
Reference Manual

PL7 Micro/Junior/Pro

Detailed description of
Instructions and Functions
TLX DR PL7 xx eng

2

Related Documentation
Related Documentation

At a Glance This manual is in three volumes:
� Volume 1: Description of the PL7 software

� General points
� Ladder language
� Instruction list language
� Structured text language
� Grafcet language
� DFB function blocks
� Function modules

� Volume 2: Detailed description of instructions and functions
� Basic instructions
� Advanced instructions
� Bit objects and system words

� Volume 3: Appendices
� Differences between PL7-2/3 and PL7 Micro/Junior
� Quick reference
� Reserved word list
� Conforms to IEC standard 1131-3
� Automation OLE server
� Performance
TLX DR PL7 xx 3

Related Documentation
4 TLXDRPL7xx

Table of Contents
About the book .11

Chapter 1 Standard instructions. 13
Introduction . 13

1.1 Introduction to the PL7 instructions. 15
PL7 Instructions. 15

1.2 Boolean instructions . 16
Introduction . 16
Bit object instructions . 17
Definition of the main boolean objects . 18
Loading instructions . 19
Assign instructions . 21
AND Logic Instruction . 23
OR Logic Instruction . 26
Exclusive OR Instructions . 29

1.3 Predefined function blocks . 32
Introduction . 32
Introduction to timer function block %TMi . 33
%TMi timer block operating mode. 35
Operation of timer function block %TMi in TON mode . 36
Operation of timer function block %TMi in TOF mode . 37
Operation of timer function block %TMi in TP mode. 38
Programming and configuring timer function blocks . 39
Specific cases of operation for the series 7 timer . 41
Introduction to the up-down counter function block . 42
How the up/down counter function block works . 44
Configuration and programming . 46

1.4 Numerical processing on integers . 48
Introduction . 48
Introduction to numerical processing using integers . 49
Comparison instructions . 52
Assign instructions . 54
Word assignment . 56
Arithmetic instructions on integers . 58
Logic instructions. 62
5

Numerical expressions. 64
1.5 Program instructions . 66

Introduction . 66
Subroutine call . 67
Subroutine return . 68
Jump in the program . 70
End of program instructions. 73
Program stop . 74
Event masking/unmasking instructions . 75
NOP Instructions . 76

Chapter 2 Advanced instructions . 77
Introduction . 77

2.1 Introduction to advanced instructions . 79
Introduction to the advanced instructions . 79

2.2 Advanced predefined function blocks . 80
Introduction . 80
Introduction to Monostable function block . 81
Monostable block function operation . 82
Configuring and programming monostable function blocks. 83
Introduction to Register function block. 85
Register function block operation in FIFO mode . 86
Register function block operation in LIFO mode . 87
Programming and configuring the Register block function 88
Introduction to the Cyclic Programmer (Drum) function block 90
Cyclic Programmer (Drum) function block operation . 92
Programming and configuring the cyclic programmer function block (Drum) . . . 94
Introduction to Timer function block series 7 . 96
Timer function block series 7 operation . 97
Programming the series 7 timer in "Delay on engagement" mode 98
Programming the series 7 timer in "Delay on release" mode 99
Programming the series 7 timer in "Delay accumulated on engagement" mode100
Programming the series 7 timer in "Delay accumulated on release" mode. . . . 101
Introduction to the vertical comparison operation block 102
Operation of vertical comparison operation block . 103

2.3 Shift instructions. 104
Shift instructions. 104

2.4 Floating point instructions . 106
Introduction . 106
Floating point instructions . 107
Floating point comparison instructions. 110
Assign instructions on the floating point. 112
Arithmetic instructions on a floating point . 114
Logarithm and Exponential Instructions. 116
Trigonometric Instructions . 118
Conversion instructions . 120
6

Rounding off a floating point value in ASCII format. 122
2.5 Numerical conversion instructions. 124

Introduction . 124
BCD conversion instructions <-> Binary . 125
Integer Conversion Instructions <-> Floating . 128
Instructions for Gray <-> Integer conversion. 131
Word conversion Instructions <--> double word . 132

2.6 Word table instructions . 134
Introduction . 134
Word table instructions . 135
Arithmetic instructions on tables . 137
Logic table instructions . 139
Table summing functions . 141
Table comparison functions . 143
Table search functions . 145
Table search functions for maxi and mini values . 148
Number of occurrences of a value in a table . 150
Table rotate shift function . 152
Table sort function . 155
Table length calculation function . 157

2.7 Character string instructions . 159
Introduction . 159
Format of a string of characters or table of characters 160
Assignment on string of characters . 161
Alphanumeric comparisons. 162
Numeric conversion functions <---> ASCII . 164
binary-->ASCII conversion . 165
ASCII-->binary conversion . 167
Floating point-->ASCII conversion . 169
ASCII-->Floating point conversion . 171
Concatenation of two strings. 173
Deletion of a substring of characters. 175
Inserting a substring of characters . 177
Replacing a substring of characters . 179
Extracting a substring of characters . 181
Extracting characters. 183
Comparing two character strings. 185
Searching for a character substring . 187
Length of a character string . 189

2.8 Time management instructions: Dates, Times, Duration 190
Introduction . 190
Format of parameters in the time management instructions. 191
Using system bits and words - General. 194
Real time clock function . 195
Reading system date. 198
7

Updating the system date . 199
Reading stop date and code . 201
Reading day of the week . 202
Addition / Subtraction of a duration from a date. 203
Addition / Subtraction of a duration from a time of day 205
Interval between two dates (without time) . 207
Interval between two dates (with time). 209
Interval between two times . 211
Conversion of a date into a string of characters . 212
Conversion of a complete date into a string of characters. 214
Conversion of a duration into a string of characters . 216
Conversion of a time of day to a character string . 218
Conversion of a duration into HHHH:MM:SS. 220

2.9 Bit table instructions. 222
Introduction . 222
Copying a bit table into a bit table . 223
Logic instructions on bit tables. 224
Copying a bit table into a word table . 226
Copy of a word table in a bits table . 228

2.10 "Orpheus" functions: Shift registers, counter . 230
Introduction . 230
Shift register on words with shifted bit retrieval . 231
Up/down counting with overshoot signaling. 234
Rotate shifts . 237

2.11 Timing functions. 239
Introduction . 239
Timing functions. 240
Engagement timing (on delay) function . 241
Release timing (off delay) function. 243
Pulse timer function . 245
Rectangular signal generator function . 247

2.12 Data storage functions. 249
Introduction . 249
Data Archiving Functions. 250
Initializing the Extended Archiving Zone . 251
Archiving Zone Initialization . 253
Writing Data to the Extended Archiving Zone . 255
Writing Data to the Archiving Zone . 257
Reading Data to the Extended Archiving Zone . 259
Reading Data to the Archiving Zone . 261

2.13 Grafcet functions . 263
Step activity time reset to zero function . 263
8

Chapter 3 System objects .265
Introduction . 265

3.1 System Bits . 267
Introduction . 267
System bit introduction . 268
Description of system bits %S0 to %S7 . 269
Description of system bits %S8 to %S16 . 270
Description of system bits %S17 to %S20 . 271
Description of system bits %S21 to %S26 . 272
Description of system bits %S30 to %S59 . 273
Description of system bits %S60 to %S69 . 274
Description of System Bits %S70 to %S92 . 275
Description of system bits %S94 to %S99 . 276
Description of system bits %S100 to %S119 . 277

3.2 System words . 278
Introduction . 278
Description of system words %SW0 to %SW11 . 279
Description of system words %SW12 to %SW18 . 280
Description of system words %SW20 to %SW25 . 281
Description of system words %SW30 to %SW35 . 282
Description of system words %SW48 to %SW59 . 283
Description of system words %SW60 to %SW62 . 285
Description of system words %SW63 to %SW65 . 288
Description of system words %SW66 to %SW69 . 289
Description of system words %SW80 to %SW89 . 291
Description of system words %SW96 to %SW97 . 292
Description of system words %SW98 to %SW109 . 293
Description of system word %SW116 . 294
Description of system words %SW124 to %SW127 . 295
Description of system words %SW128 to %SW143 . 296
Description of system words %SW144 to %SW146 . 297
Description of system words %SW147 to %SW152 . 299
Description of system word %SW153 . 300
Description of system word %SW154 . 302
Description of system words %SW155 to %SW162 . 303

Index . 305
9

10

About the book
At a Glance

Document Scope This manual describes the programming language instructions for Micro, Premium
and Atrium PLCs.

