status of the i step of the Grafcet j macro step

%Xj.IN status of the input step of the macro step

%Xj.OUT status of the output step of the macro step

Type Description

%Xi.Ti activity time for Grafcet step i.

%Xj.i.T activity time for the i step of the Grafcet j macro step

%Xj.IN.T activity time for step i of macro step j which allows it to find out about the status
of step i of the Grafcet macro step j.

%Xj.OUT.T activity time for the input step of the macro step

%Xj.OUT activity time for the output step of the macro step
TLX DR PL7 40E 09/2000 51

 PL7 object language
Symbolizing

Role Symbols are used to address PL7 language objects by name or customized mne-
monics.

Syntax A symbol is a string of a maximum of 32 alphanumeric characters the first character
of which is alphabetic.

A symbol begins with a capital letter, the others are in lower case (e.g.: Burner_1).

When it is being entered the symbol can be written in capitals or lower case (e.g.:
BURNER_1), the program automatically puts the symbol in the correct form.

Characters that
can be used

The following table provides the characters that can be used when creating symbols.

A certain number of words are reserved by the language and cannot be used as
symbols, see (See Reference Manual, Volume 3).

Editing symbols Symbols are defined and associated with language objects by the variables editor.
A comment of 508 characters can be associated with each symbol.

Symbols and their comments are stored on the terminal hard disk and not in the PL7.

Objects which
can be made into
symbols

All PL7 objects can be symbolized except for table type structured objects and in-
dexed objects, but if the base object or index is symbolized the symbol is used in the
structured object.

Examples:
l if the word %MW0 has "Temperature" for a symbol, the word table %MW0:12 is

symbolized by Temperature:12,
l the word %MW10 hasOven_1 for a symbol, the indexed word %MW0[%MW10]

is symbolized by Temperature[Oven_1].

Type Description

alphabetic capi-
tals

"A - Z" and the following letters
"ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏDÑÒÓÓÕÖØÙÚÛÜYp"

alphabetic lower
case

 "a - z" and the accented letters àáâãäåæçèéêëìíîïñòóôõöØùúûüypßÿ

numerical figures from 0 - 9 (they cannot be in first place of the symbol).

the character "_" it cannot be either at the beginning of the symbol nor at the end.
52 TLX DR PL7 40E 09/2000

 PL7 object language
Object bits extracted from words, bits or function block words can be symbolized but
if they are not symbolized they can inherit the symbol from the base object.

Examples:
l if the word %MW0 has Pump_state for a symbol and if the bit extracted from

the word %MW0:X1 is not symbolized, it inherits the symbol from the word,
%MW0:X1 has as its symbol: Pump_ state:X1,

l if the function block %TM0 has for its symbol Time_oven1 and if the output
%TM0.D is not symbolized, it inherits the block symbol, %TM0.D has as its sym-
bol: Time_oven.D.

Object which are
only symbolic

DFB function block parameters can only be accessed in the form of symbols. These
objects are defined by the following syntax:

Name_DFB.Name_parameter

The elements have the following meaning and characteristics.

Example: Gap.check for the gap output of the DFB instance named Check.

Element Maximum num-
ber of charac-
tes

Description

Name_DFB 32 name given to the DFB function block used.

Name_parameter 8 name given to the output parameter or public
variable.
TLX DR PL7 40E 09/2000 53

 PL7 object language
Presymbolized objects

Role Certain application specific functions (example: counting, axes request, …) support
an automatic symbolization of the objects which are linked to them.

If you give the generic symbol of the module’s %CHxy.i channel, all of the symbols
of the objects linked to this channel can then be automatically generated on request.

Syntax These objects are symbolized with the following syntax:

PREFIX_USER_SUFFIX_MANUFACTURER

The elements have the following meaning and characteristics:

Example This example shows a counting module situated in slot 3 of the automatic tray.

If the generic symbol (prefix-user) given to channel 0 is COMPT_PIECES, the fol-
lowing symbols are automatically generated.

Element Maximum num-
ber of charac-
ters

Description

PREFIX_USER 12 generic symbol given to the channel by the user

SUFFIX_MANUFACT
URER

20 part of the symbol which corresponds to the bit
object or word of the channel given by the sys-
tem

Note: As well as the symbol, a manufacturer’s comment is automatically generat-
ed, this comment recalls succinctly the object’s role.

Address Type Symbol Comment

%CH3.0 CH

%ID3.0 DWORD COMPT_PIECES_CUR-MEAS Counter current value

%ID3.0.4 DWORD COMPT_PIECES_CAPT Counter captured value

%I3.0 EBOOL COMPT_PIECES_ENAB_ACTIV Counter enable active

%I3.0.1 EBOOL COMPT_PIECES_PRES_DONE Preset done
54 TLX DR PL7 40E 09/2000

TLX DR PL7 40E 09/2000
3
User memory
Presentation

Subject of this
chapter

This chapter describes the memory structure of Micro and Premium PL7s.

What’s in this
Chapter?

This Chapter contains the following Maps:

Topic Page

Structure of Micro PL7 memory 56

Memory structure for Premium PL7s 59

Description of bits memory 62

Description of word memory 64

Characteristics of TSX 37 PL7 memory 65

Characteristics of TSX/PCX 57 10/15/20/25 PL7 memories 67

Characteristics of TSX/PCX 57 30/35 PL7 memories 69

Characteristics of TSX 57 453 PL7 memory 71
55

User memory
Structure of Micro PL7 memory

General Micro PL7 memory that can be accessed by the user is divided into two distinct sets:
l bit memory
l words memory

Bit memory The bit memory is in the RAM memory that is integrated into the processor module.
It contains the map of 1280 bit objects.

Role of the words
memory

The words memory (16 bits) supports:
l data: dynamic application data and system data,
l the program: descriptors and executable code for tasks,
l constants: constant words, initial values and input/output configuration.

Structure
without
extension
memory card

Data, program and constants are supported by the internal RAM memory in the pro-
cessor module.
The following diagram describes the memory structure.

The EPROM FLASH 16 Kword memory integrated into the processor module can
be used for saving:
l the application program (15Kwords)
l 1000 internal words %MWi

Data

Program

Constants

Saving
program and

constants

Saving
%MW

Internal
RAM

Internal
EPROM
Flash
56 TLX DR PL7 40E 09/2000

User memory
Structure with
extension
memory card

Data is supported by the processor module internal RAM memory.
Programs and constants are supported by the extension memory card.

The following diagram describes the memory structure.

The EPROM FLASH 16 K word memory integrated into the processor module can
be used to save 1000 internal words %MWi.

Saving the
memory

The RAM memory can be backed up by nickel cadmium batteries:
l supported by the processor module for the bit memory and internal RAM,
l inserted onto a card for the RAM memory card.

Transferring the application from the internal EPROM FLASH memory to the RAM
memory is done automatically when the application is lost in RAM (if it has not been
saved or if there is no battery).
Manual transfer can also be requested through a programming terminal.

Data

Program

Constants

Internal
RAM

RAM memory
card or external
EPROM Flash

Field
cannot be used

Saving
%MW

Internal
EPROM
Flash
TLX DR PL7 40E 09/2000 57

User memory
Special
characteristics
of memory cards

The following table describes the different types of cards available.

Memory card Description TSX refer-
ences

Application
saving

Data storage

RAM Contains the application programs and constants.
They can be backed up by nickel cadmium batter-
ies.

MRP 032P 32 K words -

MRP 064P 62 K words -

RAM + storage As well as the program and constants, these cards
have a field for storing data which can be accessed
by the PL7 instructions for reading/writing to files
(See Reference Manual, Volume 2).

MRP 232P 32 K wordsP 128 K words

MRP 264P 64 K words 128 K words

Eprom Flash Contains the application programs and constants. MFP 032P 32 K words -

MFP 064P 62 K words -

Eprom Flash +
storage

As well as the program and constants, these cards
have a field for storing data which can be accessed
by the PL7 instructions for reading/writing to files
(See Reference Manual, Volume 2).

MFP 232P 32 K wordsP 128 K words

MFP 264P 64 K words 128 K words

Back up A back up EPROM FLASH card (not shown in the
diagrams) can also be used for updating an appli-
cation in the processor’s internal RAM.

This card contains the program section and the
constants but not the data.

MFP BAK
032P

32 K words -
58 TLX DR PL7 40E 09/2000

User memory
Memory structure for Premium PL7s

General Premium PL7 memory space comprises only one set.
The bit memory is integrated into the word memory (in the data field). It is limited to
4096 bits.

Role of the words
memory

The words memory (16 bits) supports:
l data: dynamic application data and system data (the system reserves a RAM

memory field of at least 5 K words)
l the program: descriptors and executable code for tasks,
l constants: constant words, initial values and input/output configuration.

Structure
without
extension
memory card

Program, data and constants are supported by the internal RAM memory in the pro-
cessor module.
The following diagram describes the memory structure.

Structure with
extension
memory card

Data is supported by the processor module internal RAM memory.
Programs and constants are supported by the extension memory card.
The following diagram describes the memory structure.

Saving the
memory

The bit memory and internal RAM are backed up by the nickel cadmium battery sup-
ported by the processor module.
The internal RAM memory card is backed up by a nickel cadmium battery.

Data

Program

Constants

internal
RAM

Data

Program

Constants

internal
RAM

RAM
memory
card or
external
EPROM
Flash
TLX DR PL7 40E 09/2000 59

User memory
Special
characteristics
of memory cards

The following table describes the different types of cards available.

Memory
card

Description TSX refer-
ences

Application
saving

Data storage Symbol stor-
age

RAM Contains the application programs
and constants.
They can be backed up by nickel cad-
mium batteries.
Note: TSX MRP 256P K word memo-
ry cards are paged cards. One 128 K
word page receiving the executable
code, the other 128 K word page re-
ceiving graphic information.

MRP 032P 32 K words - -

MRP 064P 64 K words - -

MRP 128P 128 K words - -

MRP 256P 256 K words - -

RAM + file
storage

As well as the program and constants,
these cards have a field for storing
data which can be accessed by the
PL7 instructions for reading/writing to
files (See Reference Manual, Volume
2).

MRP 232P 32 K words 128 K words -

MRP 264P 64 K words 128 K words -

RAM + file +
symbol stor-
age

These cards contain an extra field for
storing application symbols (and their
comments).

MRP 2128P 128 K words 128 K words 128 K words

MRP 3256P 256 K words 640 K words 128 K words

MRP 3384P 384 K words 640 K words -

MRP 0512P 512 K words - 256 K words

Eprom Flash Contains the application programs
and constants.

MFP 032P 32 K words - -

MFP 064P 62 K words - -

MFP 128P 128 K words - -

MFP 256P 256 K words - -
60 TLX DR PL7 40E 09/2000

User memory
Eprom Flash
+ file storage

As well as the program and constants,
these cards have a field for storing
data which can be accessed by the
PL7 instructions for reading/writing to
files (See Reference Manual, Volume
2).

MFP 032P 32 K words 128 K words -

MFP 064P 62 K words 128 K words -

MFP 128P 128 K words 128 K words -

Back up A back up EPROM FLASH card (not
shown in the diagrams) can also be
used for updating an application in the
processor’s internal RAM.

This card contains the program sec-
tion and the constants but not the da-
ta.

MFP BAK
032P

32 K words - -

Memory
card

Description TSX refer-
ences

Application
saving

Data storage Symbol stor-
age
TLX DR PL7 40E 09/2000 61

User memory
Description of bits memory

General points For Micro PL7s: this memory contains 1280 bit objects whatever the type of PL7.

For Premium PL7s: this bit memory does not exist and its contents are in the word
memory in the application data field.

PL7 bit object coding is used to test the rising or falling edges on:
l input/output bits,
l internal bits.

Operation Each bit object contained in the bit memory is stored using 3 bits allocated in the fol-
lowing way:

 When updating the bit memory the system maintains:

Forcing When forcing is requested by the terminal:
l Forcing status F is set to 1
l current status C is set to :

l 1 if forcing to 1 is requested
l 0 if forcing to 0 is requested

These states do not develop any more until:
l forcing is stopped and the bit involved updated,
l reverse forcing is requested, only the current status is modified.

Phase Description

1 Transferring the map from the current status to the past status.

2 Re-updating the current status by the program, the system or the terminal (by
forcing a bit).

F P C

Current status (only bit that can
be accessed by the application
program)

Previous status

Forcing status
62 TLX DR PL7 40E 09/2000

User memory
Advice for using
rising or falling
edges

These rising or falling edge contact instructions only operate correctly if you follow
the rules below:
l in each case, to process the same object:

l input bit: the edge contact in the task or input module is exchanged,
l output or internal bit: process reading and writing to it within the same task.

l Any bit object tested on an edge must be written only once using normal coils
-()- or negated coils -(/)- (and/or equivalent in Instruction List language). Do not use
-(S)- or -(R)- coils. When an output is declared in an event processing exchange
list, it triggers the exchange of the group of channels assigned to it; this disrupts
the management of the edges in the task which normally manages this group of
channels.

l do not SET or RESET an object whose edge you are testing because even if the
result of the equation that sets SET/RESET is 0, the SET/RESET action is not
carried out but the object history is updated (edge is lost).

l do not test the edge of inputs/outputs used in the event task, a master task or a
fast task

l for internal bits: detecting an edge is not dependent on the task cycle. An edge
on internal bit %Mi is detected when its status has changed between 2 readings.
This edge remains detected as long as this internal bit is not scanned in the
action field.

Example : And so in the example below, if you force bit %M0 to 1 in an animation
table, the edge remains permanent.

So that the edge is only detected once, you must use an intermediate internal bit. In
this case the %M1 history is updated, therefore the edge is only present once.

P

%M0

INC %M0

%M0 %M1

P

%M1

INC %M0
TLX DR PL7 40E 09/2000 63

User memory
Description of word memory

General points This 16 bit word memory is made up of 3 logic spaces:
l Data,
l Program,
l Constants.
the size of which is defined by configuration.

Application data
memory

The data memory comprises the following different fields:

Application
program memory

This field contains the executable program code, graphic information (contact net-
work) and program comments.

Application
constant
memory

This field contains the function block and input/output module parameters defined in
configuration and constant words %KW.

Note: Symbols and comments associated with the objects are not recorded in the
PL7 memory but stored in the local application (terminal hard disk).

Word type Description

System Fixed number

Function blocks Corresponds to the input/output words of these blocks (current val-
ues, adjustment…).
The number of each type of function block is set in configuration

Internal Size defined by the number declared in configuration.

Inputs/outputs Corresponds to the words associated with each module. Their num-
ber depends on the modules configured.

Network commons 4 common words per PL7 station (only available if the communica-
tions module is present and configured in the common words ex-
change).
64 TLX DR PL7 40E 09/2000

User memory
Characteristics of TSX 37 PL7 memory

Size of bit
memory

The following table describes the bit object memory division.

Size of the words
memory

The following table describes the word object memory division.

TSX Processor 37 05/08/10 37 21/22

 Size available on processor 1280 1280

 Type
 of objects

system bits %Si 128 128

input/output bits %I/O (?)x.i (1) (1)

internal bits %Mi 256 256

step bits %Xi 96 128

Key

(1) depends on the hardware configuration declared (input/output modules, de-
vices on AS-i bus)

TSX Processor 3705/08 3710 3721 37 22

Cartridge - - - 32 K words 64 K
words

- 32 K words 64 K
words

internal RAM 9 K words 14 K
words

20 K
words

52 Kwords 84 Kwords 20 K
words

52 Kwords 84 Kwords

Data (%MWi) 0.5
Kwords
(1)

0.5
Kwords
(1)

0.5
Kwords
(1)

17.5
Kwords

17.5
Kwords

0.5
Kwords
(1)

17.5
Kwords

17.5
Kwords

100% Boolean program

• LD language 1.6 Ki 3.8 Ki 6.6 Ki 13.7 Ki 28.5 Ki 6.3 Ki 13.6 Ki 28.4 Ki

• IL language 2 Ki 4.9 Ki 8.4 Ki 17.5 Ki 36.3 Ki 8.1 Ki 17.3 Ki 36.1 Ki

• ST language 1.3 Ki 3.3 Ki 5.6 Ki 11.7 Ki 24.2 Ki 5.4 Ki 11.5 Ki 24.1 Ki

90% Boolean program

• LD language 1.1 Ki 3.1 Ki 5.4 Ki 11.8 Ki 24.7 Ki 5.2 Ki 11.6 Ki 24.5 Ki

• IL language 1.4 Ki 3.8 Ki 6.6 Ki 14.3 Ki 30.0 Ki 6.3 Ki 14.2 Ki 29.8 Ki

• ST language 1.1 Ki 2.9 Ki 5.1 Ki 11.1 Ki 23.3 Ki 4.9 Ki 11.0 Ki 23.2 Ki

65% Boolean program

• LD language 0.9 Ki 2.2 Ki 4.0 Ki 9.1 Ki 18.9 Ki 3.9 Ki 8.9 Ki 18.8 Ki

• IL language 1.0 Ki 2.5 Ki 4.6 Ki 10.3 Ki 21.3 Ki 4.4 Ki 10.1 Ki 21.2 Ki

• ST language 1.0 Ki 2.5 Ki 4.6 Ki 10.3 Ki 21.3 Ki 4.4 Ki 10.1 Ki 21.2 Ki
TLX DR PL7 40E 09/2000 65

User memory
Constants (1) 128
words

128
words

128
words

256 words 512 words 128
words

256 words 512 words

Key

(1) Default size, can be extended at the expense of the application program size.

Ki K instructions (1024 instructions)

TSX Processor 3705/08 3710 3721 37 22

Note: The PL7 AP/memory usage command is used to find out about the applica-
tion memory division in the PL7 memory.
66 TLX DR PL7 40E 09/2000

User memory
Characteristics of TSX/PCX 57 10/15/20/25 PL7 memories

Size of bit
memory

This table describes the memory division of word objects for TSX 57-103, TSX 57-
153, TSX 57-203, PCX 57-203 and TSX 57-253 PL7s.

Size of the words
memory

The table describes the memory division of word objects for TSX 57-103, TSX 57-
153, TSX 57-203, PCX 57-203 and TSX 57-253 PL7s.

Processor TSX 57 103/153
et PCX 57 203

 TSX57 203/253

 Type
 of objects

system bits %Si 128 128

input/output bits %I/Qx.i (1) (1)

internal bits %Mi (max. no.) 3962 8056

step bits %Xi (max. no.) 1024 1024

Key

(1) depends on the hardware configuration declared (input/output modules, de-
vices on AS-I bus)

Processor TSX 57-103 - TSX 57 153 TSX-PCX
57 203

TSX- 57
253

TSX-PCX
57 203/
TSX 57 253

TSX-PCX
57 203/
TSX 57 253

TSX-PCX
57 203/ TSX
57 253

Cartridge - 32K 64K - - 32K 64K 128K

internal RAM 32K 32K 32K 48K/64K 48K/64K 48K/64K 48K/64K 48K/64K

Data (%MWi) 0,5 K (1) 26 K 26 K 1K (1) 1K (1) 30,5K 30,5K 30,5K

100% Boolean program

• Langage LD 8,8 Ki 12,3 Ki 26,9 Ki 15,5 Ki 22,8 Ki 12,3 Ki 26,6 Ki 565,2 Ki

• IL language 11,2 Ki 15,6 Ki 34,3 Ki 19,7 Ki 29,1 Ki 15,6 Ki 33,9 Ki 71,6 Ki

• ST language 7,6 Ki 10,5 Ki 22,9 Ki 13,1 Ki 19,4 Ki 10,4 Ki 22,6 Ki 47,8 Ki

90% Boolean program

• LD language 5,2 Ki 8,6 Ki 21,4 Ki 11,0 Ki 17,4 Ki 8,6 Ki 21,1 Ki 46,9 Ki

• IL language 6,2 Ki 10,3 Ki 25,6 Ki 13,1 Ki 20,7 Ki 10,3 Ki 25,2 Ki 56,0 Ki

• ST language 5,0 Ki 8,3Ki 20,5 Ki 10,5 Ki 16,6 Ki 8,3 Ki 20,2 Ki 44,9 Ki

65% Boolean program

• LD language 3,6 Ki 6,7 Ki 16,7 Ki 8,1 Ki 13,1 Ki 6,6 Ki 16,4 Ki 36,6 Ki

• IL language 3,7 Ki 6,8 Ki 17,0 Ki 8,3 Ki 13,4 Ki 6,8 Ki 16,8 Ki 37,5 Ki

• ST language 4,2 Ki 7,9 Ki 19,7 Ki 9,6 Ki 15,5 Ki 7,8 Ki 19,4 Ki 43,3 Ki

Constants (1) 128
words

256
words

512
words

256 words 256 words 256 words 512 words 512 words
TLX DR PL7 40E 09/2000 67

User memory
Key

(1) Default size, can be extended at the expense of the application program size.