Validity Note The updated version of this publication takes into account the functionality of PL7
V4.2. Nevertheless it can be used to install earlier versions of PL7.

User Comments We welcome your comments about this document. You can reach us by e-mail at
TECHCOMM@modicon.com
TLX DR PL7 xx 11

About the book
12 TLXDRPL7xx

TLX DR PL7 xx
1

Standard instructions
Introduction

Contents of this
section

This chapter describes the standard instructions for PL7 language.

What's in this
Chapter?

This Chapter contains the following Sections:

Section Topic Page

1.1 Introduction to the PL7 instructions 15

1.2 Boolean instructions 16

1.3 Predefined function blocks 32

1.4 Numerical processing on integers 48

1.5 Program instructions 66
13

Standard instructions
14 TLXDRPL7xx

Standard instructions
1.1 Introduction to the PL7 instructions

PL7 Instructions

General All PL7 languages use the same instruction set.

Boolean instructions and function blocks are represented differently according to the
language.

Example: loading instruction

Digital instructions (arithmetic, logic, task, etc.) have similar representations.

This document gives a detailed description of all the instructions; these have been
put into two sets for the sake of simplicity:
� the basic instructions (See Standard instructions, p. 13),
� the advanced instructions (See Advanced instructions, p. 77).

Basic
instructions

These comprise all the basic boolean instructions, the predefined function blocks,
and the arithmetic and logic instructions on integers.

Advanced
instructions

These comprise instructions which address advanced programming needs. These
instructions are of two types:
� PL7 language, these increase the possibilities for language processing using

specific functions (manipulation of character strings, time management, etc.),
� tasks, these offer functions specific to the task to be processed, for example

functions for the communication task:
� PRINT to send a character string type message to a terminal or printer,
� SEND to send a message to an application,
� PID PID regulating function.

Instruction Ladder language Instruction list Structured text

Loading LD :=
TLX DR PL7 xx 15

Standard instructions
1.2 Boolean instructions

Introduction

Aim of this
section

This section describes the PL7 language boolean instructions

What's in this
Section?

This Section contains the following Maps:

Topic Page

Bit object instructions 17

Definition of the main boolean objects 18

Loading instructions 19

Assign instructions 21

AND Logic Instruction 23

OR Logic Instruction 26

Exclusive OR Instructions 29
16 TLXDRPL7xx

Standard instructions
Bit object instructions

Bits instructions The following instructions apply to bit objects.

Bits table
instructions

The following instructions apply to bits table objects.

Designation Function

:= Assignment of a bit

OR boolean OR

AND boolean AND

XOR boolean exclusive OR

NOT Inversion

RE Rising edge

FE Falling edge

SET Set to 1:

RESET Set to 0:

Designation Function

Table:= Table Assignment between two tables

Table:= Word Assignment of a word to a table

Word:= Table Assignment of a table to a word

Table:= Double word Assignment of a double word to a table

Double word: = Table Assignment of a table to a double word

COPY_BIT Copy of a bits table in a bits table

AND_ARX AND between two tables

OR_ARX OR between two tables

XOR_ARX exclusive OR between two tables

NOT_ARX Negation in a table

BIT_W Copy of a bits table in a word table

BIT_D Copy of a bits table in a double word table

W_BIT Copy of a word table in a bits table

D_BIT Copy of a double word table in a bits table

LENGTH_ARX Calculation of the length of a table by the number of elements
TLX DR PL7 xx 17

Standard instructions
Definition of the main boolean objects

Description The following table describes the main boolean objects.

Bits Description Examples Write
access

Immediate
values

0 or 1 (False or True) 0 _

Inputs/outputs These bits are the "logic images" of the electrical states of the inputs/
outputs.
They are stored in the data memory and updated each time the task in
which they are configured is polled.

Note: The unused input/output bits may not be used as internal bits.

%I23.5
%Q51,2

No
Yes

Internal The internal bits are used to store the intermediary states during
execution of the program.

%M200 Yes

System The system bits %S0 to %S127 monitor the correct operation of the PLC
and the running of the application program.

%S10 Accordin
g to i

Function
blocks

The function block bits correspond to the outputs of the function blocks
or DFB instance.
These outputs may be either directly connected or used as an object.

%TM8.Q No

Word extracts With the PL7 software it is possible to extract one of the 16 bits of a word
object.

%MW10:X5 Accordin
g to the
type of
words

Grafcet steps
and macro-
steps

The Grafcet status bits of the steps, macro-steps and macro-step steps
are used to recognize the Grafcet status of step i, of macro-step j or of
step i of the macro-step j.

%X21
%X5.9

Yes
Yes
18 TLXDRPL7xx

Standard instructions
Loading instructions

Role The following table describes the role of each of the instructions.

Permitted
operands

The following table gives a list of the operands used for these instructions.

Ladder Instruction list Structured
text

Description Timing diagram

LD := Normally open contacts: contact made
(result at 1) when the controlling bit object is
at state 1.

LDN :=NOT Normally closed contacts: contact made
(result at 1) when the controlling bit object is
at state 0.

LDR :=RE Rising edge contacts: detect controlling bit
object changing from 0 to 1.
Setting the result to 1 takes 1 cycle to
complete.

LDF :=FE Falling edge contacts: detect controlling bit
object changing from 1 to 0.
Setting the result to 1 takes 1 cycle to
complete.

Opérande

Résultat

Opérande

Résultat

P Opérande

Résultat

N Opérande

Résultat

Ladder Instruction list Structured
text

Operands

LD := %I,%Q,%M,%S,%BLK,%•:Xk, %Xi, (True and False in instruction list
or structured text)

LDN :=NOT %I,%Q,%M,%S,%BLK,%•:Xk, %Xi, (True and False in instruction list
or structured text)

LDR :=RE %I,%Q,%M

LDF :=FE %I,%Q,%M

P

N

TLX DR PL7 xx 19

Standard instructions
Example in
ladder

The following example shows how to program the loading instructions in ladder
format.

Example in
instruction list

The following example shows how to program the loading instructions in Instruction
List language.

Example in
structured text

The following example shows how to program the loading instructions in structured
text language.

P

N

%I1.1 %Q2.3

%M0

%I1.2 %Q2.4

%I1.3 %Q2.5

%Q2.2

LD %I1.1
ST %Q2.3
LDN %M0
ST %Q2.2
LDR %I1.2
ST %Q2.4
LDF %I1.3
ST %Q2.5

%Q2.3:=%I1.1;
%Q2.2:=NOT %M0;
%Q2.4:=RE %I1.2;
%Q2.5:=FE %I1.3;
20 TLXDRPL7xx

Standard instructions
Assign instructions

Role The following table describes the role of each of the instructions.

Permitted
operands

The following table gives a list of the operands used for these instructions

Language
data

Instruction list Structured
text

Description Timing diagram

ST := to the direct coils the associated bit object
takes the value of the equation result.