Ki Kinstructions

K Kwords

Processor TSX 57-103 - TSX 57 153 TSX-PCX
57 203

TSX- 57
253

TSX-PCX
57 203/
TSX 57 253

TSX-PCX
57 203/
TSX 57 253

TSX-PCX
57 203/ TSX
57 253

Note:
l when this table mentions as a characteristic 2 values separated by a "/", they

are associated with each type of processor respectively (separated by a "/" in
the table heading).

l The PL7 AP/memory usage command is used to find out about the application
memory division in the PL7 memory.
68 TLX DR PL7 40E 09/2000

User memory
Characteristics of TSX/PCX 57 30/35 PL7 memories

Size of bit
memory

This table describes the memory division of word objects in TSX 57-303, TSX 57-
353, and PCX 57-353 PL7s.

Size of the words
memory

This table describes the memory division of word objects in TSX 57-303, TSX 57-
353, and PCX 57-353 PL7s.

TSX/PCX processor 57 303/353

 Type
 of objects

system bits %Si 128

input/output bits %I/Qx.i (1)

internal bits %Mi (max. no.) 16250

step bits %Xi (max. no.) 1024

Key

(1) depends on the hardware configuration declared (input/output modules,
devices on AS-I bus)

Processor TSX 57
303

TSX/
PCX57
353

TSX 57 303 /
TSX/PCX57
353

TSX 57 303 /
TSX/PCX57
353

TSX 57 303 /
TSX/PCX57
353

TSX 57 303 /
TSX/PCX57
353

TSX 57 303 /
TSX/PCX57
353

Cartridge - - 32K 64K 128K 256K 384K

internal RAM 64K/80K 64K/80K 80K/96K 80K/96K 80K/96K 80K/96K 80K/96K

Data (%MWi) 1K (1) 1K (1) 30,5K 30,5K 30,5K 30,5K 30,5K

100% Boolean program

• LD language 28,8 Ki 30,1 Ki 12,3 Ki 26,6 Ki 56,2 Ki 115,3 Ki 150,5 Ki

• IL language 36,7 Ki 38,4 Ki 15,6 Ki 33,9 Ki 71,6 Ki 147,1 Ki 150,5 Ki

• ST language 24,5 Ki 25,6 Ki 10,4 Ki 22,6 Ki 47,8 Ki 98,0 Ki 148,3 Ki

90% Boolean program

• LD language 22,6 Ki 23,8 Ki 8,6 Ki 21,1 Ki 46,9 Ki 98,4 Ki 149,9 Ki

• IL language 27,1 Ki 28,4 Ki 10,3 Ki 25,2 Ki 56,0 Ki 117,5 Ki 157,6 Ki

• ST language 21,7 Ki 22,7 Ki 8,3 Ki 20,2 Ki 44,9 Ki 94,2 Ki 142,9 Ki

65% Boolean program

• LD language 17,4 Ki 18,2 Ki 6,6 Ki 16,4 Ki 36,6 Ki 77,0 Ki 117,4 Ki

• IL language 17,8 Ki 18,6 Ki 6,8 Ki 16,8 Ki 37,5 Ki 78,8 Ki 120,1 Ki

• ST language 20,5 Ki 21,5 Ki 7,8 Ki 19,4 Ki 43,3 Ki 91,1 Ki 138,8 Ki

Constants (1) 256 words 256 words 256 words 1024 words 1024 words 1024 words 1024 words

Key
TLX DR PL7 40E 09/2000 69

User memory
(1) Default size, can be extended at the expense of the application program size.

Ki Kinstructions

K Kmots

Processor TSX 57
303

TSX/
PCX57
353

TSX 57 303 /
TSX/PCX57
353

TSX 57 303 /
TSX/PCX57
353

TSX 57 303 /
TSX/PCX57
353

TSX 57 303 /
TSX/PCX57
353

TSX 57 303 /
TSX/PCX57
353

Note:
l when this table mentions as a characteristic 2 values separated by a "/", they

are associated with each type of processor respectively (separated by a "/" in
the table heading).

l The PL7 AP/memory usage command is used to find out about the application
memory division in the PL7 memory.
70 TLX DR PL7 40E 09/2000

User memory
Characteristics of TSX 57 453 PL7 memory

Size of bit
memory

This table describes the memory division of word objects in TSX 57-453 PL7s.

Size of the words
memory

The following table describes the memory division of word objects in TSX 57-453
PL7s.

Processor TSX 57 453

 Type
 d’objets

system bits %Si 128

input/output bits %I/Qx.i (1)

internal bits %Mi (max. no.) 32634

step bits %Xi (max. no.) 1024

Key

(1) depends on the hardware configuration declared (input/output modules,
devices on AS-I bus)

Processor TSX 57 453

Cartridge - 32K 64K 128K 256K 384 512K

internal RAM 96K 176K 176K 176K 176K 176K 176K

Data (%MWi) 1K (1) 30,5K 30,5K 30,5K 30,5K 30,5K 30,5K

100% Boolean program

• LD language 37,5 Ki 12,3 Ki 26,6 Ki 56,2 Ki 115,3 Ki 150,5Ki 150,5 Ki

• IL language 47,8 Ki 15,6 Ki 33,9 Ki 71,6 Ki 147,1 Ki 150,5 Ki 150,5 Ki

• ST language 31,9 Ki 10,4 Ki 22,6 Ki 47,8 Ki 98,0 Ki 148,3 Ki 150,7 Ki

90% Boolean program

• LD language 30,2 Ki 8,6 Ki 21,1 Ki 46,9 Ki 98,4 Ki 149,9 Ki 157,6 Ki

• IL language 36,0 Ki 10,3 Ki 25,2 Ki 56,0 Ki 117,5 Ki 157,6 Ki 157,6 Ki

• ST language 28,9 Ki 8,3 Ki 20,2 Ki 44,9 Ki 94,2 Ki 142,9 Ki 157,8 Ki

65% Boolean program

• LD language 23,2 Ki 6,6 Ki 16,4 Ki 36,6 Ki 77,0 Ki 117,4 Ki 157,8 Ki

• IL language 23,7 Ki 6,8 Ki 16,8 Ki 37,5 Ki 78,8 Ki 120,1 Ki 161,3 Ki

• ST language 27,4 Ki 7,8 Ki 19,4 Ki 43,3 Ki 91,1 Ki 138,8 Ki 171,3 Ki

Constants (1) 256 words 256 words 1024 words 1024 words 1024 words 1024 words 1024 words

Key

(1) Default size, can be extended at the expense of the application program size.

Ki Kinstructions

K Kwords
TLX DR PL7 40E 09/2000 71

User memory
Note:
l when this table mentions as a characteristic 2 values separated by a "/", they

are associated with each type of processor respectively (separated by a "/" in
the table heading).

l The PL7 AP/memory usage command is used to find out about the application
memory division in the PL7 memory.
72 TLX DR PL7 40E 09/2000

TLX DR PL7 40E 09/2000
4
Operating modes
Presentation

Subject of this
chapter

This chapter deals with the behavior of the user program on a warm restart and cold
start.

What’s in this
Chapter?

This Chapter contains the following Maps:

Topic Page

Dealing with power cuts and power restoration 74

Dealing with a warm restart 76

Dealing with a cold start 78
73

Operating modes
Dealing with power cuts and power restoration

Illustration The illustration shows the various power restarts detected by the system. If the du-
ration of the cut is less than the power supply filtering time (about 10 ms for an al-
ternating current supply or 1 ms for a direct current supply), this is not noticed by the
program which runs normally.

Power cut
detected

Application
RUN

Power failure

Restoration of power

Saving
Context OK

Memory card
 identical

Running the program
normally

Warm restart Start up from cold

Standby power

Yes

No Yes

Yes

No

No
74 TLX DR PL7 40E 09/2000

Operating modes
Operation The table below describes the processing phases for power cuts.

Supply failure on
a rack other than
rack 0

All the channels on this rack are seen as in error by the processor but the other racks
are not affected. The values of the error inputs are no longer updated in the appli-
cation memory and are set to 0 in the case of a discrete input module unless they
have been forced in which case they are kept at the forcing value.

If the cut lasts less than 10 ms for alternating current supplies or up to 1 ms for a
direct current supply, these are not noticed by the program which runs normally.

Phase Description

1 In the event of a power cut the system stores the application context and the
time of the cut.

2 It sets all outputs to fallback status (status defined in configuration).

3 When power is restored, the context saved is compared with the one in progress
which defines the type of start to run:
l if the application context has changed (loss of system context or new appli-

cation), the PL7 initializes the application: start up from cold,
l if the application context is the same, the PL7 restarts without initializing da-

ta: warm restart.
TLX DR PL7 40E 09/2000 75

Operating modes
Dealing with a warm restart

Cause of a warm
restart

A warm restart can occur:
l when power is restored without loss of context,
l when the system bit %S1 is set to 1 by the program,
l from the PL7 by the terminal,
l by pressing the RESET button on the supply module on rack 0 (except on a sta-

tion with a PCX 57 processor).

Illustration The drawing below describes a warm restart operation.

Power cut
detected

Acquisition of inputs

Si %S1=1, possible
process with warm

restart

Bit %S1 set to 0

Running the Zero marker
program.

Updating outputs

Stopping the
processor context
saving application

Restoration of power

Configuration self-test

Bit %S1 set to 1
76 TLX DR PL7 40E 09/2000

Operating modes
Operation The table below describes the restart phases for running a program after a warm
restart.

Warm restart
processes per
program

In the event of a warm restart, if you require a particular application process, you
have to write the corresponding program by testing %S1 at 1 at the beginning of the
master task program.

Developing
outputs

As soon as a power failure is detected the outputs are set to fallback position:
l either they take the fallback value,
l or they keep the current value,
 depending on the choice made at configuration.

When power is restored, outputs are at zero until they are updated again by the task.

Phase Description

1 The program starts up again from the element where the power cut took place,
without updating the outputs.

2 At the end of the restart cycle the system:
l initializes message and event files
l sends configuration parameters to all discrete and application specific in-

put/output modules,
l deactivates the fast task and event processes (until the end of the first mas-

ter task cycle).

3 The system carries out a restart cycle in which it:
l takes into account again all the input modules,
l relaunches the master task with the bits %S1 (warm restart) and %S13 (first

cycle in RUN) set to 1,
l resets bits %S1 and %S13 to 0 at the end of this first master task cycle,
l reactivates the fast task and event processes at the end of this first master

task cycle.
TLX DR PL7 40E 09/2000 77

Operating modes
Dealing with a cold start

Cause of a cold
start

The following table describes the different possible causes for a cold start.

Causes Characteristics of the start

Loading an application Cold start forced to STOP

Pressing the processor RESET button Cold start forced to STOP or RUN according
to the definition at configuration

Pressing the processor RESET button after
a blocking fault

Cold start forced to STOP

Manipulating the prehensile or inserting/ex-
tracting a PCMCIA memory card

Cold start forced to STOP or RUN according
to the definition at configuration

Initializing from a Junior or Pro PL7
Forcing the system bit %S0

Cold start forced to STOP or RUN according
to the definition at configuration, without initial-
izing the discrete and application specific in-
put/output modules.

Restart after a power failure with loss of con-
text

Cold start forced to STOP or RUN according
to the definition at configuration
78 TLX DR PL7 40E 09/2000

Operating modes
Illustration The drawing below describes a cold restart operation.

Micro power> cut

Acquisition of inputs

Si %S0=1, possible
process for cold start

up

Bit %S0 set to 0

Running the Zero marker
program.

Updating outputs

Stopping the
processor context
saving application

Restoration of power

Configuration self-test

Bit %S0 set to 1

Yes

No
BOT

Initializing the
application
TLX DR PL7 40E 09/2000 79

Operating modes
Operation The table below describes the restart phases for running a program after a cold re-
start.

Dealing with cold
start for each
program

To carry out an application process after the PL7 has started from cold, it is possible
to test the bit %SW10:X0 per program (if %SW10:X0=0, there is a cold restart).

Phase Description

1 Start up is in RUN or in STOP depending on the parameter Automatic
start up in RUN defined at configuration or if this is used according to the
status of the RUN/STOP input.
The program run restarts at the beginning of the cycle.

2 The system:
l resets bits, the I/O map and internal words to zero (if the %MW reset to zero

option on restart from cold is checked in the processor Configuration
screen).
If the %MW reset is not active and if internal words %MWi are saved in the
internal EPROM Flash memory (TSX 37), these are restored in the event of
a cold start.

l initializes system bits and words.
l initializes function blocks from configuration data.
l deactivates tasks, other than the master task, up till the end of the first mas-

ter task cycle.
l sets Grafcet to initial steps.
l cancels forcings.
l initializes data declared in the DFBs: either to 0 or to the initial value de-

clared in the code, i.e. with the saved value from the SAVE function
l initializes message and event files
l sends configuration parameters to all discrete and application specific in-

put/output modules,

3 For this first restart cycle the system:
l relaunches the master task with bits %S0 (warm restart) and %S13 (first cy-

cle in RUN) set to 1, the word %SW10 (detecting cold restart on the first rev-
olution of a task) is set to 0,

l resets bits %S0 and %S13 to 0 and resets to 1 each word bit %SW10 to the
end of this first master task cycle,

l activates the fast task and event processes at the end of this first master
task cycle.
80 TLX DR PL7 40E 09/2000

Operating modes
Developing
outputs

As soon as a power failure is detected the outputs are set to fallback position:
l either they take the fallback value,
l or they keep the current value,
 depending on the choice made at configuration.

When power is restored, outputs are at zero until they are updated again by the task.
TLX DR PL7 40E 09/2000 81

Operating modes
82 TLX DR PL7 40E 09/2000

TLX DR PL7 40E 09/2000
5
Software structure
Presentation

Subject of this
chapter

This chapter describes the tasks and how they run in the PL7.

What’s in this
Chapter?

This Chapter contains the following Sections:

Section Topic Page

5.1 Description of tasks 84

5.2 Mono task structure 93

5.3 Multi task structure 101

5.4 Function modules 108
83

Software structure
5.1 Description of tasks

Presentation

Introduction to
this section

This section describes the role and content of each of the tasks that can make up a
PL7 program.

What’s in this
Section?

This Section contains the following Maps:

Topic Page

Presenting the master task 85

Description of sections and subroutines 86

Presenting the fast task 90

Presenting event processing 91
84 TLX DR PL7 40E 09/2000

Software structure
Presenting the master task

General points The master task represents the main program. It is compulsory whatever the mono-
task or multitask structure adopted.

The master task program (MAST) is made up of several program modules called
sections (See Description of sections and subroutines, p. 86), and subroutines.

How the master task is run can be chosen (in configuration). It can be cyclical (See
Cyclic run, p. 95) or periodic (See Periodic run, p. 97).

Illustration The following illustration shows an example of a master task made up of 4 sections
and 3 subroutines.

Sas (LD)

Oven_1 (Grafcet)

PRL (LD)

CHART

POST (IL)

Drying (LD)

Cleaning (ST)

SR0

Sections

Subroutines
TLX DR PL7 40E 09/2000 85

Software structure
Description of sections and subroutines

Presenting the
sections

The sections are autonomous programming entities. Instruction line and contact net-
work location labels … belong to the section (no program jump possible to another
section).

They are programmed either in:
l ladder language,
l instruction list language,
l structured text language,
l Grafcet.

Sections are run in programming order tin the browser window (structure view).

Sections are linked to a task. One section cannot belong to several tasks at the
same time.

Presenting
subroutines

Subroutine modules are also programmed as separate entities either in:
l ladder language,
l instruction list language,
l structured text language,

Calling up subroutines is done in the sections or from another subroutine (a maxi-
mum of 8 overlay levels).

Subroutines are also linked to a task. One subroutine cannot be called up by several
tasks.
86 TLX DR PL7 40E 09/2000

Software structure
Example The following drawing gives an example of the structure of a task in sections and
subroutines.

Mast

Sections+

Oven_1+

Sas

Prl

Chart

Post

Drying

Cleaning

SR+

SR0

SR1

SR2
TLX DR PL7 40E 09/2000 87

Software structure
Characteristics
of a section

The following table describes the characteristics of a section.

Grafcet section The following table describes program elements for a Grafcet section.

Characteristic Description

Name 24 characters maximum

Language Ladder, instruction list , structured text or Grafcet language

Task Master or fast

Condition
(optional)

Objects allowed as a condition:
l %M,%S,%X
l indexed bits, bits extracted from words
l %I , %Q
All these objects can be forced from the terminal except for %S bits, in-
dexed bits, extracted bits, %Ixy.i.ERR,and %I xy.MOD.ERR.

The condition must be status 1 for the section to be run.

Comments 250 characters maximum.

Protection Write protection, read/write protection. Protection can be global or partial.

Note: on a cold start run conditions are at 0. All sections associated with a condi-
tion are disabled.

Processing Name Characteristics

Preliminary PRL Programmed in ladder language LD, instruction list lan-
guage IL or structured text language ST. It is run before
Grafcet.

Grafcet CHART Transition conditions associated with transitions and ac-
tions associated with steps or macro step steps are pro-
grammed in the Grafcet pages.

Subsequent POST Programmed in ladder language LD, instruction list lan-
guage IL or structured text language ST. It is run after
Grafcet.
88 TLX DR PL7 40E 09/2000

Software structure
Characteristics
of a subroutine

The following table describes the characteristics of an Sri subroutine.

Characteristic Description

Number 0 à 253

Language Ladder, instruction list , structured text

Task Master or fast

Comments 250 characters maximum.
TLX DR PL7 40E 09/2000 89

Software structure
Presenting the fast task

General points This task which has a higher priority than the master task MAST is periodic so that
tasks that have a lower priority have time to run.

Also, processes associated with it must therefore be short in order not to hinder the
master task. As with the master task, the associated program is made up of sections
and subroutines.

Fast task period The fast task period FAST is set at configuration from 1 - 255 ms. This may be de-
fined as greater than the master task MAST so that it can be adapted for slow but
priority periodic processes.

The program run, however, must remain short to avoid exceeding tasks with lower
priority.

The fast task is checked by a watch dog which is used to detect an abnormal period
in the application program. In the case of overflow, system bit %S11 is set at 1 and
the application is declared as having a PL7 blocking fault.

Fast task check The system word %SW1 contains the period value. It is initialized when starting
from cold by the value set in the configuration. It can be modified by the user by the
program or the terminal.

System bits and words, are used to check the running of this task:
l %S19: indicates that the period has been exceeded. It is set to 1 by the system

when the cycle time is greater that the task period.
l %S31: is used to confirm or disable the fast task. It is set to 0 by the system when

the application is on cold start, at the end of the first master task cycle. It is set to
1 or 0 to confirm or disable the fast task.

Displaying fast
task running time

The following system words are used for information on the cycle time:
l %SW33 contains the running time for the last cycle.
l %SW34 contains the running time for the longest cycle,
l %SW35 contains the running time for the shortest cycle.
90 TLX DR PL7 40E 09/2000

Software structure
Presenting event processing

General points Event processes are used to reduce the software reaction time for command events
coming from certain application specific modules.

These processes take priority over any other task. They are therefore suitable for pro-
cesses which require very short reaction times in relation to the arrival of the event.

The number of event processes that can be programmed depends on the type of
processor.

Operation The appearance of an event diverts the application program to the process that is
associated with the input/output channel which has caused the event.

Inputs (%I, %IW, %ID) associated with the I/O channel which triggered the event are
updated by the system before calling up the event process.

Association between a channel and an event number is made in the channel config-
uration screen.

Command
events

These are external events linked to application specific functions.

On Micro PL7s event processes can be triggered by:
l inputs 0 - 3 of position 1 module, on rising or falling edge,
l the counting module counting channel(s),
l module 1 counting channels (if this is configured in the counter),
l receiving telegrams in a TSX 37-21/22 equipped with a TSX FPP20 module.
On Premium PL7s event processes can be triggered by:
l inputs from modules DEY 16 FK, DMY 28 FK, DMY 28 RFK
l counting module channels,
l channels for axis command modules TSX CAY •,
l channels for step by step command modules TSX CFY •,
l "FPP20" communication channels.
l ...

PL7 type Number of
processes

Name

Micro TSX 37-05/08/10 8 EVT1 - EVT8

Micro TSX 37-21/22 16 EVT0 - EVT15

Premium TSX/PCX 57-1• 32 EVT0 - EVT31

Premium TSX/PCX 57-2•/3•/4• 64 EVT0 - EVT63
TLX DR PL7 40E 09/2000 91

Software structure
Managing event
processes

Event processes can be confirmed or disabled globally by the application program
using system bit %S38.
If one or more events occur while they are disabled, the associated processes are
lost.

Two PL7 language instructions, MASKEVT() and UNMASKEVT(), used in the appli-
cation program are also used to mask or unmask event processes.
If one or more events occur while they are masked, they are stored by the system
and the associated processes will only be carried out when they have been un-
masked.

Process priority Micro TSX 37-05/08/10 PL7s
The 8 possible command events all have the same priority level, therefore, one
event process cannot be interrupted by another.

Micro TSX 37-21/22 or Premium PL7s
There are 2 priority levels for command events: event 0 (EVT0) has a higher priority
than the other events
92 TLX DR PL7 40E 09/2000

Software structure
5.2 Mono task structure

Presentation

Introduction to
this section

This section describes how a mono task application runs.

What’s in this
Section?

This Section contains the following Maps:

Topic Page

Mono task software structure 94

Cyclic run 95

Periodic run 97

Checking cycle time 100
TLX DR PL7 40E 09/2000 93

Software structure
Mono task software structure

Description The mono task application program is associated with a single user task, the master
task MAST (see Presenting the master task, p. 85).

The program associated with the master task (MAST) is made up of several sections
and subroutines.

Running the master task can be selected (at configuration) as
l cyclic (See Cyclic run, p. 95)
l or periodic (See Periodic run, p. 97)
94 TLX DR PL7 40E 09/2000

Software structure
Cyclic run

Description This type of operation corresponds to a normal PL7 cycle run (default selection).
It consists of linking master task cycles (MAST) one after the other.
After updating the outputs, the system carries out the appropriate processes then
links another task cycle.

Operation The following drawing shows the running phases of the PL7 cycle.

Description of
the various
phases

The table below describes the operating phases.

Processing the
program

Processing the
program

I.P. %I %Q I.P. %I %Q

Cycle n Cycle n+1

Ad-
dress

Phase Description

I.P. Internal pro-
cessing

The system implicitly monitors the PL7 (managing system bits
and words, updating current timer values, updating status lights,
detecting RUN/STOP switches,…) and processes requests from
the terminal (modifications and animation).
In the case of the Premium PL7 internal processing is done in par-
allel with input and output processes.

%I Acquisition of
inputs

Writing to the memory the status of information on discrete and
application specific module inputs associated with the task,

- Program pro-
cessing

Running the application program written by the user,

%Q Updating out-
puts

Writing output bits or words associated with discrete and applica-
tion specific modules associated with the task according to the
status defined by the application program.
TLX DR PL7 40E 09/2000 95

Software structure
Operating mode PL7 in RUN, the processor carries out the internal processing order, acquiring in-
puts, processing the application program and updating outputs.
PL7 in STOP, the processor carries out:
l internal processing,
l acquisition of inputs,
l and depending on the selected configuration:

l fallback mode: outputs are set to "fallback",
l maintenance mode: outputs are maintained at their last value.

Illustration The following illustration shows the operating cycles.

Check cycle The check cycle is carried out by watch dog (See Checking cycle time, p. 100).

Internal processing

Acquisition of inputs

Updating outputs

Program processing

RUN STOP
96 TLX DR PL7 40E 09/2000

Software structure
Periodic run

Description In this operating mode, acquiring inputs, processing the application program and up-
dating outputs are done periodically according to the time defined at configuration
(from 1 - 255 ms).

At the beginning of the PL7 cycle, a timer, the value of which is initialized at the pe-
riod defined at configuration, starts to count down.
The PL7 cycle must end before the timer has finished and relaunches a new cycle.

Operation The following drawing shows the running phases of the PL7 cycle.

Description of
the various
phases

The table below describes the operating phases.

Processing the
program

I.P. %I %Q I.P. I.P. %I %Q

Cycle n Cycle n+1

Processing the
program

I.P.

Ad-
dress

Phase Description

I.P. Internal pro-
cessing

The system implicitly monitors the PL7 (managing system bits
and words, updating current timer values, updating status lights,
detecting RUN/STOP switches, …) and processes requests from
the terminal (modifications and animation)
In the case of the Premium PL7 internal processing is done in par-
allel with input and output processes.

%I Acquisition of
input

Writing to the memory the status of information on discrete and
application specific module inputs associated with the task,

- Program pro-
cessing

Running the application program written by the user,

%Q Updating out-
puts

Writing output bits or words associated with discrete and applica-
tion specific modules associated with the task according to the
status defined by the application program.
TLX DR PL7 40E 09/2000 97

Software structure
Operating mode PL7 in RUN, the processor carries out the internal processing order, acquiring in-
puts, processing the application program and updating outputs.
l If the period has not yet finished, the processor completes it operating cycle until

the end of the internal processing period.
l If the operating time is longer than that allocated to the period, the PL7 indicates

that the period has been exceeded by setting the task system bit %S19 to 1. The
process continues and is run completely (however, it must not exceed the watch
dog time limit). The following cycle is linked in after writing the outputs of the cycle
in progress implicitly.

PL7 in STOP, the processor carries out:
l internal processing,
l acquisition of inputs,
l and depending on the selected configuration:

l fallback mode: outputs are set to "fallback",
l maintenance mode: outputs are maintained at their last value.
98 TLX DR PL7 40E 09/2000

Software structure
Illustration The following illustration shows the operating cycles.

Check cycle Two checks are carried out :
l period overflow (See Checking cycle time, p. 100),
l par watch dog (See Checking cycle time, p. 100),

Internal processing

Acquisition of inputs

Updating outputs

Program processing

RUN STOP

Internal processing

Starting the
period

End of period
TLX DR PL7 40E 09/2000 99

Software structure
Checking cycle time

General points The duration of the master task operation when running cyclically or periodically, is
controlled by the PL7 (watch dog) and must not exceed the value set out in the T
max configuration (250ms default, 500ms maximum).

Software watch
dog (periodic or
cyclic operation)

If this is exceeded, an error is declared in the application which causes the PL7 to
stop immediately:
l on the Micro setting the %Q2.0 alarm output to 0 if it has been configured,
l on the Premium, setting the power supply alarm relay to 0

The bit %S11 is used to check the running of this task. It indicates that the watch
dog has been exceeded. It is set to 1 by the system when the cycle time is greater
than the watch dog.

Check on
periodic
operation

In periodic operation an additional check is used to detect the period being exceed-
ed:
l %S19: indicates that the period has been exceeded. It is set to 1 by the system

when the cycle time is greater that the task period.
l %SW0 : this word contains the period value (in ms). It is initialized when starting

from cold by the value set in the configuration. It can be modified by the user.

Using master
task running time

The following system words are used for information on the cycle time:
l %SW30 contains the running time for the last cycle.
l %SW31 contains the running time for the longest cycle,
l %SW32 contains the running time for the shortest cycle.

Note: On the Premium the watch dog value must be greater than the period.

Note: This different information can also be accessed from the configuration editor
explicitly.
100 TLX DR PL7 40E 09/2000

Software structure
5.3 Multi task structure

Presentation

Introduction to
this section

This section describes how a multi task application runs.

What’s in this
Section?

This Section contains the following Maps:

Topic Page

Multitask software structure 102

Sequencing tasks in a multitask structure 104

Assigning input/output channels to master and fast tasks 105

Exchanging inputs/outputs in event processes 106
TLX DR PL7 40E 09/2000 101

Software structure
Multitask software structure

Description Task structure for such an application is as follows:

Illustration The following drawing shows multitask structure tasks and their priority level.

Task Name Description

Master MAST Always present which can be cyclic or periodic.

Fast FAST Optional which is always periodic.

Event EVTi Called up by the system when an event appears on an in-
put/output data module.
These processes are optional and are used for applica-
tions which need short response times to act on inputs/
outputs.

Master task Fast task Event processes

- +Priority
102 TLX DR PL7 40E 09/2000

Software structure
Example The following example shows a multitask structure made up of a master task MAST,
a fast task FAST and 2 event processes EVTO and EVTI.

Sas (LD)

Oven_1 (Grafcet)

PRL (LD)

CHART

POST (IL)

Drying (LD)

Cleaning (ST)

SR0

Alarm_Sas (LD)

Monitor_drying (LD)

Alarm_Oven (ST)

Alarm_Cleaning (ST)

SR0

EVT0

FASTMAST
TLX DR PL7 40E 09/2000 103

Software structure
Sequencing tasks in a multitask structure

General points The master task default is active.
The fast task default is active if it is programmed.
The event process is activated when the event associated with it occurs.

Operation The following table describes running priority tasks.

Description of
sequencing
tasks

The following drawing illustrates task sequencing for a multitask process including
a cyclical master task, a fast 20ms task and an event process.

Key:
I: Acquisition of inputs
P: program processing
O: updating outputs

Checking tasks Running fast and event tasks can be checked by the program by using system bits:
l %S30 is used to activate or not the master task MAST.
l %S31 is used to activate or not the fast task FAST.
l %S38 is used to activate or not event tasks EVTi.

Phase Description

1 Arrival of an event or beginning of the fast task cycle.

2 Stopping the running of tasks in progress that have a lower priority,

3 Running the priority task.

4 The interrupted task takes over again when the priority task processes have fin-
ished.

ETS

ET TS

ETS

ET

ETS

ETS

E TS

E TS

T

ETS

20ms 20ms

Event

Fast

Master

System
20ms 20ms
104 TLX DR PL7 40E 09/2000

Software structure
Assigning input/output channels to master and fast tasks

General points As well as the application program master MAST and fast FAST tasks run system
functions linked to managing implicit inputs/outputs associated with them.

Associating a channel or group of channels to a task is defined in the configuration
screen of the corresponding data module, the associated default task being the
MAST task.

Discrete
modules

As the modularity of discrete modules is 8 successive channels (channels 0 - 7,
channels 8 - 15,…), inputs/outputs can be assigned by groups of 8 channels either
to the MAST task or the FAST task.

Example: it is possible to assign channels of a 28 input/output module in the follow-
ing way:
l inputs 0 - 7 assigned to the MAST task,
l inputs 8 -15 assigned to the FAST task,
l outputs 0 - 7 assigned to the MAST task,
l outputs 8 - 15 assigned to the FAST task.

Counting
modules

Each counting module channel can be assigned either to the MAST task or the
FAST task.

Example: for a 2 channel counting module it is possible to assign :
l channel 0 to the MAST task
l channel 1 to the FAST task

Analogue
modules

Micro analogue input module channels must be assigned to the MAST task. On the
other hand it is possible to assign analogue output channels or groups of channels
either to the MAST task or the FAST task with a 2 channel modularity.
Example: for a 4 analogue output module it is possible to assign:
l channels 0 and 1 to the MAST task and,
l channels 2 and 3 to the FAST task.

The Premium analogue input and output module channels can be assigned to the
MAST task or the FAST task. This assigning is individual for each of the isolated an-
alogue input or output module channels (4 isolated channels) and with a modularity
of 4 channels for the other modules.

Note: In order to achieve the best performance, it is preferable to regroup the chan-
nels of a module into the same task.
TLX DR PL7 40E 09/2000 105

Software structure
Exchanging inputs/outputs in event processes

General points It is possible to use input/output channels other than those relating to the event for
each process.

Exchanges are then made implicitly by the system before (%I) and after (%Q) in the
process to be applied.

These exchanges can be related to a channel (e.g. counting module) or to a group
of channels (discrete module). In the second case, if, for example, the process mod-
ifies outputs 2 and 3 of a discrete module, the map of outputs 0 - 7 will be transferred
to the module.

Operation The following table describes the exchanges and processes carried out.

Programming
rules

General rule:
The inputs exchanged (and the associated group of channels) when the event pro-
cess is carried out are updated again (loss of historic values and therefore edges).
You must therefore avoid testing edges on these inputs in master tasks (MAST) or
fast tasks (FAST).

In the case of modules TOR TSX DEY16FK, TSX DMY28FK or TSX DMY28RFK:
The input which triggered the event must not be tested in the event process (the val-
ue is not updated).
Testing the edge which triggered the event must be done on the status word:
l %IWxy.i:X0 = 1 --> rising edge
l %IWxy.i:X0 = 1 --> rising edge

Phase Description

1 The appearance of an event diverts the application program to the process that is
associated with the input/output channel which has caused the event.

2 All the inputs associated with the channel that has caused the event are acquired
automatically.

3 All the inputs used by the user in the EVTi process are acquired.

4 The event process is carried out. It must be as short as possible.

5 All the outputs used by the user in the EVTi process are updated. The outputs as-
sociated with the channel that caused the event must also be used, so that they
are updated.
106 TLX DR PL7 40E 09/2000

Software structure
On Micro PL7s:
l analogue input modules which can only be used in the MAST task must not be

exchanged in an event process.
l for each event process, it is possible to declare at the most the exchanges for 2

input modules (before the event process) and 2 output modules (after the event
process).

Performance On Premium PL7s, according to the processor used, the number of exchanges used
is limited:

For discrete inputs/outputs an exchange involves a group of 8 channels. It is gen-
erated when using inputs from a group of 8 channels (other than the group of chan-
nels that generated the event) and when writing the output for a group of 8 channels.

For analogue inputs/outputs or another application specific, an exchange is gener-
ated when using the inputs from one channel (other than the channel which gener-
ated the event and when writing from channel outputs).

Displaying the
number of events
processed

The system word %SW48 gives the number of events processed.
This word is initialized at 0 on starting from cold, then incremented by the system
when an event is launched.
This word can be modified by the user.

The system bit %S39 indicates the loss of an event.

Number of exchanges that can be used in
event processes by processor

P57-1• P57-2• /3• /4•

Discrete inputs/outputs 32 exchanges 128 exchanges

Analogue inputs/outputs 8 exchanges 16 exchanges

Other application specific 4 exchanges 16 exchanges

Note:
l As input/output exchanges in the EVTi task are done by channel (for some an-

alogue and application specific modules) or by group of channels (for discrete
modules and some analogue modules), if the process modifies outputs 2 and 3
of a discrete module for example, the map (automatic memory) of outputs 0 - 7
will be transferred to the module.

l Any exchange of an input/output in an event task can cause the loss of edge
information with regard to the process carried out on this channel (or group of
channels), in the task where it was declared. MAST or FAST
TLX DR PL7 40E 09/2000 107

Software structure
5.4 Function modules

Structuring in function modules

General points A function module is a regrouping of program elements to carry out an automatic
system function.

Structure A function module is defined by the following attributes:
l short name: 8 characters (e.g.: TR371)
l long name: 16 characters (e.g.: Continue/Withdraw for BT371)
l a descriptive form (with no limit to the number of characters) not stored in the PL7

but stored in the .STX file of the application.

Illustration The illustration below shows how a function module is made up:

Description of
function module
elements

The table describes the role of each of the elements:

-

+

Prod1

Program

+ Animation tables

+ Mdm1

Element Composition

Program One or more code modules:
l sections
l events
l macro steps
l animation tables
l ...

Animation ta-
bles

One or more animation tables.

Mdm1 Lower level function modules. These modules take on one or more automat-
ic system sub functions in relation to the main function.
108 TLX DR PL7 40E 09/2000

Software structure
Limitations of
use

Only the PRO PL7 can be used to set up function modules on Premium PL7s.
TLX DR PL7 40E 09/2000 109

Software structure
110 TLX DR PL7 40E 09/2000

TLX DR PL7 40E 09/2000
II
Description of PL7 languages
Presentation

What’s in this
spacer

This spacer describes the programming languages for Micro and Premium PL7s.

What’s in this
part?

This Part contains the following Chapters:

Chapter Chaptername Page

6 Contact language 113

7 Instruction list language 127

8 Structured text language 143

9 Grafcet 167

10 DFB function blocks 213
111

PL7 languages
112 TLX DR PL7 40E 09/2000

TLX DR PL7 40E 09/2000
6
Contact language
Presentation

Subject of this
chapter

This chapter describes programming in contact language.

What’s in this
Chapter?

This Chapter contains the following Maps:

Topic Page

General presentation of contact language 114

Structure of a contact network 115

Contact network label 116

Contact network comments 117

Contact language graphic elements 118

Rules for programming a contact network 121

Rules for programming function blocks 122

Rules for programming operation blocks 123

Running a contact network 124
113

Contact language
General presentation of contact language

General points A section of program written in contact language is made up of a suite of network
contacts run one after the other by the PL7.

A contact network diagram is similar to an electrical circuit diagram.

Illustration of a
contact network

The following screen shows a PL7 contact network.

Composition of a
contact network

This table describes how a contact network is made up.

LD : MAST - CHART

S.F3 S.F4 S.F5 S.F6 S.F7 S.F8S.F2S.F1F12F11 F9 F10 F8 F7 F6 F4 F3 F2
P X O R OPER COHP COHP

H V FB F (...)
 F5

N

(*Awaiting drying*)%L100

%I1.0 %M12 %I1.7

%MT4.Q %M17

%I1.10 %Q2.3 %M27 %MT0 %M2 %MW0.X

%M2 %I1.4
C

%MW15:=%MW18+500 IN MT Q
 SOUND MODE
 TB: 1 mn
 TMP: 9999
 MODIF: Y

OPERATE

%Q2.5

SR2

1 2 3

Address Element Function

1 Label Contact network address (optional):

2 Comments Gives information on a network address (optional):

3 Graphic ele-
ments

They represent:
l the PL7 inputs and outputs (push buttons, detectors, relays,

indicators..)
l automatic system functions (timers, counters…,),
l arithmetic, logic and specific operations,
l the PL7 internal variables.
114 TLX DR PL7 40E 09/2000

Contact language
Structure of a contact network

Introduction A network is entered between two potential bars. The current goes from the left po-
tential bar to the right potential bar.

Illustration The drawing below describes the structure of a contact network.

Description of a
contact network

A contact network is made up of a group of graphic elements placed on a grid of:
l 16 lines maximum and 11 columns (for Premium PL7s),
l 7 lines maximum and 11 columns (for Micro PL7s),
It is divided into two areas:
l the test area, in which the necessary conditions for an action appear
l the action area which applies the consequent result to a test link.

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

Potential bar

Test zone

Action zone
TLX DR PL7 40E 09/2000 115

Contact language
Contact network label

General points The label is used to locate a network in a program entity (main program, sub-pro-
gram,…). It is optional.

Syntax This label has the following syntax: %Li with i between 0 - 999.
It is in the top left section in front of the potential bar.

Illustration The following contact networks illustrate how a label is used.

Rules A label address can only be allocated to a single network within the same program
entity.

It is necessary to label a network in order to allow a connection after a program jump
(see illustration below).

The order of label addresses does not matter, (it is the order of entering the networks
that is taken into account by the system when scanning).