STN :=NOT to the negated coils: the associated bit object
takes the inverse value of the equation result.

S SET to the set coils: the associated bit object is set
when the result of the equation is set

R RESET to the trigger coils: the associated bit object is
clear when the result of the equation is set.

Operand

Result

Operand

Result

S Operand

Result

R Operand

Result

Language
data

Instruction list Structured
text

Operands

ST := %I,%Q,%M,%S,%•:Xk

STN :=NOT %I,%Q,%M,%S,%•:Xk

S SET %I,%Q,%M,%S,%•:Xk,%Xi
Only in the preliminary processing.

R RESET %I,%Q,%M,%S,%•:Xk,%Xi
Only in the preliminary processing.

S

R

TLX DR PL7 xx 21

Standard instructions
Example in
language data

The following example shows how to program the assign instructions in language
data.

Example in
instruction list

The following example shows how to program the assign instructions in instruction
list language.

Example in
structured text

The following example shows how to program the assign instructions in structured
text language.

%I1.1 %Q2.3

%Q2.4

%I1.2 %Q2.4

%Q2.2

S

R

LD %I1.1
ST %Q2.3

STN %Q2.2

S %Q2.4

LD %I1.2
R %Q2.4

%Q2.3 := %I1.1;
%Q2.2 := NOT %I1.1;
IF %I1.1 THEN
 SET %Q2.4;
END_IF;
IF %I1.2 THEN
 RESET %Q2.4;
END_IF;
22 TLXDRPL7xx

Standard instructions
AND Logic Instruction

Role The following table describes the role of each of the instructions

Language
data

Instruction list Structured
text

Description Timing diagram

AND AND AND logic between the operand and the
previous instruction’s Boolean result

ANDN AND
(NOT...)

AND logic between the operand inverse and
the previous instruction’s Boolean result

ANDR AND (RE...) AND logic between the operand’s rising edge
and the previous instruction’s Boolean result
(2) Setting during 1 cycle

ANDF AND (FE...) AND logic between the operand’s falling
edge and the previous instruction’s Boolean
result
(2) Setting during 1 cycle

%I1.1

AND

%M1

%Q2.3

%M2

%I1.2

%Q2.2

ANDN

P
ANDR

%I1.3

%I1.4

%Q2.4 (2)

N
ANDF

%M3

%I1.5

%Q2.5 (2)
TLX DR PL7 xx 23

Standard instructions
Permitted
operands

The following table gives a list of the operands used for these instructions

Example in
language data

The following example shows how to program the AND Logic instructions in
language data.

Language
data

Instruction list Structured text Operands

AND AND %I, %Q, %M, %S, %BLK, %•:Xk, %Xi
True (1)/False (0) in instruction list language or
structured text

ANDN AND (NOT...) %I, %Q, %M, %S, %BLK, %•:Xk, %Xi
True (1)/False (0) in instruction list language or
structured text

ANDR AND (RE...) %I, %Q, %M

ANDF AND (FE...) %I, %Q, %M

P

N

P

N

%I1.1 %M1

%M2

%M3

%I1.2

%I1.3 %I1.4

%I1.5

%Q2.3

%Q2.2

%Q2.4

%Q2.5
24 TLXDRPL7xx

Standard instructions
Example in
instruction list

The following example shows how to program the AND Logic instructions in the
Instruction List.

Example in
structured text
language

The following example shows how to program the AND Logic instructions in
structured text language.

LD %I1.1
AND %M1
ST %Q2.3
LD %M2
ANDN %I1.2
ST %Q2.2
LD %I1.3
ANDR %I1.4
ST %Q2.4
LD %M3
ANDF %I1.5
ST %Q2.5

%Q2.3:=%I1.1 AND %M1;
%Q2.2:=%M2 AND (NOT%I1.2);
%Q2.4:=%I1.3 AND (RE%I1.4);
%Q2.5:=%M3 AND (FE%I1.5);
TLX DR PL7 xx 25

Standard instructions
OR Logic Instruction

Role The following table describes the role of each of the instructions

Language
data

Instruction
list

Structured text Description Timing diagram

OR OR OR logic between the operand and the
previous instruction’s Boolean result

ORN OR (NOT...) OR logic between the operand inverse and
the previous instruction’s Boolean result

ORR OR (RE...) OR logic between the operand’s rising edge
and the previous instruction’s Boolean result

ORF OR (FE...) OR logic between the operand’s falling edge
and the previous instruction’s Boolean result.

OR

%I1.1

%M1

%Q2.3

ORN

%M2

%I1.2

%Q2.2

P

ORR

%I1.3

%I1.4

%Q2.4

N

ORF

%M3

%I1.5

%Q2.5
26 TLXDRPL7xx

Standard instructions
Permitted
operands

The following table gives a list of the operands used for these instructions

Example in
language data

The following example shows how to program the OR Logic instructions in language
data.

Language
data

Instruction list Structured text Operands

OR OR %I, %Q, %M, %S, %BLK, %•:Xk, %Xi
True (1)/False (0) in instruction list language or
structured text

ORN OR (NOT...) %I, %Q, %M, %S, %BLK, %•:Xk, %Xi
True (1)/False (0) in instruction list language or
structured text

ORR OR (RE...) %I, %Q, %M

ORF OR (FE...) %I, %Q, %M

P

N

P

N

%I1.1

%M1

%M2

%I1.2

%I1.3

%I1.4

%M3

%I1.5

%Q2.5

%Q2.4

%Q2.2

%Q2.3
TLX DR PL7 xx 27

Standard instructions
Example in
instruction list

The following example shows how to program the OR Logic instructions in the
Instruction List.

Example in
structured text
language

The following example shows how to program the OR Logic instructions in
structured text language.

LD %I1.1
OR %M1
ST %Q2.3

LD %M2
ORN %I1.2
ST %Q2.2

LD %I1.3
ORR %I1.4
ST %Q2.4

LD %M3
ORF %I1.5
ST %Q2.5

%Q2.3:=%I1.1 OR %M1;
%Q2.2:=%M2 OR (NOT%I1.2);
%Q2.4:=%I1.3 OR (RE%I1.4);
%Q2.5:=%M3 OR (FE%I1.5);
28 TLXDRPL7xx

Standard instructions
Exclusive OR Instructions

Role The following table describes the role of each of the instructions

Instruction
list

Structured text Description Timing diagram

XOR XOR OR Exclusive between the operand
and the previous instruction’s
Boolean result

XORN XOR (NOT...) OR Exclusive between the operand
inverse and the previous instruction’s
Boolean result

XORR XOR (RE...) OR Exclusive between the operand’s
rising edge and the previous
instruction’s Boolean result

XORF XOR (FE...) OR Exclusive between the operand’s
falling edge and the previous
instruction’s Boolean result.

Note: There are no specific graphic elements for the OR exclusive in language
data. However the OR exclusive can be programmed by using a combination of
opening and closing contacts (see example below).

XOR

%I1.1

%M1

%Q2.3

XORN

%M2

%I1.2

%Q2.2

XORR

%I1.3

%I1.4

%Q2.4

XORF

%M3

%I1.5

%Q2.5
TLX DR PL7 xx 29

Standard instructions
Permitted
operands

The following table gives a list of the operands used for these instructions

Example in
language data

The following example shows how to program the OR Exclusive instructions in
language data.