Label

%M20 %L245

%Q2.3

%L245

O

%M155
116 TLX DR PL7 40E 09/2000

Contact language
Contact network comments

General points The comments are used to interpret the network to which they are assigned, but they
are not obligatory.

Syntax The comments are integrated into the network and are made up of a maximum of
222 alphanumeric characters, on either side of which are the characters (* and *).

Illustration The drawing below shows the position of the comments.

Rules The comments are displayed in the reserved field in the upper part of the contact
network.

If a network is deleted, the comments with it are also deleted.

The comments are stored in the PL7 and can be accessed by the user at any time.
In this case they take up program memory.

Comments field
TLX DR PL7 40E 09/2000 117

Contact language
Contact language graphic elements

General points Graphic elements are the contact language instructions.

Contacts The contacts graphic elements are programmed in the test area and take up one cell
(1 line high and 1 column wide).

Link elements The graphic link elements are used to connect the test and action graphic elements.

Name Computer art Functions

Normally open
contact

Passing contact when the bit object which controls it is at
state 1.

Normally
closed contact

Passing contact when the bit object which controls it is at
state 0.

Contact for de-
tecting a rising
edge

Rising edge: detecting the change from 0 to 1 of a bit object
which controls it.

Contact for de-
tecting a fall-
ing edge

Falling edge: detecting the change from 1 to 0 of a bit ob-
ject which controls it.

P

N

Name Computer art Functions

Horizontal
connection

is used to link in series the test and action graphic ele-
ments between the two potential bars.

Potential verti-
cal connection

is used to link the test and action graphic elements in par-
allel.

Short circuit by
pass

is used to link 2 objects through several connections.
118 TLX DR PL7 40E 09/2000

Contact language
Coils The coil graphic elements are programmed in the test area and take up one cell (1
line high and 1 column wide).

Name Computer art Functions

Direct coil The associated bit object takes the value of the test field
result.

Negated coil The associated bit object takes the negated value of the
test field result.

Set coil The associated bit object is set to 1 when the result of the
test field is 1.

Reset coil The associated bit object is set to 0 when the result of the
test field is 1.

Conditional
jump to anoth-
er network
(JUMP)

is used to connect to a labeled network, upstream or down-
stream.
Jumps are only made within the same programming entity
(main program, sub-program,…). Making a jump causes:
l scanning of a network in progress to stop,
l running of the required labeled network,
l the part of the program between the jump action and

the designated network not to be scanned.

Transition
condition coil

provided in Grafcet language, used when the program-
ming of the transition conditions associated with the transi-
tions causes a changeover to the next step.

Coil calling up
a sub-program
(CALL)

is used to connect at the start of a sub-program when the
result of the sub-program test field is at 1.
Calling up a sub-program means that:
l scanning of the network in progress stops,
l the sub-program runs,
l the scanning of the network that was interrupted re-

sumes.

Return of the
sub-program

Reserved for SR sub-program and allows the calling mod-
ule to return when the result of the test field is at 1.

Stop program stops the program running when the result of the test field
is at 1.

S

R

->>%Li

#

C

<RETURN>

<HALT>
TLX DR PL7 40E 09/2000 119

Contact language
Standard
function blocks

The graphic elements of DFB function blocks are programmed in the test field and
take up a maximum of 16 lines in height and 3 columns wide.

DFB function
blocks

The graphic elements of DFB function blocks are programmed in the test field and
take up a maximum of 16 lines in height and 3 columns wide.

Operation blocks Operation block graphic elements are programmed in the test field and take up the
space mentioned below.

Name Computer art Functions

Timer blocks,
counter, monostable,
register, cyclical pro-
grammer

Each of the standard function blocks uses inputs,
outputs, inputs/outputs which enable links to the
other graphic elements.

Name Computer art Functions

Programmable
blocks

Each of the DFB function blocks uses inputs, out-
puts, inputs/outputs which enable links to other
graphic elements for bit objects or which can be as-
signed to numeric or table objects

Name Computer art Functions

Vertical comparison
block

is used to compare 2 operands, according to the re-
sult the corresponding output changes to 1.
Size: 2 columns/ 4 lines

Horizontal compari-
son block

is used to compare 2 operands, the output changes
to 1 when the result is checked (one block can con-
tain up to 4096 characters).
Size: 2 columns/ 1 line

Operation block carries out the arithmetic and logic opera-
tions…calls up the structured text language syntax.
(One block can contain up to 4096 characters).
Size: 4 columns/ 1 line
120 TLX DR PL7 40E 09/2000

Contact language
Rules for programming a contact network

General points Programming a network contact is done using graphic elements, observing the fol-
lowing programming rules.

Programming
rules

Single test and action graphic elements each take up one cell within a network.

Each contact line begins on the left potential line and must finish on the right poten-
tial line.

Tests are always in columns 1 - 10.
Actions are always in column 11.

The direction of the current is as follows:
l for horizontal links from left to right,
l for vertical links, in both directions.

Example of a
contact network

The following screen shows an example of a contact network.
TLX DR PL7 40E 09/2000 121

Contact language
Rules for programming function blocks

General points Standard function blocks are found in the test field of the contact networks.

Rules for
programming
function blocks

Whatever type of function block used, it must be linked at the input to the left poten-
tial bar, directly or through other graphic elements.
l outputs "in the air": it is not necessary to link function block outputs to other

graphic elements,
l outputs that can be tested: function block outputs can be accessed by the user

in the form of a bit object.
Internal block variables and graphic outputs are objects that can be used remotely
from another part of the program.

Non hardwired standard function block inputs are set to 0.

Just as with the contact type graphic elements, it is possible to have combinations
of function blocks.

Example of a
contact network

The following illustration shows an example of a contact network containing 2 func-
tion blocks.
122 TLX DR PL7 40E 09/2000

Contact language
Rules for programming operation blocks

General points Comparison blocks are in the test field and operation blocks are in the action field.

Rules for
programming
operation blocks

Whatever type of operation block used, it must be linked at the input to the left po-
tential bar, directly or through other graphic elements.

Just as with the contact type graphic elements, it is possible to have combinations
of function and operation blocks.

Example of
operation blocks

The following illustration shows an example of a contact network containing 2 com-
parison blocks and one operation block.

%MT10%I3.6 %Q6.3

IN Q

TYP:TP
TB:100ms
TM.P:200
MODIF:Y

%I1.2

%MW1>100

%MW2>500 %TM2.P:=3450
TLX DR PL7 40E 09/2000 123

Contact language
Running a contact network

Rung A rung contains graphic elements which are all linked to each other by link elements
(except potential bar), but independent of the other network graphic elements (no
vertical links to the top or bottom within the rung).

Illustration of
rungs

The following contact network is made up of 3 rungs.

Rules for running
rungs

The first rung evaluated is the one with the left corner in the top left.

A rung is evaluated in the direction of the equation: evaluating the network from top
to bottom, line by line and each line from left to right.

When a vertical convergence line is encountered, the sub network associated with
it is evaluated (according to the same logic) before continuing evaluating the net-
work surrounding it.

Rung 1Rung 2

Rung 3
124 TLX DR PL7 40E 09/2000

Contact language
Running
elements in a
rung

 The following table describes the running order for elements in a rung.

Example 1:
illustration

The following drawing displays the running order for graphic elements.

Example 1:
operation

 The following table describes the running of graphic elements in the network illus-
trated above.

Phase Description

1 The system evaluates the logic state of each contact according to:
l the current value of application internal objects,
l the state of input/output module entries from the beginning of the cycle

2 The system runs the processes associated with the functions, block functions
and sub programs,

3 The system updates the bit objects associated with the coils (updating the in-
put/output module outputs is done at the end of the cycle),

4 The system disconnects and goes to another labeled network on the same pro-
gram module (jump to another %Li ->>network), goes back to a calling module
<RETURN>, or program stop<HALT>,

Phase Description

1 Evaluating the network up to the first vertical convergence link: contacts A, B,
C.

2 Evaluating the first sub network: contact D,

3 Continuing the evaluation of the network up to the second vertical convergence
line: contact E,

4 Evaluating the 2nd sub network: contacts F and G,

5 Evaluating coil H.
TLX DR PL7 40E 09/2000 125

Contact language
Example 2:
illustration

The following drawing displays the running order for graphic elements.

Example 2:
operation

 The following table describes the running of graphic elements in the network illus-
trated above.

Phase Description

1 coil 1: INIT, %M5, %M7, %Q2.1,

2 coil 2: %M4, %MW2:X1,AUTO, UP_1,

3 Operation block
126 TLX DR PL7 40E 09/2000

TLX DR PL7 40E 09/2000
7
Instruction list language
Presentation

Subject of this
chapter

This chapter describes the rules for programming in instruction list language.

What’s in this
Chapter?

This Chapter contains the following Maps:

Topic Page

General presentation of instruction list language 128

Structure for an instruction list program 129

Label for a sequence in instruction list language 130

Comments on a sequence in instruction list language 131

Presenting instructions in instruction list language 132

Rule for using parentheses in instruction list language 135

Description of the MPS, MRD and MPP instructions 137

Principles of programming pre-defined function blocks 139

Rules for running an instruction list program 141
127

Instruction list language
General presentation of instruction list language

General points A section written in instruction list language is made up of a suite of instructions run
in sequence by the PL7.

Illustration of a
program

The following illustration shows a PL7 instruction list program and an instruction de-
tail.

Composing an
instruction

This tables describes what an instruction is made up of.

!%L0:
LD %I1.0
ANDN %M12
OR(%TM4.Q
AND %M17
)
AND %I3.7
ST %Q2.5

!%L2:
LD %I3.5

LD %I1.0

Code
instruction

Operand

Element Function

Instruction code The instruction code determines the operation to be run. There are 2
types of instruction code:
l test, in which the necessary conditions for an action appear (e.g.: LD,

AND, OR...),
l action, which applies the consequent result to a test link. (e.g.: ST,

STN, R, ...).

Opérand An instruction acts on an operand. This operand can be:
l a PL7 input/output (push buttons, detectors, relays, indicators...),
l automatic system functions (timers, counters…),
l an arithmetic logic operation or a transfer operation,
l a PL7 internal variable.
128 TLX DR PL7 40E 09/2000

Instruction list language
Structure for an instruction list program

General points Just as with contact language, instructions are organized in instruction sequence
(equivalent to a contact network) called a sequence.

Example of a
sequence

The following illustration shows a PL7 instruction list sequence.

Description of a
sequence

Each sequence begins with an exclamation mark (generated automatically). It in-
cludes the following elements.

!(*Awaiting drying*)
%L2:

LD %I1.0
AND %M10
ST %Q2.5

1
2

3

Address Element Function

1 Comments Enter a sequence (optional).

2 Label Locate a sequence (optional).

3 Instructions One or more test instructions, the result of these instructions be-
ing applied to one or more action instructions.
One instruction takes up a maximum of one line
TLX DR PL7 40E 09/2000 129

Instruction list language
Label for a sequence in instruction list language

General points The label is used to locate a sequence in a program entity (main program, sub-pro-
gram,…). It is optional

Syntax This label has the following syntax: %Li with i between 0 and 999. It is at the begin-
ning of a sequence.

Illustration The following program shows how the label is used.

Rules The same label can only be allocated to a single sequence within the same program
entity.

It is necessary to label a sequence so that connection can be made after a program
jump.

The order of label addresses does not matter, (it is the order of entering the se-
quences that is taken into account by the system when scanning).

Label

%L0:
LD %M40
JMPC %L10

!(*Awaiting drying*)
%L2:

LD %I1.0
AND %M10
ST %Q2.5

...
%L10:

LD%I3.5
ANDN %Q4.3
OR %M20
ST %Q2.5
130 TLX DR PL7 40E 09/2000

Instruction list language
Comments on a sequence in instruction list language

General points The comments make interpreting a sequence to which they are assigned easier.
They are optional.

Syntax The comments can be integrated at the beginning of a sequence and can take up
up to 3 lines (i.e. 222 alphanumeric characters), on either side of which are the char-
acters (* and *).

Illustration The following illustration locates the position of the comments in a sequence.

Rules The comments are only displayed from the first line of the sequence.

If a sequence is deleted, the comments with it are also deleted.

The comments are stored in the PL7 and can be accessed by the user at any time.
In this case they take up program memory.

!(*Awaiting drying*)
%L2:

LD %I1.0
AND %M10
ST %Q2.5

Comments
TLX DR PL7 40E 09/2000 131

Instruction list language
Presenting instructions in instruction list language

General points The instruction list language is made up of the following :
l test instructions
l action instructions
l on a function block
l numerical

Test instructions The following table describes test instructions in instruction list language.

Name Equivalent
computer art

Functions

LD The Boolean result is the same as the status of the oper-
and.

LDN The Boolean result is the same as the reverse status of the
operand.

LDR The Boolean result changes to 1 on detection of the oper-
and (rising edge) changing from 0 to 1.

LDF The Boolean result changes to 1 on detection of the oper-
and (falling edge) changing from 1 to 0.

AND The Boolean result is equal to the And logic between the
Boolean result of the previous instruction and the status of
the operand.

ANDN The Boolean result is equal to the And logic between the
Boolean result of the previous instruction and the reverse
status of the operand.

ANDR The Boolean result is equal to the And logic between the
Boolean result of the previous instruction and the detection
of the operand’s rising edge (1 = rising edge).

ANDF The Boolean result is equal to the And logic between the
Boolean result of the previous instruction and the detection
of the operand’s falling edge (1 = falling edge).

OR The Boolean result is equal to the Or logic between the
Boolean result of the previous instruction and the status of
the operand.

ORN The Boolean result is equal to the Or logic between the
Boolean result of the previous instruction and the reverse
status of the operand.

P

N

P

N

132 TLX DR PL7 40E 09/2000

Instruction list language
Action
instructions

The following table describes test instructions in instruction list language.

ORR The Boolean result is equal to the Or logic between the
Boolean result of the previous instruction and the detection
of the operand’s rising edge (1 = rising edge).

ORF The Boolean result is equal to the Or logic between the
Boolean result of the previous instruction and the status of
the operand and the detection of the operand’s falling edge
(1 = falling edge).

AND(Logic And (8 parenthesis levels)

OR(Logic Or (8 parenthesis levels)

XOR, XORN,
XORR, XORF

- Exclusive Or

MPS
MRD
MPP

 Switching to the coils.

N - Negation

Name Equivalent
computer art

Functions

P

N

Name Computer art Functions

ST The associated operand takes the value of the test field re-
sult.

STN The associated operand takes the reverse value of the test
field result.

S The associated operand is set to 1 when the result of the
test field is 1.

R The associated operand is set to 0 when the result of the
test field is 1.

JMP - is used to connect unconditionally to a labeled sequence,
upstream or downstream.

S

R

TLX DR PL7 40E 09/2000 133

Instruction list language
Instruction on a
function block

The following table describes test instructions in instruction list language.

Numeric
instructions

The following table describes test instructions in instruction list language.

JMPC - is used for a conditioned connection to a Boolean result at
1, to a labeled sequence upstream or downstream.

JMPCN - is used for a conditioned connection to a Boolean result at
0, to a labeled sequence upstream or downstream.

SRn - Connection at the beginning of a sub program.

RET - Return of the sub-program

RETC - Return of the conditioned sub program to a Boolean result
at 1.

RETCN - Return of the conditioned sub program to a Boolean result
at 0.

END - End of program.

ENDC - End of the conditioned program at a Boolean result of 1.

ENDCN - End of the conditioned program at a Boolean result of 0.

Name Computer art Functions

Name Computer art Functions

Timer blocks,
counter, monostable,
register, cyclical pro-
grammer

For each of the standard function blocks, there are
instructions for controlling the block.
A structured form is used to hardwire the block in-
puts and outputs directly.

Name Instructions Functions

Test element LD[.....]
AND[.....]
OR[.....]

is used to compare 2 operands. The output goes to
1 when the result is checked.
Example : LD[%MW10<1000]
Result to 1 when %MW10<1000.

Action element [.....] carry out arithmetic logic operations…
use the structured text language syntax.
Example : [%MW10:=%MW0+100]
The result of the %MW0+100 operation is placed in
the internal word %MW10.
134 TLX DR PL7 40E 09/2000

Instruction list language
Rule for using parentheses in instruction list language

General points The instructions AND and OR can use parentheses.
These parentheses are used to make up simple contact diagrams.

Principle Opening parentheses is associated with the instruction AND or OR.
Closing parentheses is an instruction. It must be done for each open parenthesis.

Example: AND(The 2 following programs show how parentheses are used.

Example: OR(The following program shows how the parenthesis is used.

Associating
parentheses to
modifiers

The following "modifiers" can be associated with parentheses.

LD %I1.0
AND %I1.1
OR %I1.2
ST %Q2.0

LD %I1.0
AND(%I1.1
OR %I1.2
)
ST %Q2.0

LD %I1.0
AND %I1.1
OR(N %I1.2
AND %I1.3
)
ST %Q2.0

Code Role Example

N Negation AND(N

F Falling edge AND(F

R Rising edge OR(R

[Comparison OR([%MW0>100]
TLX DR PL7 40E 09/2000 135

Instruction list language
Overlapping of
parentheses

It is possible to overlap up to 8 parenthesis levels.
The following rules must be observed:
l Each open parenthesis must be closed
l The labels %Li: must not be put in expressions in parentheses, or the jump in-

structions JMP and calling up sub program instructions SRi,
l Assigning instructions ST, STN, S and R must not be programmed in parentheses.
Example:
The following programs show how to use overlapping of parentheses.

LD %I1.0
AND(%I1.1
OR(N %I1.2
AND %M3
)
)
ST %Q2.0

LD %I1.1
AND(%I1.2
AND %I1.3
OR(N %I1.5
AND %I1.6
)
AND %I1.4
OR(N %I1.7
AND %I1.8
)
)
ST %Q2.0
136 TLX DR PL7 40E 09/2000

Instruction list language
Description of the MPS, MRD and MPP instructions

General points The 3 instruction types are used to switch to the coils.

These instructions use an intermediate memory called a stack which can store up to
3 Boolean instructions…

Role The following table describes the role of each of the instructions

Example 1 This example shows how to use the MPS, MRD and MPP instructions.

Note: These instructions cannot be used in an expression in parentheses

Instruction Role

MPS (Memory PuSh) This instruction stores the results of the last test instruction at
the top of the stack and moves the other values to the bottom
of the stack.

MRD (Memory ReaD) This instruction reads the top of the stack.

MPP (Memory PoP) This instruction reads, draws down the top of the stack and
moves the other values towards the top of the stack.

LD %I1.0
AND %M0
MPS
AND %I1.1
ST %Q2.0
MRD
AND %I1.2
ST %Q2.1
MRD
AND %I1.3
ST %Q2.2
MPP
AND %I1.4
ST %Q2.3
TLX DR PL7 40E 09/2000 137

Instruction list language
Example 2 This example shows how the MPS, MRD and MPP instructions operate.

LD %I1.0
MPS
AND %I1.1
MPS
AND(%I1.3
OR %M0
)
ST %Q2.0
MPP
AND %M1
ST %Q2.1
MRD
AND %I1.4
ST %Q2.2
MPP
AND %M10
ST %Q2.3
138 TLX DR PL7 40E 09/2000

Instruction list language
Principles of programming pre-defined function blocks

General points Automatic system function blocks can be programmed in 2 different ways:
l with specific instructions for each function block (e.g.: CU %Ci), this method is

the simplest and the most direct,
l with block structuring instructions BLK ,OUT_BLK, END_BLK.

Principle of
direct
programming

The instructions control the block inputs (e.g.: CU). The outputs can be accessed in
bit form (e.g.: %C8.D).

Example:
This example shows direct programming of a counter function block.

Principle of
structured
programming

This type of programming uses a set of instructions with instructions round them:
l BLK indicates the beginning of the block
l OUT_BLK is used to hardwire the block outputs directly
l END_BLK indicates the end of the block

Example:
This example shows structured programming of a counter function block.

Traitement
des entrées

Traitement
des sorties

BLK %C8
LD %I1.1
R
LDN %I1.2
ANDN %M0
CU
OUT_BLK
LD D
ST %Q2.0
END_BLK

Traitement
des entrées

Traitement
des sorties
TLX DR PL7 40E 09/2000 139

Instruction list language
Note: This principle of structured programming which needs the additional instruc-
tions BLK, OUT_BLK and END_BLK requires a greater amount of memory than di-
rect programming. It must, however, be used if you want to keep the similarity
between reversible programs for nano TSX 07 PL7s.
140 TLX DR PL7 40E 09/2000

Instruction list language
Rules for running an instruction list program

Principle Running an instruction list program is done sequentially instruction by instruction.

The first instruction for an instruction sequence must always be an LD instruction,
i.e. an unconditional instruction (e.g.: JMP).

Each instruction (except for LD and unconditional instructions) uses the Boolean re-
sult of the previous instruction.

Example 1 The program below describes the complete run of a sequence.

Example 2 The parentheses are used to modify the order that the Boolean results are taken into
account:

Example 3 Sequencing instructions can be modified by jump instructions JMP for calling up a
sub program.

LD %I1.1 résultat = état du bit %I1.1
AND %M0 résultat = ET du résultat booléen précédent et de l'état du bit %M0
OR %M10 résultat = OU du résultat booléen précédent et de l'état du bit %M10
ST %Q2.0 %Q2.0 prend l'état du résultat booléen précédent

LD %I1.1 résultat = état du bit %I1.1
AND %M0 résultat = ET du résultat booléen précédent et de l'état du bit %M0
OR(%M10 résultat = état du bit %M10
AND %I1.2 résultat = ET du résultat booléen précédent et de l'état du bit %M10
)
ST %Q2.0 %Q2.0 prend l'état du résultat booléen précédent

! LD %M0
JMPC %L10

! LD %I1.1
AND %M10
ST %Q2.0

! %L10:
LD %I1.3
AND %M20
......

Saut à l’étiquette %L10 si %M0=1
TLX DR PL7 40E 09/2000 141

Instruction list language
142 TLX DR PL7 40E 09/2000

TLX DR PL7 40E 09/2000
8
Structured text language
Presentation

Subject of this
chapter

This chapter describes the rules for programming in structured text language.

What’s in this
Chapter?

This Chapter contains the following Maps:

Topic Page

Presentation of structured text language 144

Structuring a program in structured text language 145

Label for a sequence in structured text language 146

Comments on a sequence in structured text language 147

Bit object instructions 148

Arithmetic and logic instructions 149

Instructions for tables and character strings 151

Instructions for numerical conversions 154

Instructions for programs and specific instructions 155

Conditional check structure IF...THEN 157

Conditional check structure WHILE...END_WHILE 159

Conditional check structure REPEAT...END_REPEAT 160

Conditional check structure FOR...END_FOR 161

Output instruction for the EXIT loop 162

Rules for running a structured text program 163
143

Structured text language
Presentation of structured text language

General points Structured text language is a developed algorithmic language that is specially adapt-
ed for programming complex arithmetic functions, manipulating tables and manag-
ing messages.

It is used to make up programs by writing programming lines made up of alphanu-
meric characters.

Limits of use This language can be used with Junior and Pro PL7 software on Premium and Micro
PL7s.
In the Pro PL7 version, this language is used to create DFB user function blocks on
Premium PL7s.

Illustration of a
program

The following illustration shows a program in PL7 structured language.

! (* Searching for the first element that is not zero
in a

table of 32 words, determining its value
(%MW10), its rank (%MW11). This search
is done if %M0 is set to 1, %M1 is set to 1 if
an element which is not zero exists unless it is

set to 0*)

IF %M0 THEN
FOR %MW99:=0 TO 31 DO

IF %MW100[%MW99]<>0 THEN
%MW10:=%MW100[%MW99];
%MW11:=%MW99;
%M1:=TRUE;
EXIT; (*Exit the loop*)

ELSE
%M1:=FALSE;

END_IF;
END_FOR;

ELSE
%M1:=FALSE;

END_IF;
144 TLX DR PL7 40E 09/2000

Structured text language
Structuring a program in structured text language

General points A section of text program is organized into sequences.
A text sequence is the equivalent of a contact network in contact language.

Example of a
sequence

The following illustration shows a sequence in PL7 structured language.

Description of a
sequence

Each sequence begins with an exclamation mark (generated automatically). It in-
cludes the following elements.

! %L20: (*Awaiting drying*)
SET %M0;
%MW4:=%MW2 + %MW9;
(*calculating pressure*)
%MF12:=SQRT (%MF14);

1 2

3

Address Element Function

1 Label Locates a sequence.

2 Comments Fill in a sequence.

3 Instructions One or more instructions separated by ";".

Note: Each of these elements is optional, that is it is possible to have an empty se-
quence, a sequence made up only of comments or only of a label.
TLX DR PL7 40E 09/2000 145

Structured text language
Label for a sequence in structured text language

Role The label is used to locate a sequence in a program entity (main program, sub-pro-
gram,…). It is optional.

Syntax This label has the following syntax: %Li : with i between 0 and 999. It is at the begin-
ning of a sequence.

Illustration The following program shows how the label is used.

Rules The same label can only be allocated to a single sequence within the same program
entity.

It is necessary to label a sequence so that connection can be made after a program
jump.

The order of label addresses does not matter, (it is the order of entering the se-
quences that is taken into account by the system when scanning).

! %L20:
(*Awaiting drying*)
SET %M0;
%MW4:=%MW2 + %MW9;
(*calculating pressure*)
%MF12:=SQRT (%MF14);

Label
146 TLX DR PL7 40E 09/2000

Structured text language
Comments on a sequence in structured text language

Role The comments make interpreting a sequence to which they are assigned easier.
They are optional.

Syntax The comments can be integrated anywhere in the sequence and the number of com-
ments per sequence is not limited.

A comment is surrounded on both sides by the characters (* and *).

Illustration The following illustration locates the position of the comments in a sequence.

Rules l Any character is allowed in a comment.
l The number of characters is limited to 256 per commentary.
l Comments may not overlap.
l A comment can contain several lines.
The comments are stored in the PL7 and can be accessed by the user at any time.
In this case they take up program memory.

! %L20: (*Awaiting drying*)
SET %M0;
%MW4:=%MW2 + %MW9;
(*calculating pressure*)
%MF12:=SQRT (%MF14);

Comments
TLX DR PL7 40E 09/2000 147

Structured text language
Bit object instructions

Bits instructions The following instructions apply to bit objects.

Bits table
instructions

The following instructions apply to bits table objects.

Designation Function

:= Assignment of a bit

OR boolean OR

AND boolean AND

XOR boolean exclusive OR

NOT Inversion

RE Rising edge

FE Falling edge

SET Set to 1:

RESET Set to 0:

Designation Function

Table:= Table Assignment between two tables

Table:= Word Assignment of a word to a table

Word:= Table Assignment of a table to a word

Table:= Double word Assignment of a double word to a table

Double word: = Table Assignment of a table to a double word

COPY_BIT Copy of a bits table in a bits table

AND_ARX AND between two tables

OR_ARX OR between two tables

XOR_ARX exclusive OR between two tables

NOT_ARX Negation in a table

BIT_W Copy of a bits table in a word table

BIT_D Copy of a bits table in a double word table

W_BIT Copy of a word table in a bits table

D_BIT Copy of a double word table in a bits table

LENGHT_ARX Calculation of the length of a table by the number of elements
148 TLX DR PL7 40E 09/2000

Structured text language
Arithmetic and logic instructions

Whole arithmetic
on words and
double words

The following instructions apply to word and double word objects…

Arithmetic on
floating points

The following instructions are applied to floating objects...

Name Function

+, -, *, / Addition, Subtraction, Multiplication, whole Division

REM Remainder of whole division

SQRT Whole square root

ABS Absolute value

INC Incrementation

DEC Disincrementation

Name Function

+, -, *, / Addition, Subtraction, Multiplication,Division

SQRT Square root

ABS Absolute value

TRUNC Whole part

LOG Base 10 logarithm

LN Napierian logarithm

EXP Natural exponential

EXPT Exponentiation of an actual by a whole

COS Cosine of a value in radians

SIN Sine of a value in radians

TAN Tangent of a value in radians

ACOS Cosine arc (result between 0 and 2 p)

ASIN Sine arc (result between -p/2 and +p/2)

ATAN Tangent arc (result between -p/2 and +p/2)

DEG_TO_RAD Converting degrees to radians

RAD_TO_DEG Converting radians to degrees
TLX DR PL7 40E 09/2000 149

Structured text language
Logic
instructions on
words and
double words

The following instructions are applied to word and double word objects.

Numerical
comparisons on
words, double
words and
floating points

The following instructions are applied to word, double word and floating objects.

Name Function

AND logic AND

OR logic OR

XOR exclusive logic OR

NOT Logic complement

SHL Logic shift to left

SHR Logic shift to right

ROL Circular logic shift to left

ROR Circular logic shift to right

Name Function

< Clearly less than

> Clearly more than

<= Less or equal to

>= More or equal to

= Equal to

<> Different from
150 TLX DR PL7 40E 09/2000

Structured text language
Instructions for tables and character strings

Instructions for
word tables and
double words

The following instructions are applied to word tables and double words.

Name Function

Table: = Table Assigning between two tables

Table: = Word Initializing a table

+, -, *, /, REM Arithmetic operations between tables

+, -, *, /, REM Arithmetic operations between expressions and tables

SUM Totaling the elements in a table

EQUAL Comparing two tables

NOT Logic complement for a table

AND, OR, XOR Logic operations between two tables

AND, OR, XOR Logic operations between expressions and tables

FIND_EQW, FIND_EQD Finding the first element equal to a value

FIND_GTW, FIND_GTD Finding the first element greater than a value

FIND_LTW, FIND_LTD Finding the first element less than a value

MAX_ARW, MAX_ARD Finding the maximum value in a table

MIN_ARW, MIN_ARD Finding the minimum value in a table

OCCUR_ARW, OCCUR_ARD Number of times a value occurs in a table

SORT_ARW, SORT_ARD Sorting a table in ascending or descending order

ROL_ARW, ROL_ARD Shifting a table to the left in a circular movement

ROR_ARW, ROR_ARD Shifting a table to the right in a circular movement

FIND_EQWP,FIND_EQDP Finding the first element from a rank equal to a value

LENGTH_ARW, LENGTH_ARD Calculating the length of a table
TLX DR PL7 40E 09/2000 151

Structured text language
Instructions for
floating point
tables

The following instructions are applied to floating point tables.

Instructions for
character strings

The following instructions are applied to character strings.

Name Function

Table: = Table Assigning between two tables

Table: = Floating point Initializing a table

SUM_ARR Totaling the elements in a table

EQUAL_ARR Comparing two tables

FIND_EQR Finding the first element equal to a value

FIND_GTR Finding the first element greater than a value

FIND_LTR Finding the first element less than a value

MAX_ARR Finding the maximum value in a table

MIN_ARR Finding the minimum value in a table

OCCUR_ARR Number of times a value occurs in a table

SORT_ARR Sorting a table in ascending or descending order

ROL_ARR Shifting a table to the left in a circular movement

ROR_ARR Shifting a table to the right in a circular movement

LENGTH_ARR Calculating the length of a table

Name Function

STRING_TO_INT Converting ASCII to binary (single word format)

STRING_TO_DINT Converting ASCII to binary (double word format)

INT_TO_STRING Converting binary (single word format) to ASCII

DINT_TO_STRING Converting binary (double word format) to ASCII

STRING_TO_REAL Converting ASCII to floating point

REAL_TO_STRING Converting floating point to ASCII

<, >, <=, >=, =, <> Alphanumeric comparison

FIND Position of a sub-chain

EQUAL_STR Position of the first different character

LEN Length of a character string

MID Extracting a sub-chain

INSERT Inserting a sub-chain

DELETE Deleting a sub-chain

CONCAT Joining two strings
152 TLX DR PL7 40E 09/2000

Structured text language
REPLACE Replacing a string

LEFT Start of string

RIGHT End of string

Name Function
TLX DR PL7 40E 09/2000 153

Structured text language
Instructions for numerical conversions

Instructions for
numerical
conversions

These instructions convert bits, words, double words and floating points.

Name Function

BCD_TO_INT Converting BCD to binary

INT_TO_BCD Converting binary to BCD

GRAY_TO_INT Converting Gray to binary

INT_TO_REAL Converting a single whole format into floating

DINT_TO_REAL Converting a double whole format into floating

REAL_TO_INT Converting a floating point into single whole format

REAL_TO_DINT Converting a floating point into a double whole format

DBCD_TO_DINT Converting a 32 bit BCD number into a 32 bit whole

DINT_TO_DBCD Converting a 32 bit whole number into a 32 bit BCD number

DBCD_TO_INT Converting a 16 bit BCD number into a 32 bit whole

INT_TO_DBCD Converting a 16 bit whole number into a 32 bit BCD number

LW Extracting the least significant word from a double word

HW Extracting the most significant word from a double word

CONCATW Joining two single words
154 TLX DR PL7 40E 09/2000

Structured text language
Instructions for programs and specific instructions

Program
instructions

The following instructions do not affect language objects but the running of the pro-
gram.

Instructions on
time
management

The following instructions carry out operations on dates, times and durations…

Name Function

HALT Stopping the running of the program

JUMP Jumping to a label

SRi Calling up a sub program

RETURN Return of the sub-program

MASKEVT Masking events in the PL7

UNMASKEVT Unmasking events in the PL7

Name Function

SCHEDULE Time function

RRTC Reading system date

WRTC Updating system date

PTC Reading date and stop code

ADD_TOD Adding a duration to a time of day

ADD_DT Adding a duration to a date and time

DELTA_TOD Measuring the gap between times of day

DELTA_D Measuring the gap between dates (without time).

DELTA_DT Measuring the gap between dates (with time).

SUB_TOD Totaling the time to date

SUB_DT Totaling the time to date and time

DAY_OF_WEEK Reading the current day of the week

TRANS_TIME Converting duration into date

DATE_TO_STRING Converting a date to a character string

TOD_TO_STRING Converting a time to a character string

DT_TO_STRING Converting a whole date to a character string

TIME_TO_STRING Converting a duration to a character string
TLX DR PL7 40E 09/2000 155

Structured text language
"Orpheus"
instructions

The following instructions are specific to the Orpheus language.

Timing
instructions

These instructions are timing functions to be used for programming DFB codes..

Name Function

WSHL_RBIT, DSHL_RBIT Shifting a word to the left with recovery of shifted bits

WSHR_RBIT, DSHR_RBIT Shifting a word to the right with sign extension and recovery
of shifted bits

WSHRZ_C, DSHRZ_C Shifting a word to the right with filling in with 0 and recovery
of shifted bits

SCOUNT Counting/counting down with indication of overrun

ROLW,ROLD Circular shift to the left

RORW,RORD Circular shift to the right

Name Function

FTON Time until actuation

FTOF Time until reset

FTP Pulse time

FPULSOR Generating rectangular signals
156 TLX DR PL7 40E 09/2000

Structured text language
Conditional check structure IF...THEN

Role This check structure takes one or more actions if one condition is true. In its general
form there can be a number of conditions.

Simple form In its simple form the check structure has the following syntax and operation.

Example:

General form In its general form the check structure has the following syntax and operation.

Syntax

IF condition THEN

actions ;

END_IF;

Operation

Beginning of IF

Condition

Action

End of IF

checked

not checked

! (*Conditional action IF (simple form)*)
 IF %M0 AND %M12 THEN

RESET %M0;
INC %MW4;
%MW10:=%MW8+%MW9;

 END_IF;

Syntax

IF condition1 THEN

actions1;

ELSEIF condition2 THEN

actions2;

ELSE

actions3;

END_IF;

Operation

Beginning of IF

Condition 1

Actions 3

End of IF

checked

not checked
Actions 1

Actions 2

Condition 2checked

not checked
TLX DR PL7 40E 09/2000 157

Structured text language
Example:

Programming
rule

l There can be a number of conditions.
l Each action represents an instruction list.
l Several IF check structures can be overlapped.
l There is no limit to the number of ELSIF.
l There is a maximum of one ELSE.

! (*Conditional action IF (simple form)*)
 IF %M0 AND %M1 THEN

%MW5:=%MW3+%MW4;
SET %M10;

 ELSEIF %M0 OR %M1 THEN
%MW5:=%MW3-%MW4;
SET %M11;

 ELSE
RESET %M10;
RESET %M11;

 END_IF;
158 TLX DR PL7 40E 09/2000

Structured text language
Conditional check structure WHILE...END_WHILE

Role This check structure carries out a repetitive action as long as a condition is verified.

Description The check structure has the following syntax and operation.

Example:

Programming
rule

l It can be a multiple condition.
l The action represents an instruction list.
l The test on the condition is done before the action is carried out. If when the con-

dition is first evaluated its value is wrong, then the action is never carried out.
l Several WHILE check structures can be overlapped.

Syntax

WHILE condition DO

action ;

END_WHILE;

Operation

Beginning of WHILE

Condition

Action

End of WHILE

checked

not checked

! (*WHILE conditional repeated action*)
 WHILE %MW4<12 DO

INC %MW4;
SET %M25[%MW4];

 END_WHILE;

Note: The instruction EXIT (See Role, p. 162) is used to stop the loop run-
ning and to continue to the instruction following the END_WHILE.
TLX DR PL7 40E 09/2000 159

Structured text language
Conditional check structure REPEAT...END_REPEAT

Role This check structure carries out a repetitive action until a condition is verified.

Description The check structure has the following syntax and operation.

Example:

Programming
rule

l It can be a multiple condition.
l The action represents an instruction list.
l The test on the condition is done after the action is carried out. If when the con-

dition is first evaluated its value is wrong, then the action is carried out once.
l Several REPEAT check structures can be overlapped.

Syntax

REPEAT

action ;

UNTIL condition END_REPEAT;

Beginning of REPEAT

End of REPEAT

checked
not checked

Condition

Action

Operation

! (*REPEAT conditional repeated action*)
 REPEAT

INC %MW4;
SET %M25[%MW4];

 UNTIL %MW4>12 END_REPEAT;

Note: The instruction EXIT (See Role, p. 162) is used to stop the loop run-
ning and to continue to the instruction following the END_REPEAT.
160 TLX DR PL7 40E 09/2000

Structured text language
Conditional check structure FOR...END_FOR

Role This check structure carries out a process a certain number of times by adding 1 to
each loop index.

Description The check structure has the following syntax and operation.

Example:

Programming
rule

l When the index is clearly greater than the final value, the operation continues on
the instruction following the END_FOR.

l Increasing the index is done automatically and is therefore not under your control.
l The action represents an instruction list.
l The initial value and the final value must be numeric word type expressions.
l The index must be a word type object with write access.
l Several FOR check structures can be overlapped.

Syntax

FOR index:=initial value TO final
value DO

action ;

END_FOR;

Operation

Beginning of FOR

Action
End of FOR

checked

not checked

Initial value --> Index

Index+1 --> Index

Index >
Final value

! (*Repeated action FOR*)
 FOR %MW4=0 TO %MW23+12 DO

SET %M25[%MW4];
 END_FOR;

Note: The instruction EXIT (See Role, p. 162) is used to stop the loop run-
ning and to continue to the instruction following the END_FOR.
TLX DR PL7 40E 09/2000 161

Structured text language
Output instruction for the EXIT loop

Role This instruction is used to stop the loop running and to go on to the instruction fol-
lowing the end of loop instruction.

Programming
rule

l This instruction can only be used in the actions of one of 3 loops WHILE, REPEAT
or FOR.

l This instruction is linked to the nearest incorporated loop, i.e. it does not stop all
the loops which incorporate it from running.

Example In this example the instruction EXIT is used to stop the REPEAT loop but never the
WHILE loop.