Example in
instruction list

The following example shows how to program the OR Exclusive instructions in the
Instruction List:

Instruction list Structured text Operands

XOR XOR %I, %Q, %M, %S, %BLK, %•:Xk, %Xi

XORN XOR (NOT...) %I, %Q, %M, %S, %BLK, %•:Xk, %Xi

XORR XOR (RE...) %I, %Q, %M

XORF XOR (FE...) %I, %Q, %M

%I1.1 %M1

%M1 %I1.1

%M2 %I1.2

%I1.2 %M2

%Q2.3

%Q2.2

LD %I1.1
XOR %M1
ST %Q2.3

LD %M2
XORN %I1.2
ST %Q2.2

LD %I1.3
XORR %I1.4
ST%Q2.4

LD %M3
XORF %I1.5
ST %Q2.5
30 TLXDRPL7xx

Standard instructions
Example in
structured text
language

The following example shows how to program the OR Exclusive instructions in
structured text language.

Note: The brackets are optional but make the program readable.

%Q2.3:=%I1.1 XOR%M1;
%Q2.2:=%M2 XOR (NOT%I1.2);
%Q2.4:=%I1.3 XOR (RE%I1.4)
%Q2.5:=%M3 XOR (FE%I1.5);
TLX DR PL7 xx 31

Standard instructions
1.3 Predefined function blocks

Introduction

Subject of this
sub-section

This sub-section describes PL7 language predefined function Blocks

What's in this
Section?

This Section contains the following Maps:

Topic Page

Introduction to timer function block %TMi 33

%TMi timer block operating mode 35

Operation of timer function block %TMi in TON mode 36

Operation of timer function block %TMi in TOF mode 37

Operation of timer function block %TMi in TP mode 38

Programming and configuring timer function blocks 39

Specific cases of operation for the series 7 timer 41

Introduction to the up-down counter function block 42

How the up/down counter function block works 44

Configuration and programming 46
32 TLXDRPL7xx

Standard instructions
Introduction to timer function block %TMi

General The timer has 3 operating modes:
� TON: is used to manage delays on engagement (on delays),
� TOF: is used to manage delays on release (off delays),
� TP: is used to create a pulse of precise duration.

The delays or pulse periods are programmable and may or may not be modified via
the terminal.

Illustration The following is the graphic presentation of the timer function block:

%TMi

IN Q

MODE : TON
TB:1mn

TM.P:9999
MODIF:Y
TLX DR PL7 xx 33

Standard instructions
Characteristics The timer has the following characteristics:

Characteristic Address Value

Timer number %TMi 0 to 63 for a TSX 37, 0 to 254 for a TSX 57.

Mode TON • default delay on engagement (on delay),

TOF • delay on release (off delay),

TP • monostable.

Time base TB 1mn (default), 1s, 100ms, 10ms (16 timers max. at 10ms).
The shorter the time base, the more precise the timer.

Current value %TMi.V Word which increases from 0 to %TMi.P on completion of
the timer cycle. May be read, tested, but not written in a
program (%TMi.V may be modified by the terminal).

Preset value %TMi.P 0-%TMi.P-9999. Word which may be read, tested and
written in a program. Is set at the value of 9999 by default.
The period or delay generated is equal to %Tmi.P x TB.

Terminal
adjustment
(MODIF)

Y/N Y: possibility to modify the preset %Tmi.P value in adjust
mode.
N: cannot be accessed in adjust mode.

Input (instruction)
"Activation"

IN Starts the timer on rising edge (TON or TP mode) or falling
"Activation" edge (TOF mode).

Output "Timer" Q %Tmi.Q associated bit; setting to 1 depends on the TON,
TOF or TP function.
34 TLXDRPL7xx

Standard instructions
%TMi timer block operating mode

Description The following table shows the operating modes specific to the timer block.

Impact... Description

of a cold restart (%S0=1), causes the current value to set to 0, the output %TMi.Q to
set to 0 while the preset value is reset to the value defined on
configuration.

of a warm restart (%S1=1) has no effect on the timer’s current value, or on the preset
value. The current value does not change during power outage.

of a shift to stop mode,
deactivation of a task
or execution of a
breakpoint

does not freeze the current value.

a program jump Not polling the instructions in which the timer block is programmed
does not freeze the current %TMi.V value; this continues to increase
to %TMi.P.
Similarly, the %TMi.Q bit associated with the Q output of the timer
block maintains its normal operation and can thus be tested by
another instruction. However the output, which is directly connected
to the block output, is not activated since it is not polled by the PLC.

of the alteration to the
preset value

The alteration to the preset value by instruction or in adjust mode is
only taken into account at the next activation of the timer.
The alteration to the preset value in the variables editor is only taken
into account after a cold restart (%S0=1).

Note: it is advisable to test the %TMi.Q bit once only during the program.
TLX DR PL7 xx 35

Standard instructions
Operation of timer function block %TMi in TON mode

General Operation in TONmode is used to manage the on delays.

Illustration The timing diagram illustrates the operation of the timer in TON mode.

Operation The following table shows the operation of the timer in TON mode.

IN

Q

%TMi.P

%TMi.V

(1)

(2)

(3) (4)

(5)

Phase Description

1 The timer is started with a rising edge on the IN input.

2 The current value %TMi.V of the timer increases from 0 to %TMi.P by one unit
at each pulse of the time base TB.

3 The %TMi.Q output bit moves to 1 when the current value has reached %TMi.P.

4 The %TMi.Q output bit stays at 1 while the IN input is at 1.

5 When the IN input is at 0, the timer is stopped even if it is still running: %TMi.V
takes the value 0.
36 TLXDRPL7xx

Standard instructions
Operation of timer function block %TMi in TOF mode

General Operation in TOF mode is used to manage the off delays.

Illustration The timing diagram illustrates the operation of the timer in TOF mode.

Operation The following table shows the operation of the timer in TOF mode.

IN

Q

%TMi.P

%TMi.V
(1)

(3)

(4)

(2) (5)

(1)

Phase Description

1 The current value %TMi.V takes 0, on a rising edge of the IN input (even if the
timer is running).

2 The %TMi.Q output bit moves to 1.

3 The timer is started with a falling edge on the IN input.

4 The current value %TMi.P increases to %TMi.P by one unit at each pulse of the
time base TB.

5 The %TMi.Q output bit returns to 0 when the current value has reached %TMi.P.
TLX DR PL7 xx 37

Standard instructions
Operation of timer function block %TMi in TP mode

General Timer operation in TP mode is used to manage the creation of a pulse of precise
duration (monostable funtion).

Illustration The timing diagram illustrates the operation of the timer in TP mode.

Operation The following table shows the operation of the timer in TP mode.

IN

Q

%TMi.P

%TMi.V

(1)

(2)

(3)

(4)

(6)

(5)

Phase Description

1 The timer is started with a rising edge on the IN input.

2 The %TMi.Q output bit moves to 1.

3 The current value %TMi.V of the timer increases from 0 to %TMi.P by one unit
at each pulse of the time base TB.

4 The %TMi.Q output bit returns to 0 when the current value has reached %TMi.P.

5 When the IN input and the %TMi.Q output are at 0, %TMi.V takes the value 0.

6 This monostable cannot be reactivated.
38 TLXDRPL7xx

Standard instructions
Programming and configuring timer function blocks

General Programming timer function blocks is always the same regardless of the selected
user mode.

The choice between TON, TOF or TP operation is made in the variables editor.

Configuration This involves setting the following parameters :

Programming in
ladder language

The following program illustrates the use of a timer function block in ladder
language.

Example in
instruction list

The following program illustrates the use of a timer function block in instruction list.

Parameter Values

Mode TON, TOF or TP.

TB 1min, 1s, 100ms or 10ms

%TMi.P 0 to 9999

MODIF Y or N

%TM1
%I1.1 %Q2.3

IN Q

LD %I1.1
IN %TM1
LD %TM1.Q
ST %Q2.3
TLX DR PL7 xx 39

Standard instructions
Example in
structured text

The following program illustrates the use of a timer function block in structured text
language.