! (*Instruction for exiting the loop EXIT*)
 WHILE %MW1<124 DO

%MW2:=0;
%MW3:=%MW100[%MW1];
REPEAT

%MW500[%MW2]:=%MW3+%MW500[%MW2];
IF(%MW500[%MW2]>32700) THEN

EXIT;
END_IF;
INC %MW2;

UNTIL %MW2>25 END_REPEAT;
INC %MW1;

 END_WHILE;
162 TLX DR PL7 40E 09/2000

Structured text language
Rules for running a structured text program

General points Running a text program is done sequentially, instruction by instruction observing the
check structures.

In the case of arithmetic or Boolean expressions made up of several operators, pri-
ority rules are defined between the various operators.

Operator priority
rule

The table below gives the priorities for evaluating an expression with a greater or
lesser priority.

Operator Symbol Priority

Parentheses (expression) Greater

Logic complement
Inversion
- on operand
+ on operand

NOT
NOT
-
+

Multiplication
Division
Rollover

*
/
REM

Addition
Subtraction

+
-

Comparisons <,>,<=,>=

Equality comparison
Inequality comparison

=
<>

logic AND
Boolean AND

AND
AND

logic exclusive OR
Boolean exclusive OR

XOR
XOR

logic OR
Boolean OR

OR
OR

Lesser

Note: When there is a conflict between two operators at the same priority level, the
first operator has priority (evaluation is done from left to right).
TLX DR PL7 40E 09/2000 163

Structured text language
Example 1 In the example below the NOT is applied on the %MW3 then the result is multiplied by
25. The sum of %MW10 and %MW12 is then calculated then the logic AND from the
result of the multiplication and the addition.
NOT %MW3 * 25 AND %MW10 + %MW12

Example 2 In this example multiplying%MW34 by 2 is done first then the result is used to carry
out the rollover.
%MW34 * 2 REM 6

Using
parentheses

Parentheses are used to modify the order in which operators are evaluated to allow,
for example, an addition to be carried out before a multiplication.

You can overlap parentheses and there is no limit to the level of overlap.

Parentheses can also be used in order to prevent the program being wrongly inter-
preted.

Example 1 In this example, addition is done first, then multiplication:

(%MW10+%MW11)*%MW12

Example 2 This example shows that parentheses can be used to avoid any misinterpretation
of the program.

NOT %MW2 <> %MW4 + %MW6

Using these operator priority rules, the interpretation is as follows :

((NOT %MW2) <> (%MW4 + %MW6))

But you may think that the operation is as follows:

NOT (%MW2 <> (%MW4 + %MW6))

Therefore parentheses serve to clarify the program.
164 TLX DR PL7 40E 09/2000

Structured text language
Implicit
conversions

Implicit conversions are about words and double words.
The operators that you use in arithmetic expressions, in comparisons and operator
allocation carry out these implicit conversions (which are therefore not under the us-
er’s control).

For an instruction in the form: <operand 1> <operator> <operand 2>, the possible
conversion cases are :

To assign the form <left operand> := <right operand>, the left operand prescribes
the type expected to carry out the operation, which means that the right operand
must be converted if necessary according to the table :

Operand 1
type

Operand 2
type

Conversion
Operand 1

Conversion
Operand 2

Operation
in type

Word Word No No Word

Word Double word Double word No Double word

Double word Word No Double word Double word

Double word Double word No No Double word

Operand type
left

Operand type
right

Conversion
right operand

Word Word No

Word Double word Word

Double word Word Double word

Double word Double word No

Note: Any operation between two adjacent values is carried out in double length.
TLX DR PL7 40E 09/2000 165

Structured text language
166 TLX DR PL7 40E 09/2000

TLX DR PL7 40E 09/2000
9
Grafcet
Presentation

Subject of this
chapter

This chapter describes programming rules in Grafcet.

What’s in this
Chapter?

This Chapter contains the following Sections:

Section Topic Page

9.1 General presentation of Grafcet 168

9.2 Rules for constructing Grafcet 175

9.3 Programming actions and conditions 184

9.4 Macro steps 193

9.5 Grafcet section 198
167

Grafcet
9.1 General presentation of Grafcet

Presentation

Subject of this
section

This section describes the basic Grafcet elements.

What’s in this
Section?

This Section contains the following Maps:

Topic Page

Presenting Grafcet 169

Description of Grafcet graphic symbols 170

Description of specific Grafcet objects 172

Grafcet possibilities 174
168 TLX DR PL7 40E 09/2000

Grafcet
Presenting Grafcet

General points The Grafcet language complies with the "Sequence function chart" (SFC) language
of the IEC 1131-3 standard.

Grafcet is used to represent the operation of a sequential automatic system in a
structured and graphic form.

Presentation This graphic description of the sequential behavior of the automatic system and of
the various situations that emanate from it is done with the help of simple graphic
symbols.

1

2

3

4

6

7

5 8

10

9

Actions

Actions Actions

Actions

Initial step

Transition

AND divergence

OR divergence

OR convergence

AND convergence

Step
TLX DR PL7 40E 09/2000 169

Grafcet
Description of Grafcet graphic symbols

Description The following table describes the basic Grafcet elements.

Name Symbol Functions

Initial steps (symbolize the initial active steps at the beginning of the cycle after ini-
tialization or re-start from cold.

Simple steps (show that the automatic system is in a stable condition. The maximum
number of steps (including the initial steps) can be configured from:
l 1 - 96 for a TSX 37-10,
l 1 - 128 for a TSX 37-20,
l 1 - 250 for a TSX 57.
The maximum number of active steps at the same time can be config-
ured.

Macro steps Symbolize a macro step: a single group of steps and transitions.
The maximum number of macro steps can only be configured from 0 -
63 for the TSX 57.

Stage of Macro
steps

Symbolizes the stages of a macro step.
The maximum number of stages for each macro step can be configured
from 0 - 250 for the TSX 57.

Each macro step includes an IN and OUT step.

Transitions allow the transfer from one step to another. A transition condition asso-
ciated with this condition is used to define the logic conditions neces-
sary to cross this transition.
The maximum number of transitions is 1024. It cannot be configured.
The maximum number of valid transitions at the same time can be con-
figured.

AND divergenc-
es

Transition from one step to several steps: is used to activate a maximum
of 11 steps at the same time.

AND conver-
gences

Transition of several steps to one: is used to deactivate a maximum of
11 steps at the same time.

i iou

i iou

i

IN

i iou

OUTou
170 TLX DR PL7 40E 09/2000

Grafcet
OR divergences Transition from one step to several steps: is used to carry out a switch
to a maximum of 11 steps.

OR convergenc-
es

Transition of several steps to one: is used to end switching from a max-
imum of 11 steps.

Source connec-
tors

"n" is the number of the step "it comes from" (source step).

Destination con-
nector

"n" is the number of the step "it’s going to" (target step).

Links directed
towards:
l top
l bottom
l right or left

These links are used for switching, jumping a step, restarting steps (se-
quence).

Name Symbol Functions

n

n

Note: The maximum number of steps (main graph steps + macro step steps) in the
Grafcet section must not exceed 1024 on the TSX 57.
TLX DR PL7 40E 09/2000 171

Grafcet
Description of specific Grafcet objects

General points Grafcet uses bit objects associated in steps, specific system bits, word objects which
show the activity time of the steps and specific system words.

Grafcet objects The following table describes all the objects associated with Grafcet.

Name Description

Bits associated
with the steps (1
= active step)

%Xi Status of the i step of the main Grafcet

(i from 0 - n) (n depends on the processor)

%XMj Status of the j macro step (j from 0 - 63 for TSX/PMX/PCX
57)

%Xj.i Status of the i step of the j macro step

%Xj.IN Status of the input step of the j macro step

%Xj.OUT Status of the output step of the j macro step

System bits as-
sociated with
Grafcet

%S21 Initializes Grafcet

%S22 Grafcet resets everything to zero

%S23 Freezes Grafcet

%S24 Resets macro steps to 0 according to the system words
%SW22 - %SW25

%S25 Set to 1 when:
l tables overflow (steps/transition),
l an incorrect graph is run (destination connector on a

step which does not belong to the graph).

Words associat-
ed with steps

%Xi.T Activity time for main Grafcet step i.

%Xj.i.T Activity time for the i step of the j macro step

%Xj.IN.T Activity time for the input step of the j macro step

%Xj.OUT.T Activity time for the output step of the j macro step

System words
associated with
Grafcet

%SW20 Word which is used to inform the current cycle of the num-
ber of active steps, to be activated and deactivated.

%SW21 Word which is used to inform the current cycle of the num-
ber of valid transitions to be validated or invalidated.

%SW22 à
%SW25

Group of 4 words which are used to indicate the macro
steps to be reset to 0 when bit %S24 is set to 1.
172 TLX DR PL7 40E 09/2000

Grafcet
Bits associated
with steps

The bits associéated with steps %Xi, with macro steps %XMi, and macro step steps
%Xj.I , %Xj.IN and %Xj.OUT have the following properties:
l They are at 1 when the steps are active.
l They can be tested in all the tasks, but can only be written in the preliminary pro-

cess of the master task (pre-positioning of graphs). These tests and actions are
programmed either in contact language, instruction list language or in text lan-
guage.

l They can be indexed.

Activity time The activity time words of the steps %Xi.T and macro step steps %Xj.I, %Xj.IN and
%Xj.OUT have the following properties:
l They are incremented every 100 ms and have a value from 0 - 9999.
l Incrementation of the word: while the associated step is active.
l When the step is deactivated the contents are frozen.
l When the step is activated the contents are reset to zero and then incremented.
l The number of activity time words cannot be configured. One word is reserved

for each step.
l These words can be indexed.
TLX DR PL7 40E 09/2000 173

Grafcet
Grafcet possibilities

General points The sequential process is structured in:
l 1 sub set Main graph,
l 64 sub sets: Macro steps,
These sub sets are themselves divided into 8 pages.

Illustration The following illustration describes the general structure of a Grafcet page.

Characteristics They depend on the processor to be programmed. They are summarized in the ta-
ble below.

The number of synchronous transitions (or number of AND convergences) must not
exceed 64. The total number of transitions is always 1024.

Macro step 63

Page 7

Page 1

Page 0

Main graph

Page 7

Page 1

Page 0

Macro step 0

Number TSX 37 -10 TSX 37 -20 TSX 57

Default
settings

Maxi-
mum

Default
settings

Maxi-
mum

Default
settings

Maxi-
mum

Main graph steps 96 96 128 128 128 250

Macro steps 0 0 0 0 8 64

Macro step steps 0 0 0 0 64 250

Step total 96 96 128 128 640 1024

Steps active at the
same time

16 96 20 128 40 250

Transitions valid at the
same time

20 192 24 256 48 400
174 TLX DR PL7 40E 09/2000

Grafcet
9.2 Rules for constructing Grafcet

Presentation

Subject of this
section

This section describes the basic rules for constructing Grafcet graphs.

What’s in this
Section?

This Section contains the following Maps:

Topic Page

Ilustration of Grafcet 176

Using OR divergences and convergences 177

Using AND divergences and convergences 178

Using connectors 179

Using directed links 182

Grafcet comments 183
TLX DR PL7 40E 09/2000 175

Grafcet
Ilustration of Grafcet

General points The main graph and each of the macro steps are programmed on 8 pages (pages 0
- 7).
A Grafcet page is made up of 14 lines and 11 columns which define 154 cells.
It is possible to enter a graphic element in each cell.

Illustration The drawing below illustrates the division of a Grafcet page.

Writing rules l The first line is used to enter the source connectors.
l The last line is used to enter the destination connectors.
l The even lines (from 2 - 12) are step lines (for destination connector steps),
l The odd lines (from 3 - 13) are transition lines (for transitions and source connec-

tors).
l Each step is located by a different number (0 - 127) in any order.
l Different graphs can be displayed on one page.

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0

1

2

3

176 TLX DR PL7 40E 09/2000

Grafcet
Using OR divergences and convergences

Role An OR divergence is a switch from one step to several steps.

An OR convergence stops the switch.

Illustration The drawing below shows an OR divergence of one step to 9 steps and an OR con-
vergence.

Rules for use l The number of transitions upstream of a switching end (OR convergence) or
downstream of a switching (OR divergence) must not exceed 11.

l Switching can be to the left or to the right.
l Switching must general finish with switching end.
l To avoid crossing several transitions at the same time, the associated transition

conditions must be exclusive.

16

20

29

35

21

30

22

31

23

32

24

33

25

34

19

28

18

27

17

26
TLX DR PL7 40E 09/2000 177

Grafcet
Using AND divergences and convergences

Role An AND divergence is used to activate several steps simultaneously.

An AND convergence is used to deactivate several steps simultaneously.

Illustration The drawing below shows an AND divergence and convergence of 6 steps.

Rules for use l The number of steps downstream from a simultaneous activation (AND diver-
gence) or upstream from a simultaneous deactivation (AND convergence) must
not exceed 11.

l Simultaneous activation of steps must usually end with a simultaneous deactiva-
tion of steps.

l Simultaneous activation is always shown from left to right.
l Simultaneous deactivation is always shown from right to left.

41

42

48

54

43

49

44

50

45

51

46

52

47

53
178 TLX DR PL7 40E 09/2000

Grafcet
Using connectors

Role Connectors ensure the continuity of a Grafcet when the direct outline of a directed
link cannot be made either within a page or between two consecutive pages or not.

This continuity is maintained thanks to a destination connector which has a corre-
sponding system source connector.

Example The following illustration shows examples of connectors.

The table below explains how to use the connectors in the example.

Use Example

Re-connecting a graph can be done using con-
nectors.

Reconnecting step 18 to step 0.

Re-starting a sequence can be done using con-
nectors.

 Step 10 to step 1 or step 8 to step 2.

Using connectors when a branch of the graph is
longer than the page.

 Step 9 to step 10.

2

4

8

5 6 73

9

1

010

8

2

10

18

12

12 14 15 16 17

18

11

10

0

98

1

TLX DR PL7 40E 09/2000 179

Grafcet
Connectors used
in OR
divergences and
convergences

The following table gives the rules for using connectors in the case of OR divergence
or convergence.

Rule Illustration

For switching, transitions and destination con-
nectors must be entered on the same page.

To end switching, the source connectors must
be entered on the same page as the destina-
tion step.

For an end to switching followed by a return to
destination, there must be as many source
connectors as steps before the end of switch-
ing.

10

20 21 Page 1

20 10

21

10
Page 2

4 5 6

10

10

4 5 6

Page 1

Page 2
180 TLX DR PL7 40E 09/2000

Grafcet
Connectors used
in AND
divergences and
convergences

The following table gives the rules for using connectors in the case of AND diver-
gence or convergence.

Rule Illustration

To activate steps simultaneously, the destina-
tion connectors must be on the same page as
the divergence step and transition.

To deactivate simultaneously, the conver-
gence steps and transition must be on the
same page as the destination connector.

When several steps converge onto one transi-
tion, the source connector has the number of
the furthest upstream step on the left.

30 35 37

Page 2

Page 3
252525

25

373530

43 45 48

50

50

43

Page 1

Page 2
TLX DR PL7 40E 09/2000 181

Grafcet
Using directed links

Role Directed links join a step to a transition or a transition to a step. They can be vertical
or horizontal.

Illustration The following diagram shows an example of how to use a directed link.

Rules Directed links can:
l cross (1), they are then different types,
l meet (2), they are then the same type.
It is not possible for a link to cross and for steps to be activated or deactivated at the
same time.

1

0

3

2

4

(1) (2)
182 TLX DR PL7 40E 09/2000

Grafcet
Grafcet comments

General points Comments can give information on Grafcet steps and transitions. They are optional.

Syntax The text of the comments is within (* to the left and *) to the right. Its maximum size
is 64 characters.

Illustration The following illustration shows examples of comments.

Rules l In a Grafcet page it is possible to enter a comment in any cell.
l A comment takes up two cells side by side on a maximum of two lines.

If the display field is too small, the comment is truncated on the display but when
the document is printed the comments are shown in their entirety.

l The comment entered on a Grafcet page is stored in the graphic information em-
bedded in the PL7. In this case they take up program memory.

1

2

3

4

(*Comments*)

(*Comments on
2 lines*)

(*Example of comment>>
TLX DR PL7 40E 09/2000 183

Grafcet
9.3 Programming actions and conditions

Presentation

Subject of this
section

This section describes the programming rules for Grafcet actions and conditions.

What’s in this
Section?

This Section contains the following Maps:

Topic Page

Programming actions associated with steps 185

Programming actions for activating or deactivating 187

Programming continuous actions 188

Programming transition conditions associated with transitions 189

Programming transition conditions in ladder 190

Programming transition conditions in instruction list language 191

Programming transition conditions in structured text language 192
184 TLX DR PL7 40E 09/2000

Grafcet
Programming actions associated with steps

General points Actions associated with steps describe the orders to be transmitted to the operative
part (process to be automated) or to other automated systems.

The actions can be programmed either in contact language, instruction list language
or in structured text language.
These actions are only scanned if the step with which they are associated is active.

3 types of action The PL7 software allows three types of action:
l actions for activation : actions carried out once when the step with which they

are associated passes from the inactive to the active state.
l actions for deactivation : actions carried out once when the step with which

they are associated passes from the active to the inactive state.
l continuous actions : these actions are carried out for as long as the step with

which they are associated is active.

Locating actions These actions are located in the following manner:

MAST - <Grafcet section name> - CHART (or MACROk)- PAGE n %Xi x
with
x = P1 for Activation, x = N1 Continuous, x = P0 Deactivation
n = Page number
i = Step number

Example: MAST - Paint - CHART - PAGE 0 %X1 P1 Action for activating step 1 of
page 0 of the Paint section

Rules for use l All actions are considered stored actions, from where: an action paced to the du-
ration of the Xn step must be reset to zero when step Xn is deactivated or when
step Xn+ 1 is activated.
An action for maintained effect on several steps is set to one when step Xn is ac-
tivated and reset to zero when step Xn+m is deactivated.

l All actions can be paced to logic conditions, therefore can be conditional.
l Actions paced to indirect safeguards must be programmed in subsequent pro-

cessing (See Description of subsequent processing, p. 210) (process carried out
on each scan)

Note: One action can include several programming elements (sequences or con-
tact networks).
TLX DR PL7 40E 09/2000 185

Grafcet
Running order
for actions

For the following example, for one cycle revolution, the running order for the actions
is as follows. When step 51 is activated, the actions are carried out in the following
order:
1. actions for deactivating step 50,
2. actions for activating step 51,
3. continuous actions for step 51.
Example:

As soon as step 51 has been deactivated the associated continuous actions are no
longer scanned.

Activating %X50 Continuing %X50 Deactivating %X50

Activating %X51 Continuing %X51 Deactivating %X51

50

51
186 TLX DR PL7 40E 09/2000

Grafcet
Programming actions for activating or deactivating

Rules These actions are carried out once when the step with which they are associated
passes from the inactive to the active state.

These actions are in pulses and are carried out in a single scanning revolution.
They are used to call up a sub-program, incrementing a counter, etc.

Example 1 In this example this action calls up a sub-program

Example 2 In this example, this action increments the word %MW10 and resets the words
%MW0 and %MW25 to 0.

C

%M25 SR4

%L1

%L1:
INC %MW10;%MW0:=0;%MW25:=0;
TLX DR PL7 40E 09/2000 187

Grafcet
Programming continuous actions

Rules These actions are carried out for as long as the step with which they are associated
is active. They can be:
l Conditional actions : the action is carried out if a condition is fulfilled,
l Timed actions : this is a special case, as the time is like a logic condition. This

pacing can be done simply by testing the activity time associated with the step.

Example of a
conditional
action

In this example, the bit %M10 is paced to the input %12.5 or to the internal bit %M9
and to the input %I1.2.
As long as step 2 is active and these conditions apply, %M10 is set at 1.
The last state read for deactivation is stored since the associated actions are no
longer scanned. It is therefore necessary to reset bit %M10 to 0 in the step deacti-
vation action for example.
Illustration of the example.

Example of a
timed action

In this example, bit %M12 is controlled as long as the activity time for step 3 is less
than 10 seconds (time base : 100 ms).