The instruction START %TMi, generates a rising edge on the IN input of the timer
block.

The instruction DOWN %TMi, generates a falling edge on the IN input of the timer
block.

IF RE %I1.1 THEN
 START %TM1;
ELSIF FE %I1.1 THEN
 DOWN %TM1;
END_IF;
%Q2.3 := %TM1.Q;
40 TLXDRPL7xx

Standard instructions
Specific cases of operation for the series 7 timer

Specific cases � Incidence of a "cold restart": (%S0 = 1) loads the preset value (defined by the
variables editor) in the current value and sets the output %Ti.D at 0, as the preset
value, which may have been altered by the terminal, has been lost.

� Incidence of a "warm restart": there is no incidence of (%S1=1) on the current
value of the timer.

� Incidence of a switch to stop mode: the switch of the PLC into stop mode does
not freeze the current value. The same applies when the current task is
deactivated or on execution of a breakpoint.

� Incidence of a program jump: not polling the network in which the timer block
is programmed does not freeze the current value %Ti.V which continues to
decrease to 0. Similarly, the %Ti.D and %Ti.R bits associated with the D and R
outputs maintain their normal operation and can thus be tested on another
network. However the spools which are directly connected to the block outputs
are not activated since they are not polled by the PLC.

� Test of %Ti.D and %Ti.R bits: these bits can change state during the cycle.
TLX DR PL7 xx 41

Standard instructions
Introduction to the up-down counter function block

General This function block is used for:
� Counting an event,
� Down counting events.
These operations can happen simultaneously.

Illustration Graphic representation of the up-down counter function block

R

S

CU

CD
MODIF : Y

C.P. : 9999

E

D

F

42 TLXDRPL7xx

Standard instructions
Characteristics The up-down counter has the following characteristics:

Characteristics Address Value

Number Counter %Ci 0 to 31 for a TSX 37, 0 to 254 for a TSX 57

Current value %Ci.V Increased or decreased word according to the CU and
CD inputs. May be read, and tested but not written by
the program. Can be set by the terminal

Preset value %Ci.P . Word which can be read, tested

and written (with a default value of 9999)

Terminal adjustment
(MODIF)

Y/N � Y: possibility to modify the preset value in adjust
mode

� N: cannot be accessed in adjust mode

Input (instruction)
"Resetting to zero"

R On state 1: %Ci.V = 0

Input (instruction)
"Preset"

S On state 1: %Ci.V = %Ci.P

Input (instruction)
"Counting"

CU %Ci.V increment on rising edge

Input (instruction)
"Down counting"

CD %Ci.V decreased on rising edge

Output Overrun E (Empty) When %Ci.V switches from 0 to 9999 (set when %Ci.V
is equal to 9999), the associated bit %Ci.E=1 is cleared
if the counter continues counting down. When there is
an overrun, bit %S18 switches to 1

Preset Output
reached

D (Done Associated bit %Ci.D=1, when %Ci.V=%Ci.P.

Output Overrun F (Full) When %Ci.V switches from 9999 to 0 (set when %Ci.V
is equal to 0), the associated bit %Ci.F is cleared if the
counter continues counting up. When there is an
overrun, bit %S18 switches to 1

0 %Ci.P 9999≤ ≤
TLX DR PL7 xx 43

Standard instructions
How the up/down counter function block works

Operation Counting Function

Down counting Function

Up/Down Counting Function

Reset to zero

Action Result

A rising edge appears on the CU counting
input

The %Ci.V current value is increased by one
unit

The %Ci.V current value is equal to the
%Ci.P preset value

the %Ci.D output bit "preset reached"
associated to output D switches to set

The %Ci.V current value switches from
9999 to 0

The %Ci.F output bit (counting overrun)
switches to set

The counter continues counting The %Ci.F output bit (counting overrun) is reset
to clear

Action Result

A rising edge appears on the CU down
counting input

The %Ci.V current value is decreased by one
unit

The %Ci.V current value switches from 0 to
9999

The %Ci.E output bit (counting overrun)
switches to set

The counter continues down counting The %Ci.E output bit (counting overrun) is reset
to clear

Action Result

A rising edge appears on the CU counting
input

The %Ci.V current value is increased by one
unit

A rising edge appears on the CU down
counting input

The %Ci.V current value is decreased by one
unit

The two inputs set simultaneously The current value remains unchanged

When Result

Input R is set (this input has priority over the
other inputs)

The %Ci.V current value is forced to 0. Outputs
%Ci.V, %CI.D and %CI.F are at 0
44 TLXDRPL7xx

Standard instructions
Preset

Note On reset to 0 (input R or instruction R):
� In language data, the CU and CD input archives are updated with the connected

values,
� In instruction list language and in structured text language, the archives of the CU

and CD inputs are not updated; each input keeps the value it had before the call.

Specific cases Different specific cases

Action Result

Input S "Preset" is in state 1 and input R
"Reset to zero"

The %Ci.V current value takes the %Ci.P value
and the %Ci.D output switches to 1

Action Result

� Cold reset (%S0=1). � The %Ci.V current value is set to zero,
� The %Ci.E, %Ci.D and %Ci.F output bits are

set to zero,
� The preset value is initialized to the value

defined during configuration.

� Warm restart (%S1=1),
� Switch to stop,
� Task deactivation,
� Breakpoint execution.

� No incidence on the current counter value
(%Ci.V).

� Modification of the %Ci.P preset. � Modifying the preset value by instruction or
during recalibration is taken into account
during the application’s block management
(activating one of the inputs).
TLX DR PL7 xx 45

Standard instructions
Configuration and programming

Example Counting of number of parts = 5000. Each pulse on the input %I1.2 (when the
internal %M0 bit is at 1) causes the incrementation of the counter %C8 up to the final
preset counter value %C8 (bit %C8.D=1). The input %I1.1 resets the counter to
zero.

Configuration The following are the parameters to be entered using the variables editor:
� %Ci.P, fixed at 5000 in this example,
� MODIF: Y.

Programming Ladder language

Instruction list language
LD %I1.1
R %C8
LD %I1.2
AND %M0
CU %C8
LD %C8.D
ST %Q2.0

Structured text language
IF %I1.1 THEN
 RESET %C8
END_IF;
%M1:=%I1.2 THEN
 UP %C8;
END_IF;
%Q2.0: =%C8.D;

R

S

CU

CD
MODIF : Y

C.P : 5000

E

D

F

%C8
%I1.1

%M0%I1.2

%C8.D %Q2.0
46 TLXDRPL7xx

Standard instructions
In structured text language, 4 instructions are used to program the up/down counter
function blocks:

� RESET %Ci: Resets the current value to zero,
� PRESET %Ci: Loads the preset value in the current value,
� UP %Ci: Increments the current value,
� DOWN %Ci: Lowers the current value.

In the case of structured text language, the CU and CD inputs archive is reset to zero
when the instructions UP and DOWN are used. It is therefore the user who must
manage the rising edges for these two instructions.
TLX DR PL7 xx 47

Standard instructions
1.4 Numerical processing on integers

Introduction

Subject of this
sub-section

This sub-section describes PL7 language numeric processing on integers

What's in this
Section?

This Section contains the following Maps:

Topic Page

Introduction to numerical processing using integers 49

Comparison instructions 52

Assign instructions 54

Word assignment 56

Arithmetic instructions on integers 58

Logic instructions 62

Numerical expressions 64
48 TLXDRPL7xx

Standard instructions
Introduction to numerical processing using integers

General The numerical instructions described in this chapter are for the following objects:
� bit tables,
� words,
� double words.
Instructions for other object types are described in the "Advanced instructions (See
Advanced instructions, p. 77)" section.

Programming in
ladder language

Numerical instructions are entered in the blocks:
� placed in the test zone for the comparison blocks,
� placed in the action zone for the operation blocks,
These blocks can contain:
� a simple expression; e.g.: OP3:=OP1+OP2,
� a complex expression; e.g.: OP5:=(OP1+OP2)*OP3-OP4.

Programming example:

Programming in
Instruction List
language

The instructions are placed between square brackets.
They are executed if the Boolean result from the test instruction preceding the
numerical instruction is set to 1.

Programming example:
LD [%MW50>10]
ST %Q2.2
LD %I1.0
[%MW10:=%KW0+10]
LDF %I1.2
[INC%MW100]

N

%MW50>10

%MW10:=%KW0:=%KW0+10

INC%MW100

%Q2.2

%I1.0

%I1.2
TLX DR PL7 xx 49

Standard instructions
Programming in
structured text
language

Numerical instructions are entered directly.
The conditional IF instruction enables these numeric instructions to be conditioned
by a Boolean expression.

Programming example:
%Q2.2:=%MW50 > 10;
IF %I1.0 THEN
 %MW10:=%KW0 + 10;
END_IF;
IF FE %I1.2 THEN
 INC %MW100;
END_IF;

Operand list Bit table list

List of simple format words

(1) writing according to i.
(2) writing according to word type, for example: preset values (%Ci.P can be written
whilst the current %Ci.V values can only be read).

Abbreviations Complete addressing Word type Access

%M:L %Mi:L internal bit table R/W

%I:L %Ixy.i:L input bit table R/W

%Q:L %Qxy.i:L output bit table R/W

%Xi:L or %Xj.i:L step bit table R

Abbreviations Complete addressing Word type Access Indexed form

Imm. val. - immediate values R -

%MW %MWi internal word R/W %MWi[index]

%KW %KWi internal constant R %KWi[index]

%SW %SWi system word R/W (1) -

%IW %IWxy.i(.r) input bit R -

%QW %QWxy.i(.r) output word R/W -

%NW %NW{j}k common word R/W -

%BLK e.g.: %TMi.P word extracted from a
standard function block or
function block

R/W (2) -

%Xi.T %Xi.T or %Xj.i.T step activity time R %Xi.T[index]
50 TLXDRPL7xx

Standard instructions
List of double words

(1) only double word %SD18

Abbreviations Complete addressing Word type Access Indexed form

Imm. val. - immediate values R -

%MD %MDi double internal word R/W %MDi[index]

%KD %KDi internal double constant R %KDi[index]

%SD %SDi double system word R/W (1) -

%ID %IDxy.i(.r) double input word R -

%QD %QDxy.i(.r) double output word R/W -

Note: There are other types of words and double words, such as %MWxy.i
%KWxy.i and %MDxy.i %KDxy.i associated with specific applications, these
double words behave like the double words %MWi %KWi and %MDi %KDi
respectively.

Note: Implicit word <--> double word conversions
The PL7 software authorizes operations to be mixed using words and double
words. Conversions into one or other format, are done in an implicit manner, one
operation making a double word intervene or several immediate values are
internally executed automatically in double format.
TLX DR PL7 xx 51

Standard instructions
Comparison instructions

General Comparison instructions are used to compare two operands.
� >: tests whether operand 1 is greater than operand 2,
� >=: tests whether operand 1 is greater than or equal to operand 2,
� <: tests whether operand 1 is less than operand 2,
� <=: tests whether operand 1 is less than or equal to operand 2,
� =: tests whether operand 1 is different from operand 2.

Structure Ladder language

Instruction list language
LD [%MW10>100]
ST %Q2.3
LD %M0
AND [%MW20<%KW35]
ST %Q2.2
LD %I1.2
OR [%MW30>=%MW40]
ST %Q2.4

Note: The comparison blocks program themselves in the test zone.

Note: The comparison is made between the square brackets following the LD,
AND and OR instructions.

%MW20<%KW35

%MW30>=%MW40

%M0

%I1.2

%MW10>100

%Q2.3

%Q2.2

%Q2.4
52 TLXDRPL7xx

Standard instructions
Structured text language
%Q2.3:=%MW10>100;
%Q2.2:=%M0 AND (%MW20<%KW35);
%Q2.4:=%I1.2 OR (%MW30>=%MW40);

Syntax Comparison instruction operators

Operands

Note: The brackets are optional but improve the readability of the program

Operators Syntax

>,>=,<,<=,=,<> Op1 Operator Op2

Type Operands 1 and 2 (Op1 and Op2)

Indexable words %MW,%KW,%Xi.T

Non-indexable words Imm.val.,%IW,%QW,%SW,%NW,%BLK, Numeric Expr.

Indexable double words %MD,%KD

Non-indexable double words Imm.val.,%ID,%QD,%SD,Numeric expr.

Note:
� in ladder language, the comparison operation can also be performed with the

Vertical comparison block (See Introduction to the vertical comparison
operation block , p. 102),

� in instruction list language, the comparison instructions can be used within
brackets.
TLX DR PL7 xx 53

Standard instructions
Assign instructions

General They change an operand Op2 into an operand Op1
Assignment operations can be performed:
� on bit tables,
� on words or double words.
Several assign instructions can be linked up in the same block:
Op1:=Op2:=Op3:=Op4:=...

Bit table
assignment

The following bit tableoperations can be performed:
� bit table -> bit table (E.g.: 1),
� bit table -> word or double word (indexed) (E.g.: 2),
� word or double word (indexed) -> bit table (E.g.: 3).

Structure Ladder language

Instruction list language
Example 1:
LD TRUE
[%Q2.0:8]

Example 2:
LD %I3.2
[%MW100:=%I1.0:16]

Example 3:
LDR %I3.3
[%MW100:16=%KW0]

%Q2.0:8:=%M10:8

P

%MW100:=%I1.0:16

%M100:16:=%KW0

%I3.2

%I3.3
54 TLXDRPL7xx

Standard instructions
Structured text language
Examples 1 and 2:
%Q2.0:8:=%M10:8;
IF %I3.2 THEN
 %MW100:=%I1.0:16;
END_IF;

Example 3:
IF RE %I3.3 THEN
 %M100:16:=%KW0;
END_IF;

Syntax Operator and syntax

Operands

Rules of use � the home and destination bit tables are not necessarily the same length. If the
home table is longer than the destination table, only the least significant bits are
transferred. If the destination table is the longer, it is completed with some 0s,

� For a bit table -> word (or double word) assignment: the table bits are transferred
into the word (the least significant word for a double word) by commencing on the
right (first table bit in the 0 bit of the word). The word bits not concerned by the
transfer (length< 16 or 32) are set to 0,

� For a word -> bit table assignment: the word bits are transferred from the right (bit
0 of the word into the first table bit).

Operator Syntax

:= Op1:=Op2

Type Operand 1 (Op1) Operand 2 (Op2)

Bit table %M:L,%Q:L,%I:L %M:L,%Q:L,%I:L,%Xi:L

Indexable words %MW %MW,%KW,%Xi.T

Non-indexable
words

%QW,%SW,%NW,%BLK Imm.val.,
%IW,%QW,%SW,%NW,%BLK,Num.
expr.

Indexable double
words

%MD %MD,%KD

Non-indexable
double words

%QD,%SD Imm.val., %ID,%QD,%SD,Numeric
expr.
TLX DR PL7 xx 55

Standard instructions
Word assignment

General Assignment operations can be performed on the following words:
� word (indexed) -> word (indexed) or double word (indexed) (E.g.: 1),
� double word (indexed) -> double word (indexed) or word (indexed) (E.g.: 2),
� immediate value -> word (indexed) or double word (indexed) (E.g.: 3).