These actions can also be unconditional.

%I2.5 %M10

%M9

%L10

%M25
R

%L1

%I1.2

%M10

Continuous action

Action for deactivation

%M25

%L1

%M12

%X3.T<100
188 TLX DR PL7 40E 09/2000

Grafcet
Programming transition conditions associated with transitions

General points A transition condition associated with a condition is used to define the logic condi-
tions necessary to cross this transition.

The maximum number of transitions is 1024. It cannot be configured.
The maximum number of valid transitions at the same time can be configured.

Rules l Associated with each transition is a transition condition which can be pro-
grammed either in ladder language, or in instruction list language or in text lan-
guage.

l A transition condition is only scanned if the transition with which it is associated
is valid.

l A transition condition corresponds to a contact network or an instruction list or a
text expression, including a series of tests on bits and/or words.

l A transition condition which has not been programmed is always an incorrect
transition condition.

Locating the
transition
condition

The transition conditions are located in the following manner:

MAST - <Grafcet section name> - CHART(or MACROk) - PAGE n %X(i)
--> % X(j) with :
n = Page number
i = Upstream step number
j = Downstream step number

Example: MAST - Paint - CHART - PAGE 0 %X(0) --> %X(1)
Transition condition associated with the transition between step 0 and step 1 on
page 0 of the Paint section graph.

Transition
condition using
activity time

In some applications, actions are controlled without a check on return information
(end of run, detector…). The duration of a step is governed by a time. The PL7 lan-
guage enables the activity time associated with each step to be used.

Example: ! X3.T>=150
This transition condition programmed in structured text language allows the process
to remain in step 3 for 15 seconds.

Note: When steps have been activated or deactivated at the same time, the ad-
dress indicated is that of the step in the column furthest to the left.
TLX DR PL7 40E 09/2000 189

Grafcet
Programming transition conditions in ladder

Programming
rules

The transition condition associated with the condition is programmed in the form of
a contact network comprising a test field and an action field.

The structure of the contact network is similar to that of a network programmed in a
program module.

Only the following elements can be used:
l test graphic elements : contacts (%Mi, %I, %Q, %TMi.D ...), comparison blocks,
l action graphic elements : "transition condition" coil only (the other coils are not

significant in this case).

Example This example illustrates programming for a transition condition in ladder .

#

%I2.1

%MW10<20
190 TLX DR PL7 40E 09/2000

Grafcet
Programming transition conditions in instruction list language

Programming
rules

The transition condition associated with the transition is programmed in the form of
an instruction list which only includes test instructions.

The instruction list for writing a transition condition differs from a normal instruction
list in:
l the general structure: no label (%L).
l the instruction list:

l no action instructions (bit, word or function block objects),
l no jump, calling up of sub-program.

Example This example illustrates programming for a transition condition in instruction list lan-
guage.

! LD %I2.1
AND [%MW10<20]
TLX DR PL7 40E 09/2000 191

Grafcet
Programming transition conditions in structured text language

Programming
rules

The transition condition associated with the transition is programmed in the form of
a Boolean expression or an arithmetic expression or an association of both.

The expression used for writing a transition condition differs from a programming
line in text language in :

l the general structure:
l no label (%L).
l no action sequence, condition sequence or iterative sequence.

l the instruction list:
l no action on bit object,
l no jump, calling up of sub-program,
l no transfer, no action instruction on blocks.

Example This example illustrates programming for a transition condition in structured text lan-
guage.

! %I2.1 AND [%MW10<20]
192 TLX DR PL7 40E 09/2000

Grafcet
9.4 Macro steps

Presentation

Subject of this
section

This section describes how to program macro steps.

What’s in this
Section?

This Section contains the following Maps:

Topic Page

Presenting macro steps 194

Making up a macro step 195

Characteristics of macro steps 196
TLX DR PL7 40E 09/2000 193

Grafcet
Presenting macro steps

General points A macro step is a single condensed representation of a set of steps and transitions.
A macro step is inserted into a graph like a step and observes the step development
rules.

Macro
representation

A first level Grafcet which describes the linking of sequences is used to explain the
structuring of the command part better.
Each sequence is associated with particular step symbols: the macro step.

This idea of "macro representation" is used to put the analysis into a hierarchy. Each
level can be completed, modified, without involving the other levels again.
Macro steps are available for TSX57 PL7s.
The following illustration shows a Grafcet made up of 3 macro steps.

0

M0

M1

M2

IN

0

1

OUT

IN

0

1

2

OUT

3

194 TLX DR PL7 40E 09/2000

Grafcet
Making up a macro step

Description The graphic representation of a macro step is distinguished from a step by two hor-
izontal lines.
The following illustration shows a macro step and its expansion.

The expansion of a macro step is characterized by 2 specific steps:
l an input step observing the same rules as the other steps,
l an output step which cannot have any associated actions.

Development When the macro step is active, development of the macro step observes the general
Grafcet development rules).

Example:

Macro step M1 is activated when step 1 is active and its downstream transition con-
dition is correct.
It is deactivated when its output step is active and the transition condition M1>2 is
correct. Step 2 is then activated.

M1

IN

0

1

OUT

M1

IN

0

1

OUT

1

2

TLX DR PL7 40E 09/2000 195

Grafcet
Characteristics of macro steps

General
characteristics

The PL7 Grafcet language allows programming of 64 macro steps from M0 to M63.

Expanding a macro step, made up of one or more sequences, can be programmed
on 8 pages at the most and includes a maximum of 250 steps plus the IN step and
the OUT step.

A macro step can contain one or more macro steps. This hierarchy is possible up to
64 levels.

Illustration The analysis of an application can be structured in order to provide a more detailed
global approach of the different operations to be performed.

0

M0

M1

M2

IN

0

1

OUT

IN

0

1

2

OUT

3

To a detailed analysis
196 TLX DR PL7 40E 09/2000

Grafcet
Initial steps The expansion of a macro step can contain one or more initial steps.
 These initial steps are activated when the machine is switched on or when a pro-
gram is initialized. The macro step is then displayed in the active state.

In the example below initial step 1 of the expansion is activated when the program
is initialized. The macro step is then in an active state.

M0

M1

M2

IN

0

1

2

OUT

3

TLX DR PL7 40E 09/2000 197

Grafcet
9.5 Grafcet section

Presentation

Subject of this
section

This section shows how a Grafcet section is made up. It describes the use and pro-
gramming rules for each process.

What’s in this
Section?

This Section contains the following Maps:

Topic Page

Structure of a Grafcet section 199

Description of preliminary processing 201

Pre-setting the Grafcet 202

Initializing the Grafcet 203

Resetting Grafcet to zero 204

Freezing Grafcet 205

Resetting macro steps to zero 206

Running sequential processing 208

Description of subsequent processing 210
198 TLX DR PL7 40E 09/2000

Grafcet
Structure of a Grafcet section

How a section is
made up

A section of program written in Grafcet is made up of three consecutive processes:
l the preliminary process,
l the sequential process,
l the subsequent process.
The Grafcet section is programmed in the MAST task.

Illustration The following drawing shows the order the processes are scanned.

Preliminary processing

Sequential processing

Subsequent processing
TLX DR PL7 40E 09/2000 199

Grafcet
Role of the
processes

The following table describes the role of each of the processes and the language
with which they can be programmed.

Processing Role Language

Preliminary This is used to process:
l initializations on a restart after a power or mechanical failure,
l initializations on a restart after a power or mechanical failure,
l the input logic.

Contact, instruc-
tion list or text
language

Sequential This is used to process the sequential framework of the application and
gives access to transition conditions and actions directly associated with
the steps.

Grafcet

Subsequent This is used to process:
l the output logic,
l monitoring and indirect safeguards specific to outputs.

Contact, instruc-
tion list or text
language

Note: The macro steps are carried out in their scanning order in sequential pro-
cessing.
200 TLX DR PL7 40E 09/2000

Grafcet
Description of preliminary processing

General points Entered in contact language, instruction list language or structured text language,
preliminary processing is scanned in its entirety from top to bottom.

It is run before the sequential and subsequent processes and is used to process all
the events that have an effect on the following:
l managing power re-starts and re-initializations,
l resetting to zero or pre-positioning graphs.

Therefore it is only in the preliminary process that it can affect the bits associated
with the steps (step bits %Xi or %Xi.j set to 0 or to 1 by the instructions SET and
RESET).

System bits Pre-positioning, initialization, freezing operations are done using system bits %S21
to %S24.

The system bits associated with Grafcet are classified numerically in order of priority
(%S21 to %S24), and so when several of them are simultaneously set to 1 in the
preliminary processing, they are dealt with one by one in ascending order (only one
is used per scanning revolution).

This bits are used at the beginning of sequential processing.

Processing cold
re-starts

On a new application or when a system context has been lost, the system restarts
from cold.

The bit %S21 is set to 1 by the system before calling up the preliminary processing
and Grafcet is positioned on the initial steps.

If you want a particular process for the application when it is re-starting from cold, it
is possible to test % S0 which remains at 1 during the first cycle of the master task
(MAST).

Processing cold
re-starts

Following a power failure without changing the application, the system re-starts from
cold. It starts again from where it was before the power failure.

If you want a particular process for the application in the case of a cold re-start, you
can test %S1 in the preliminary process and call up the corresponding program.
TLX DR PL7 40E 09/2000 201

Grafcet
Pre-setting the Grafcet

Role Pre-setting the Grafcet can be used when switching from a normal running operation
to a specific running operation or when an incident appears (e.g.: fault causing an
imperfect run).

This operation takes place during the normal run of an application cycle. Therefore
it must be done carefully.

Pre-setting the
Grafcet

The setting can have an effect on all or part of the sequential process:
l by using the instructions SET, RESET,
l by a general reset to zero (%S22) then, in the following cycle, setting the steps to

1.

Example In this example setting bit %M20 to 1 causes steps %X12 to be pre-set to 1, steps
%X10 and %X11 to 0.

Note: Where a step is reset to zero, the deactivation actions for this are not carried
out.

O

R

R

%M20 %X12

%X10

%X11
202 TLX DR PL7 40E 09/2000

Grafcet
Initializing the Grafcet

Role Initializing the Grafcet is done by the system bit %S21.
Normally set at state 0, setting %S21 to 1 causes:
l active steps to deactivate,
l initial steps to activate.

Initializing the
Grafcet

The following table gives the different possibilities for setting to the system bit %S21
to 1 and 0.

Rules for use When it is managed by the user program, %S21 must be set to 0 or 1 in the prelim-
inary process.

Set to 1 Reset to 0

l By setting %S0 to 1
l By the user program
l By the terminal (in debugging or animation

table)

l By the system at the beginning of the pro-
cess

l By the user program
l By the terminal (in debugging or animation

table)
TLX DR PL7 40E 09/2000 203

Grafcet
Resetting Grafcet to zero

Role The system bit %S22 resets Grafcet to 0.

Normally set at 0, setting %S22 to 1 causes active steps in the whole of the sequen-
tial process to deactivate.

Resetting
Grafcet to zero

The following table gives the different possibilities for setting to the system bit %S22
to 1 and 0.

Rules for use l this bit must be written to 1 in the preliminary process,
l resetting %S22 to 0 is managed by the system. It is therefore pointless to have

the program or terminal reset to 0.

To start up the sequential process in a given situation, you must carry out an initial-
ization procedure or pre-set the Grafcet according to the application.

Note: The RESET_XIT function used to reinitialize via the program the step activity
time of all the steps of the sequential processing. (See (See Reference Manual,
Volume 2)).

Set to 1 Reset to 0

l By the user program
l By the terminal (in debugging or animation

table)

l By the system at the end of the sequential
process
204 TLX DR PL7 40E 09/2000

Grafcet
Freezing Grafcet

Role Freezing the Grafcet is done by the system bit %S23.

Normally set at 0, setting %S23 to 1 causes the Grafcet state to be maintained.
Whatever the value of the transition conditions downstream of the active steps, the
Grafcets do not develop. The freeze is maintained as long as bit %S23 is set to 1.

Freezing Grafcet The following table gives the different possibilities for setting to the system bit %S23
to 1 and 0.

Rules for use l managed by the user program, this bit must be set to 1 or 0 in the preliminary pro-
cess,

l bit %S23 associated with bits %S21 and %S22 are used to freeze the sequential
treatment at the initial state or at 0. In the same way the Grafcet can be set and
then frozen by %S23.

Set to 1 Reset to 0

l By the user program
l By the terminal (in debugging or animation

table)

l By the user program
l By the terminal (in debugging or animation

table)
TLX DR PL7 40E 09/2000 205

Grafcet
Resetting macro steps to zero

Role Freezing the Grafcet is done by the system bit %S24.

Normally set to 0, setting %S24 to 1 causes the selected macro steps to be set to
zero in a table of 4 system words (%S22 - %S25).

Resetting macro
steps to zero

The following table gives the different possibilities for setting the system bit %S24 to
1 and 0.

Rules for use l this bit must be written to 1 only in the preliminary process,
l resetting %S24 to 0 is managed by the system. It is therefore pointless to have

the program or terminal reset to 0.

Table of words
%SW22 to
%SW25

A macro step corresponds to each bit in this table. Using it is as follows:
l loading the table with the words %SW22 - %SW25 (bit to be set to 1 when the

corresponding macro step must not be set to zero),
l validation by %S24.
The following illustration show coding for words %SW22 - %SW25.

Note: The RESET_XIT function used to reinitialize via the program the step activity
time of the macro step. (See (See Reference Manual, Volume 2)).

Set to 1 Reset to 0

l By the user program l By the system at the beginning of the pro-
cess

F %SW22 0

XM15 XM0XM1

F %SW23 0

XM31 XM16XM17

F %SW25 0

XM63 XM48XM49
206 TLX DR PL7 40E 09/2000

Grafcet
Example:
! IF %I4.2 AND %T3.D THEN
%SW22:=16#AF8F;
%SW23:=16#F3FF;
%SW24:=16#FFEF;
%SW25:=16#FFFF;
SET %S24
These four words are initialized at 16#FFFF if %S21 = 1.
TLX DR PL7 40E 09/2000 207

Grafcet
Running sequential processing

General points This process is used to program the sequential framework of the application. Se-
quential processing includes:
l the main graph organized into 8 pages,
l up to 64 macro steps each from 8 pages.
In the main graph, several unconnected Grafcets can be programmed and run si-
multaneously.

The Grafcet is made up in 3 large phases.

Phase 1 The following table describes the operations carried out in the first phase.

Phase 2 Phase 2 corresponds to developing the Grafcet situation according to the transitions
crossed:

Phase 3 The actions associated with active steps are carried out in the following order:

Phase Description

1 Evaluating the transition conditions of validated transitions.

2 Request to deactivate the associated upstream steps.

3 Request to activate the downstream steps concerned

Phase Description

1 Deactivating the upstream steps of the transitions crossed.

2 Activating the downstream steps of the transitions crossed.

3 Invalidating the transitions crossed.

4 Validating the transitions downstream of the new activated steps.

Result: The system updates two tables dedicated respectively to the activity of
the steps and the validity of the transitions:
l the step activity table stores the active steps, the steps to be activated and

the steps to be deactivated for the current cycle,
l the transition validity table stores the transitions downstream of the steps af-

fected by the previous table for the current cycle

Phase Description

1 Actions to deactivate the steps to be deactivated.

2 Actions to activate the steps to be activated.

3 Actions to continue active steps.
208 TLX DR PL7 40E 09/2000

Grafcet
Exceeding
capacity

The number of elements in a steps activity table and transition validity table can be
configured.
Exceeding the capacity of one or the other leads to:
l the PL7 switching to STOP (stopping the application running),
l the system bit %S26 switching to 1 (exceeding the capacity of one of the two ta-

bles),
l the ERR light on the PL7 flashing.

The system provides the user with two system words:
l %SW20: a word which is used to inform the current cycle of the number of active

steps, to be activated and deactivated.
l %SW21: a word which is used to inform the current cycle of the number of valid

transitions to be validated or invalidated.

Diagnostics
In the case of a blocking fault, the system words % SW125 - %SW127 are used to
determine the nature of the fault.

%SW125 %SW126 %SW127

DEF7 0 = 0 Exceeding the step table (steps/transitions)

DEF7 = 0 0 Exceeding the transition table

DEFE Step no. Macro step no. or
64 for the main
graph

Running the wrong graph (transition problem
with unresolved destination connector).
TLX DR PL7 40E 09/2000 209

Grafcet
Description of subsequent processing

General points Entered in contact language, instruction list language or structured text language,
subsequent processing is scanned from top to bottom.
This process is the last one run before activating the outputs and is used to program
the output logic.

Actions
associated with
Grafcet

Subsequent processing is used to complete the set points issued by the sequential
process by integrating the running and stopping methods and the indirect safe-
guards specific to the action with the output equation.
It is also used to process an output activated several times in the sequential process.

Generally it is recommended that actions which have a direct effect on the
process should be programmed in the subsequent process.

Example:

l 12.4 = indirect safeguard specific to controlling output %Q4.1.
l %M26 = internal bit resulting from the input logic dealing with the running and

stopping modes.
l %I1.0 = push button.
Output %Q4.1 is activated by steps 5, 8 and 59 of the sequential process.

Actions
independent of
Grafcet

Subsequent processing is also used to program outputs that are independent of se-
quential processing.

%I2.4 %X5

%X8

%X59

%M26 %I1.0

%Q4.1
210 TLX DR PL7 40E 09/2000

Grafcet
Checking the
running of
Grafcet

It may turn out to be necessary to check the proper running of Grafcet by testing the
activity time of certain steps. Testing this time is done by comparing either with a
minimum value or with a maximum value determined by the user.

Using the default is left up to the user (indications, special operating procedure, ed-
iting messages).

Example:
! IF (%X2.T > 100 AND %X2) THEN SET %Q4.0 ;END_IF ;
TLX DR PL7 40E 09/2000 211

Grafcet
212 TLX DR PL7 40E 09/2000

TLX DR PL7 40E 09/2000
10
DFB function blocks
Presentation

Subject of this
chapter

This chapter describes how to program DFB user function blocks.

What’s in this
Chapter?

This Chapter contains the following Maps:

Topic Page

Presenting DFB function blocks 214

How to set up a DFB function block 215

Defining DFB type function block objects 217

Definition of DFB parameters 219

Definition of DFB variables 220

Coding rules for DFB types 222

Creating DFB instances 224

Rules for using DFBs in a program 225

Using a DFB in a ladder language program 226

Using a DFB in a program in instruction list or text language 227

Running a DFB instance 228

Example of how to program DFB function blocks 229
213

DFB function blocks
Presenting DFB function blocks

Role Pro PL7 software offers the user the possibility of creating his own function blocks
corresponding to the specific needs of his applications.

These user function blocks are designed for structuring an application. They will be
used when a programming sequence is repeated several times within an applica-
tion, or to freeze standard programming (e.g.: command algorithm for a motor in-
cluding taking local safeguards into account).

They can be transmitted to all the programmers and used in the same application or
in any other application (export/import function).

Examples of use Using a DFV function block in an application allows you to:
l simplify the program design and entries,
l increase the readability of the program,
l enable debugging (all the variables changed by the DFB type are identified on its

interface),
l reduce the amount of code generated (the code corresponding to the DFB is only

changed once, however many calls there are on the DFB in the program).

Comparison with
the sub-program

In relation to the sub-program they enable:
l the parameters of the process to be set more easily,
l the internal variables belonging to the DFB and therefore independent of the ap-

plication to be used,
l testing independent of the application.
They offer a graphic display of the block in ladder language, making programming
and debugging easier.
Also, DFB function blocks use residual data.

Areas of use The table below describes the DFB areas of application.

Function Area

PL7s the DFBs can be used with. Premium

DFB creation software PL7 Pro

Software the DFBs can be used with. Pro PL7 or Junior PL7

Programming language used to create DFB code. structured text language and ladder

Programming languages the DFBs can be used
with.

ladder, structured text and instruction list
214 TLX DR PL7 40E 09/2000

DFB function blocks
How to set up a DFB function block

Procedure Setting up a DFB function block is done in 3 main steps:

Designing the
DFB type

Consists of defining and coding all the elements that make up the DFB model, using
the DFB editor.