Structure Ladder language

Instruction list language
Example 1:
LD TRUE
[%SW112:=%MW100]

Example 2:
LD %I3.2
[%MD10:=%KD0[%MW20]]

Structured text language
Example 3:
IF %I3.3 THEN
 %MW10:=100;
END_IF;

P

%MD0:=%KD0[%MW20]

%MW10:=100

%I3.2

%I3.3

%SW112:=%MW100
56 TLXDRPL7xx

Standard instructions
Syntax Operator and syntax

Operands

Operator Syntax

:= Op1:=Op2

Type Operand 1 (Op1) Operand 2 (Op2)

Indexable words %MW %MW,%KW,%Xi.T

Non-indexable
words

%QW,%SW,%NW,%BLK Imm.Val.,%IW,%QW,%SW,%NW,
%BLK, Num.expr.

Indexable double
words

%MD %MD,%KD

Non-indexable
double words

%QD,%SD Imm.Val.,%ID,%QD,%SD, Numeric
expr.

Note: Word <--> double word conversions are made implicitly, during double word
--> word assignment, if the double word value cannot be contained in the word, the
%S18 bit is set to 1.
It is possible to perform multiple assignments. Example: %MW0:=%MW2:=%MW4
Caution, in the example%MD14:=%MW10:=%MD12, it is not necessarily the case
that %MD14:=%MD12, as during the assignment to %MW10, the double word loses
its significance due to the double word-single word conversion.
TLX DR PL7 xx 57

Standard instructions
Arithmetic instructions on integers

General These instructions are used to perform an arithmetic operation between two
operands or on one operand.
List of instructions:

Structure Ladder language

Instruction list language
LD %M0
[%MW0:=%MW10+100]

LD %I3.2
[%MW0:=SQRT(%MW10)]

LD %I3.3
[INC %MW100]

+ addition of two operands SQRT square root of an operand

- subtraction of two operands INC incrementation of an operand

* multiplication of two operands DEC decrementation of an operand

/ division of two operands ABS absolute value of an operand

REM remainder from the division of 2 operands

P

%MW0:=SQRT(%MW10)

INC %MW100

%I3.2

%I3.3

%MW0:=%MW10+100

%M0
58 TLXDRPL7xx

Standard instructions
Structured text language
IF %M0 THEN
 %MW0:=%MW10+100;
END_IF;
IF %I3.2 THEN
 %MW0:=SQRT(%MW10);
END_IF;
IF RE %I1.3 THEN
 INC %MW100;
END_IF

Syntax Operator and syntax

Operands

Operator Syntax

+,-,*,/,REM Op1:=Op2 Operator Op3

SQRT,ABS Op1:=Operator(Op2)

INC,DEC Operator Op1

Type Operand 1 (Op1) Operand 2 (Op2)

Indexable words %MW %MW,%KW,%Xi.T

Non-indexable
words

%QW,%SW,%NW,%BLK Imm.Val.,%IW,%QW,%SW,%NW,
%BLK, Num.expr.

Indexable double
words

%MD %MD,%KD

Non-indexable
double words

%QD,%SD Imm.Val.,%ID,%QD,%SD, Numeric
expr.

Note: The INC and DEC operations cannot be used in numerical expressions.
TLX DR PL7 xx 59

Standard instructions
Rules of use � Addition: Capacity overflow during operation
If the result exceeds the limits:
� -32768 or +32767 for an single length operand,
� -2.147.483.648 or +2.147.483.647 for a double length operand.
The %S18 bit (overflow) is set to 1. The result is then not significant.
Bit %S18 is managed by a user program:

Example in ladder language:

Example in instruction list language:
LD %M0
[%MW0:=%MW1+%MW2]
LDN %S18
[%MW10:=%MW0]
LD %S18
[%MW10:=32767]
R %S18]

Example in structured text language:
IF %M0 THEN
 %M0:=%MW1+%MW2;
END_IF;
IF %S18 THEN
 %MW10:=32767;RESET %S18;
ELSE
 %MW10:=%MW0;
END_IF;

%MW0:=%MW1+%MW2

%MW10:=%MW0

%MW10:=32767

R

%S18

%M0

%S18

%S18
60 TLXDRPL7xx

Standard instructions
If %MW1 =23241 and %MW2=21853, the integer result (45094) cannot be
expressed in a 16 bit word, bit %S18 is set to 1 and the result obtained (-20442)
is incorrect. In this example, when the result is greater than 32767, its value is
fixed at 32767.

� Multiplication:
Capacity overflow during operation.
If the result exceeds the storage word capacity, the %S18 bit (overflow) is set to
1 and the result is not significant.

� Division/remainder of the division:
Dividing by 0.
If the divisor is equal to 0, division is impossible and the %S18 system bit is set
to 1. The result is then incorrect.
Capacity overflow during operation.

� Extracting the square root:
The square root can only be extracted on positive values. The result is then
always positive. If the operand of the square root is negative, the %S18 system
bit is set to 1 and the result is incorrect.

Note:
� When an operation does not result in an integer (i.e. with a division or square

root), the result is truncated (rounded down to the nearest whole number).
� The sign of the remainder of the division (REM) is that of the numerator.
� The %S18 system bit is managed by the user program. It is set to 1 by the PLC.

It must be reset to 0 by the program in order to be reused (see example below).
TLX DR PL7 xx 61

Standard instructions
Logic instructions

General The associated instructions are used to perform a logic operation between two
operands or on one operand.
List of instructions:

Structure Ladder language

Instruction list language:
LD %M0
[%MW0:=%MW10 AND 16#FF00]

LD TRUE
[%MW0:=%KW5 OR %MW10]

LD %I1.3
[%MW102:=NOT%MW100]

AND AND (bit by bit) between two operands

OR logical OR (bit by bit) between two operands

XOR exclusive OR (bit by bit) between two operands

NOT logical complement (bit by bit) of an operand

P

%MW0:=%KW5 OR %MW10

%MW102:=NOT %MW100

%I1.3

%MW0:=%MW10 AND 16#FF00

%M0
62 TLXDRPL7xx

Standard instructions
Structured text language:
IF %M0 THEN
 %MW0:=%MW10 AND 16#FF00;
END_IF;
%MW0:=%KW5 OR %MW10;
IF %I1.3 THEN
 %MW102:=NOT %MW100;
END_IF;

Syntax Operator and syntax

Operands

Operator Syntax

AND,OR,XOR Op1:=Op2 Operator Op3

NOT Op1:=NOT Op2

Type Operand 1 (Op1) Operand 2 and 3 (Op2, Op3)

Indexable words %MW %MW,%KW,%Xi.T

Non-indexable
words

%QW,%SW,%NW Imm.Val.,%IW,%QW,%SW,%NW,
%BLK, Num.expr.

Indexable double
words

%MD %MD,%KD

Non-indexable
double words

%QD,%SD Imm.Val.,%ID,%QD,%SD, Numeric
expr.
TLX DR PL7 xx 63

Standard instructions
Numerical expressions

General The numerical expression is composed of several numerical operands and the
arithmetic and logic operators described above.
There can be an unlimited number of operators and operands in an arithmetic
expression.
Example:
%MW25*3-SQRT(%MW10)+%KW8*(%MW15 + %MW18)AND16#FF

Application rules � The operands of a numerical expression can be either of single or double length:
Example:
%MW6*%MW15+SQRT(%DW6)/(%MW149[%MW8])+%KD29)AND16#FF

� An operand or an operation with only one operand can be preceded by a + or –
sign (+ sign by default),
Example:
SQRT(%MW5)*-%MW9

� All word objects can be used in an arithmetic expression. It is possible to index
certain words.