The following illustration shows how a DFB model is made up.

A DFB type function block is made up:
l of a name,
l parameters:

l inputs,
l outputs,
l inputs/outputs,

l variables:
l public variables,
l private variables,

l code in structured text language or ladder,
l comments,
l a descriptive form.

Creating a DFB
instance

Once the DFB type is designed the user defines a DFB instance using a variables
editor or when calling up the function in the program editor.

Step Action

1 Designing the DFB model (called: DFB Type).

2 Creating an image of this block called instance for using each time in the appli-
cation.

3 Using the instance in the PL7 program.

DFB type name

Inputs Outputs

Inputs/
Outputs

Public variables
Private variables

Code
TLX DR PL7 40E 09/2000 215

DFB function blocks
Using the DFBs This block instance is used next as a standard function block in ladder language or
as an elementary function in structured text language or instruction list language.

It can be programmed in the various tasks (except in event tasks) and sections of
the application.
216 TLX DR PL7 40E 09/2000

DFB function blocks
Defining DFB type function block objects

General
characteristics
of DFB objects

These objects are internal DFB data. They can be purely symbolic (no addressing
under address form).

DFBs use 2 types of object:
l parameters
l variables

Syntax For each parameter or variable used, the designer of the DFB type function block
defines:
l a name with a maximum of 8 characters (non-accented letters, figures, the char-

acter "_", are allowed. The first character must be a letter; key words and sym-
bols are not allowed),

l an object type (see table below),
l an optional comment with up to 80 characters,
l an initial value (except for Input/Output parameters).

Types of objects The table below describes the list of different object types possible when declaring
the parameters and variables for the DFB type.

Action
on…

Type Name Examples

Bits BOOL Boolean The BOOL type does not manage the edges. If
edge management is not necessary in the process
it is preferable to use the BOOL type.
 Example of a BOOL type object in PL7 language:
%MWi:Xj which does not manage the edges but
which takes up less memory than the EBOOL type.

EBOOL Extended
Boolean

The EBOOL type manages the edges. Therefore it
is possible to run RE and FE edge instructions on
this type of parameter or variable.
if you wish to associate an EBOOL type with an in-
put/output parameter when it is being used, it must
be an EBOOL type in the DFB.
 Example of a EBOOL type object in PL7 language:
%Mi,%Ixy.i,%Qxy.i.

Words WORD All 16 bits Example of a WORD type object in PL7 language:
%MWi, %KWi,

DWORD All 32 bits Example of a DWORD type object in PL7 lan-
guage: %MDi, %KDi,

REAL Real Example of a REAL type object in PL7 language:
%MFi, %KFi
TLX DR PL7 40E 09/2000 217

DFB function blocks
Tables AR_X Bit table Example of an AR_X type object in PL7 language:
%Mi:L, %Ix.i:L

AR_W Table of all 16
bits

 Example of an AR_W type object in PL7 language:
%MWi:L, %KWi:L

AR_D Table of all 32
bits

 Example of an AR_D type object in PL7 language:
%MDi:L, %KDi:L

AR_R Table of reals Example of an AR_R type object in PL7 language:
%MFi:L, %KFi:L

STRING Character
string

 Example of a STRING type object in PL7 language:
%MBi, %KBi

Note:
l Tables: the length of a table must be mentioned for outputs and public and pri-

vate variables, on the other hand it is not necessary to define them for input pa-
rameters and input/output parameters.

l The initial values can be defined for inputs (if they are not table type), for outputs
and for public and private variables.

Action
on…

Type Name Examples
218 TLX DR PL7 40E 09/2000

DFB function blocks
Definition of DFB parameters

Illustration The following illustration shows examples of parameters

Description of
parameters

The table below describes the role of each type of parameter.

Key:
(1) Number of inputs + Number of inputs/outputs less than or equal to 15
(2) Number of outputs + Number of inputs/outputs less than or equal to 15

CheckInputs Outputs

Inputs/
Outputs

DWORD
Gap

WORD
Speed

BOOL
Enable

WORD
Accel

BOOL
Error

WORD
Actions

Parameter Maximum
number

Role

Inputs 15 (1) This is data to be supplied to the DFB by the application program.
These read only parameters cannot be modified in the DFB
code.

Outputs 15 (2) This is data calculated by the DFB to be sent to the application
program.

Inputs/out-
puts

15 These are input parameters which can be modified in the DFB
code.

Note:
l All the DFB block must have at least one Boolean input.
l It is only possible to modify a DFB interface (public variables or parameters) if it

is not instanced and used in the application.
TLX DR PL7 40E 09/2000 219

DFB function blocks
Definition of DFB variables

Description of
variables

The table below describes the role of each type of variable.

Accessing public
variables.

Only output parameters and public variables can be accessed as objects in the ap-
plication program and outside the function block body.
Their syntax is as follows :

Name_DFB.Name_parameter

Or Name_DFB is the name given to the DFB instance used (32 characters maxi-
mum)

and Name_parameter is the name given to the output parameter or the public vari-
able (8 characters maximum).

Example: Gap.check for the gap output of the DFB instance named Check.

Variable Maximum
number

Role

Public 100 Internal variables used in the process which can be accessed by
the user for adjustment or by the application program outside the
DFB code (for a DFB instance public variable, see below: Access-
ing public variables.

Private 100 Internal variables in function block code. These variables are cal-
culated and used right inside the DFB but do not have any link with
the outside of the DFB.
These variables are useful for programming the block but are of no
interest for the user of the block (e.g.: intermediate variable for
sending back one combination expression to another, result of an
intermediate calculation…).

Note: It is only possible to modify a DFB interface (public variables or parameters)
if it is not instanced and used in the application.
220 TLX DR PL7 40E 09/2000

DFB function blocks
Saving and
restoring public
variables

Public variables, modified by the program or by adjustment, can be saved in the lo-
cation and sets initialization values (defined in the DFB instances) by setting system
bit $S94 to 1.
Replacement only takes place if authorization for it has been given at the level of
each DFB type variable.

These saved values are re-applied by setting system bit %S95 to 1 or by re-initializ-
ing the PL7.

It is possible to disable the «Save/Restore» function globally for all DFBest possible
function blocks (dialogue boxProperties of DFB types).
TLX DR PL7 40E 09/2000 221

DFB function blocks
Coding rules for DFB types

General points The code defines the processing the DFB block must carry out depending on the
parameters declared.
The DFB function block code is programmed in text or ladder language.
As far as text language is concerned, the DFB is made up of a single text sequence
of unlimited length.

Programming
rules

All language instructions and advanced functions are permitted except for:
l calling up standard function blocks,
l calling up other DFB function blocks,
l connecting to a JUMP label,
l calling up a sub-program,
l the HALT instruction,
l instructions using input/output module variables (e.g.: READ_STS, SMOVE...).
The code uses DFB parameters and variables defined by the user.

The DFB block function code cannot use either input/output objects (%I,%Q...), or
global application objects (%MW,%KW...) except for the system bits and words %S
and %SW.

Specific
functions

The table below describes functions that have been specifically adapted to be used
in the code.

Note: it is not possible to use a label

Functions Role

FTON, FTOF, FTP, FPULSOR These timing functions are meant to be used instead of
standard timing function blocks.

LW, HW, COCATW These instructions are used to manipulate words and dou-
ble words.

LENGTH_ARW, LENGTH_ARD,

LENGTH_ARR

These instructions are used to calculate the length of ta-
bles.
222 TLX DR PL7 40E 09/2000

DFB function blocks
Example of the
code

The following program gives an example of text code

CHR_200:=CHR_100;
CHR_114:=CHR_104;
CHR_116:=CHR_106;
RESET START;
(*CHR_100 is incremented 80 times*)
FOR CHR_102:=1 TO 80 DO

INC CHR_100;
WHILE((CHR_104-CHR_114)<100)DO
IF(CHR_104>400) THEN

EXIT;
END_IF;
INC CHR_104;
REPEAT
IF(CHR_106>300) THEN

EXIT;
END_IF;
INC CHR_106;
UNTIL ((CHR_100-CHR_116)>100)
END_REPEAT;
END_WHILE;
(*Loop continues as far as CHR_106)
IF (CHR_106=CHR_116)
THEN EXIT;
ELSE
 CHR_114:=CHR_104;
 CHR_116:=CHR_106;
END_IF;
INC CHR_200;

END_FOR;
TLX DR PL7 40E 09/2000 223

DFB function blocks
Creating DFB instances

General points A DFB instance is a copy of the DFB type:
l it uses the DFB type code (there is no duplication of the code),
l it creates a field for specific data for this instance which is a copy of the parame-

ters and variables of the DFB type. This field is in the given space in the applica-
tion.

Each DFB instance is located by a name of no more than 32 characters defined by
the user.
The characters allowed are identical to those allowed for symbols, i.e. the following
are allowed:
l non-accented letters,
l figures,
l the character "_".
The first character must be a letter; key words and symbols are not allowed.

Rules It is possible to create as many instances as necessary (only limited by the PL7
memory size) from the same type of DFB.

The initial values of the public variables defined for DFB type function blocks can be
modified for each instance.
224 TLX DR PL7 40E 09/2000

DFB function blocks
Rules for using DFBs in a program

General points DFB instances can be used in all languages (ladder, text and instruction list) and in
all parts of the application: sections, sub-programs, Grafcet modules (except in
event tasks).

General rules for
use

The following rules must be observed whatever language used:
l all the table type input parameters as well as input/output parameters must be en-

tered.
l input parameters which have not been hardwired keep the value of the previous

call or the initialization value if the block has never been called before this input
has been made or hardwired.

l all the objects assigned to input, output and input/output parameters must be of
the same type as those defined when the DFB type was set up (e.g.: if the WORD
type is defined for the "speed" input parameter, the double words %MDi, %KDi
are not allowed to be allocated to it).
The only exceptions are the BOOL and EBOOL types for input or output param-
eters (not for input/output parameters) which can be mixed.
Example : the "Validation" input parameter can be defined as BOOL and can be
associated with an internal bit %Mi which is an EBOOL type. On the other hand,
in the internal code of the DFB type, the input parameter will have BOOL type
properties. It cannot manage edges.

Allocating the
parameters

The following table summarizes the different parameter allocation possibilities in the
various programming languages:

(1) hardwired in ladder, or object in Boolean or text language
(2) in ladder, any DFB block must have at least one hardwired Boolean (binary) in-
put.

Parameter Type Parameter allocation Allocation

Inputs Boolean Hardwired (1) optional (2)

Numeric Object or expression optional

Table Object compulsory

Inputs/
Outputs

Boolean Object compulsory

Numeric Object compulsory

Table Object compulsory

Outputs Boolean Hardwired (1) optional

Numeric Object optional

Table Object optional
TLX DR PL7 40E 09/2000 225

DFB function blocks
Using a DFB in a ladder language program

Principle There are two ways of calling up a DFB function block:
l a text call in an operation block, the syntax and the constraints on the parameters

are the same as those in text language.
l a graphic call, see the example below.
Graphic DFB function blocks have inputs/outputs which are assigned directly by ob-
jects or expressions. These objects or expressions take up one cell in the graphic
network.

2 DFB function blocks connected in series must be separated by at least 2 columns.

Example The following illustration shows a simple example of how to program a DFB.

The table below locates the different elements of the DFB.

Address Role

1 Name of the DFB

2 Name of the DFB type

3 Effective parameter for the first input

4 Input parameters (name and type)

5 Output parameters (name and type)

6 Input/output parameters (name and type)

Note:
l A DFB function block must have at least one hardwired Boolean input.
l The numerical inputs, outputs or inputs/outputs of the block are not hardwired.

The objects mentioned in the cell opposite the contact are associated with these
contacts.

Check

Control_port_1

%Q2.1

%MW100

DWORD
Gap

WORD
Speed

BOOL
Enable

WORD
Accel

BOOL
Error

WORD
Actions

%MW8ABS(%MD0)

10000

%MW100

%Q2.5
226 TLX DR PL7 40E 09/2000

DFB function blocks
Using a DFB in a program in instruction list or text language

General points Calling up the DFB function block constitutes an action which can be put in a se-
quence just like any other action in the language.

General syntax The DFB programming syntax is as follows:

The following table describes the role of the instruction parameters.

Text syntax Instructions in text language have the following syntax:
Name_DFB (E1,...,En,ES1,...,ESn,S1,...,Sn);

Example: Cpt_bolts(%I2.0,%MD10,%I2.1,%Q1.0);

Instruction list
syntax

Instructions in instruction list language have the following syntax:
[Name_DFB (E1,...,En,ES1,...,ESn,S1,...,Sn)]

Example: [Cpt_bolts(%I2.0,%MD10,%I2.1,%Q1.0)]

Parameters Role

E1, ..., En Expressions (except for BOOL/EBOOL type objects), objects or immediate
values using effective parameters for input parameters.

ES1, ..., ESn Effective parameters corresponding to inputs/outputs. They are always
read/write language objects.

S1, ..., Sn Effective parameters corresponding to outputs. They are always read/write
language objects.

DFB_Name

(E1,...,En,ES1,...,ESn,S1,...,Sn);
TLX DR PL7 40E 09/2000 227

DFB function blocks
Running a DFB instance

Operation Running a DFB instance is done in the following order:

Debugging tools PL7 software offers several debugging tools for the PL7 program and the DFBs:
l animation table: all parameters and public variables are displayed and animated

in real time. It is possible to modify and force required objects,
l break point, step by step and diagnostic program,
l operating screens: for unit debugging.

Step Action

1 Loading the input and input/output parameters using the actual parameters.
Any input left free takes on the initialization value defined in the DFB type when
being initialized or starting from cold, then the current value of the parameter.

2 Going through input parameter values (except for table type).

3 Going through input/output parameter addresses.

4 Running the text code.

5 Writing the output parameters.
228 TLX DR PL7 40E 09/2000

DFB function blocks
Example of how to program DFB function blocks

General points This example is given in a technical capacity. The DFB to be programmed is a
counter.

DFB type
characteristics

The counter is made up from the following DFB type:

The table below describes the characteristics of the DFB type to be programmed.

Counter
operation

 The following table describes the functions that the counter must have.

Characteristics Values

Name Counter_parts

Inputs l Reset to zero: resetting the counter to zero
l Presel: value of counter preselection
l Count: input count

Outputs Done: output value of the preselection

Public variable V_cour: Current variable incremented by the input Count

Counter_parts

EBOOL
Reset to zero

DWORD
Presel

EBOOL
Count

DWORD
V_current

BOOL
Done

Phase Description

1 This block counts the rising edges on the input Count.

2 The result is put in the variable V_curr, this value is reset to zero by a rising
front on the input Reset to zero.

3 Counting is done up to the preselected value. When this value is reached the
outputDone is set to 1, it is reset to 0 on the rising edge on the input Reset to
zero.
TLX DR PL7 40E 09/2000 229

DFB function blocks
DFB code Programming a DFB type code is given below.

Example of use In this example, the DFB type created is used 3 times (3 DFB instances) for counting
3 types of parts.

When the number of parts programmed (in words %MD10, %MD12, and %MD14)
is reached, the counter output stops the supply system of the corresponding parts.

!(*Programming DFB counter_parts*)
IF RE Reset to zero THEN

V_curr:=0;
END_IF;
IF RE Count THEN

V_curr:=V_curr+1;
END_IF;
IF(V_curr>=Presel) THEN

SET Done;
ELSE

RESET Done;
END_IF;
230 TLX DR PL7 40E 09/2000

DFB function blocks
The following program uses 3 instances of DFB type Counter_parts: Counter_bolts,
Counter_nuts, Counter_screws.

Counter_parts

EBOOL
Reset to zero

DWORD
Presel

EBOOL
Count

BOOL
Done

Counter_bolts

%I1.0

%MD10

%I1.1

%Q2.1

Counter_parts

EBOOL
Reset to zero

DWORD
Presel

EBOOL
Count

BOOL
Done

Counter_nuts

%I1.2

%MD12

%I1.3

%Q2.2

Counter_parts

EBOOL
Reset to zero

DWORD
Presel

EBOOL
Count

BOOL
Done

Counter_screws

%I1.4

%MD14

%I1.5

%Q2.3
TLX DR PL7 40E 09/2000 231

DFB function blocks
232 TLX DR PL7 40E 09/2000

CBAIndex
A
Action, 185
Action for activating, 187
Activating, 187
Addressing

AS-i bus, 38
FIPIO Bus, 34, 36
Micro I/O, 31
Momentum, 34, 36
TBX, 34, 36

AND convergence, 178
AND convergences, 170, 171
AND divergences, 170, 171
Arithmetic

instruction, 149

B
Bit

object, 29
Bits

memory, 62

C
Cold start, 78
Comments, 183

Grafcet, 183
Comments on

instruction list, 131
Contact language, 114
TLX DR PL7 40E 09/2000
Contact network, 115
comments, 117
Label, 116

Continuous action, 188
Conversion

instruction, 154
Cyclic

run, 95

D
Destination connector, 179
DFB, 214

object, 217
parameters, 219
variables, 220

DFB function block, 214
DFB instances, 224
Directed link, 182

E
Event

processing, 91, 106
EXIT, 162

F
Fast

task, 90
FOR...END_FOR, 161
Freezing Grafcet, 205
233

Index
Function block
object, 44

Function module, 108
Function modules, 22

G
Grafcet, 169
Grafcet objects, 51, 172
Grafcet page, 174, 176
Grafcet section, 199
Grafcet symbols, 170
Graphic elements, 118

I
IF...THEN, 157
Indexed

object, 49
Initializing the Grafcet, 203
Input step, 195
Instruction

bit objects, 148
Instruction list, 128

label, 130
sequence, 129

Instructions
Instruction list, 132

Instructions for
character strings, 151
tables, 151
time management, 155

L
Label

text, 146
Language

Structured text, 144
Logic

instruction, 149

M
Macro step, 194
234
Master
task, 85

Mono task, 94
Multi-task, 20
Multitask, 102, 104

O
Object

Boolean, 26
OR convergence, 177
OR divergence, 177, 178
Output step, 195

P
Periodic

Run, 97
PL7, 16

languages, 17
PL7 object language, 25
PL7 software, 16
Power cut, 74
Power restoration, 74
Preliminary processing, 201
Premium

memory, 59
Premium TSX

memory, 67
Pre-setting the Grafcet, 202
Presymbolization, 54
Program

instructions, 155
Programming

Contact network, 121

R
REPEAT...END_REPEAT, 160
Resetting Grafcet to zero, 204
Resetting macro steps to zero, 206
Running

Contact networks, 124
Running a text program, 163
TLX DR PL7 40E 09/2000

Index
S
Section, 20, 86
Sequence

text, 145
Sequential processing, 208
Source connector, 179
Structured text, 144
Sub-program, 20
Subroutine, 86
Subsequent

processing, 210
Switching, 177
Symbolizing, 52

T
Table, 47
Task, 20
Text

comments, 147
Transition conditions, 189
TSX 37

memory, 56, 65
TSX 57

memory, 67, 69, 71
TSX Micro

memory, 56, 65
TSX Premium

memory, 69, 71
TSX57

memory, 59

W
Warm restart, 76
WHILE...END, 159
Word

memory, 64
object, 40
objects, 27
TLX DR PL7 40E 09/2000
 235

Index
236 TLX DR PL7 40E 09/2000

	Reference manual
	Table of Contents
	Description of PL7 software
	Introducing PL7 software
	PL7 object language
	User memory
	Operating modes
	Software structure
	Description of tasks
	Mono task structure
	Multi task structure
	Function modules

	Description of PL7 languages
	Contact language
	Instruction list language
	Structured text language
	Grafcet
	General presentation of Grafcet
	Rules for constructing Grafcet
	Programming actions and conditions
	Macro steps
	Grafcet section

	DFB function blocks

	Index