Instruction
execution
priority

The priority of the different instructions is respected in the numerical expression.
Instructions are executed in the following order:
Execution order:

Rank Instruction

1 Instruction to an operand

2 *,/,REM

3 +,-

4 <,>,<=,>=

5 =,<>

6 AND

7 XOR

8 OR
64 TLXDRPL7xx

Standard instructions
Example:
The instructions below are carried out in numerical order:

Brackets Brackets are used to change the order of priority. It is recommended that they be
used to structure numerical expressions.
The example below shows the order of execution of instructions between brackets

SQRT (%MW3) + %MW5 * 7 AND %MW8 OR %MW5 XOR %MW10

1 2

3

4 5

6

((%MW5 AND %MW6) + %MW7) * %MW8

1

2

3

TLX DR PL7 xx 65

Standard instructions
1.5 Program instructions

Introduction

Subject of this
sub-section

This sub-section describes PL7 language program instructions.

What's in this
Section?

This Section contains the following Maps:

Topic Page

Subroutine call 67

Subroutine return 68

Jump in the program 70

End of program instructions 73

Program stop 74

Event masking/unmasking instructions 75

NOP Instructions 76
66 TLXDRPL7xx

Standard instructions
Subroutine call

General The subroutine call instruction is used to call a subroutine module from the same
task.

Structure Ladder language:

Instruction list language:
LD %M8
SR10

Structured text language:
IF %M8 THEN
 SR10;
END_IF;

Rules � The subroutine call can only be performed if the subroutine module has been
created beforehand,

� A subroutine is returned on the action immediately following the subroutine call
instruction,

� A subroutine can call another subroutine; the number of calls in a cascade is
limited to 8,

� The subroutines are assigned to a task, they can only be called from that
particular task.

Principle Subroutine performance principle:

C

%M8 SR10

Subroutine Module Subroutine Module
SR10 SR12

Call SR10

Call SR10
TLX DR PL7 xx 67

Standard instructions
Subroutine return

General The subroutine return instruction is reserved for the subroutine modules and is used
for returning to the calling module, if the Boolean result from the previous test
instruction is set to 1.

Structure Ladder language

Instruction list language
LD %M8
RETC

Structured text language
IF %M8 THEN
 RETURN;
END_IF;

Instruction list language incorporates the following additional instructions:
� RETCN: return of the subroutine if the Boolean result from the previous test

instruction is set to 0.
� RET: unconditional return of the subroutine.

Rules of use The subroutine return instruction is implicit at the end of each subroutine, but can be
used for returning to the calling module before the end of the subroutine.

%M8

<RETURN>
68 TLXDRPL7xx

Standard instructions
Examples Ladder language

Instruction list language
LD [%MW5>3]
RETC
LD %M8
[%MD26:=%MW4*%KD6]

Structured text language
IF (%M5>3) THEN
 RETURN;
END_IF;
IF %M8 THEN
 %MD26:=%MW4*%KD6;
END_IF;

%MW5>3 <RETURN>

%MD26:=%MW4*%KD6

%M8
TLX DR PL7 xx 69

Standard instructions
Jump in the program

General Jump instructions are used to go to a programming line with an %Li label address:
� JMP: unconditional program jump,
� JMPC: program jump if the instruction’s Boolean result from the previous test is

set at 1,
� JMPCN: program jump if the instruction’s Boolean result from the previous test is

set at 0. %Li is the label of the line to which the jump has been made (address i
from 1 to 999 with maximum 256 labels).

Structure JUMPC

>>
%L10

%Q2.5%I1.0

%M8

%M5

%Q2.1%I1.0

%M20
%L10

%I1.2

LD %M8
JMPC %L10
LD %I1.0
ST %Q2.5

%L10:
LD %M20
ST %M5
LD %I1.0
AND %I1.2
ST %Q2.1

Jump to label
%L10, if %M8 =1

Ladder Instruction list language

IF %M8 THEN
 JUMP %L10;
END_IF;
%Q2.5:=%I1.0;

%L10:
 %M5:=%M20;
 %Q2.1:=%I1.0 AND %I1.2;

Jump to label %L10
if %M8=1

Structured text language

_

70 TLXDRPL7xx

Standard instructions
JUMPCN

>>
%L20

%Q3.5%I2.0

%M2

%M5%M30
%L20

LD %M2
JMPCN %L20
LDN %I2.0
ST %Q3.5

%L20:
LD %M30
ST %M6

Jump to label
%L20, if %M2=0

Ladder Instruction list language

IF NOT %M2 THEN
 JUMP %L20;
END_IF;
%Q3.5:=NOT%I2.0;

%L20:
 %M6:=%M30;

Jump to label %L10
if %M8=1

Strctured text language

6

TLX DR PL7 xx 71

Standard instructions
JMP

Rules � A program jump takes place inside one particular programming entity (a master
task MAIN module, subroutine %SRi, etc.),

� A program jumps to a downstream or upstream programming line.
If it is an upstream jump, close attention should be paid to the program execution
time: the program execution time is then extended and can lead to a task period
overrun for the task including the upstream jump.

>>
%L40

%Q3.5%I2.1

%M5%M20
%L40

JMP %L40

%L20:

ST %Q3.5

%L40:
LD %M20
ST %M5

Unconditional jump

Ladder
Instruction list language

JUMP %L40;

%L20
 %Q3.5:=%I2.1;

%L40:
 %M5:=%M20;

Unconditional jump
to label %L40

Structured text language

5

%L20
LD %I2.1

to label %L40
72 TLXDRPL7xx

Standard instructions
End of program instructions

General The END, ENDC and ENDCN instructions are used to define the end of the program
cycle execution:
� END: unconditional end of program,
� ENDC: end of program if the instruction’s Boolean result from the previous test is

set at 1,
� ENDCN: end of program if the instruction’s Boolean result from the previous test

is set at 0.

Rules By default (in normal mode), when the end of program is activated, the outputs are
updated and there is a switch to the next cycle.
If the scanning is periodic, the outputs are updated, the end of the period is awaited
and then there is a switch to the next cycle.

Example Instruction list language
Example 1:
LD %M1
ST %Q2.1
LD %M2
ST %Q2.2

END

Example 2:
LD %M1
ST %Q2.1
LD %M2
ST %Q2.2

LD %I2.2
ENDC
LD %M2
ST %Q2.2

END
� If %I1.2 = 1, the program scanning ends,
� If %I1.2 = 0, Scanning continues until the next END instruction.

Note: These instructions can only be used in instruction list language in the master
task.
TLX DR PL7 xx 73

Standard instructions
Program stop

General The HALT instruction in an application program is used to stop its execution
(stopping all the tasks). Yhis has the effect of freezing the variable objects of this
program.
To restart a program stopped in the aforementioned manner, it must be initialized
(using the PL7 INIT command). The instructions following the HALT instruction are
then not executed.

Structure Ladder language

Instruction list language
LD %M10
HALT

Structured text language
IF %M10 THEN
 HALT;
END_IF;

<HALT>
%M10
74 TLXDRPL7xx

Standard instructions
Event masking/unmasking instructions

General The masking/unmasking instructions are used to mask or unmask all the events
which activate event tasks.
� MASKEVT: global event masking. The events are stored by the PLC, but the

associated event tasks remain inactive whilst the masking operation is enabled
(until the next UNMASKEVT instruction).

� UNMASKEVT: global event unmasking. The events that were stored during the
masking period are processed. The event processing mechanism is operational
until the next MASKEVT instruction.

Structure Ladder language

Instruction list language
LD %M0
[MASKEVT()]

LD %M8
[UNMASKEVT()]

Structured text language
IF %M0 THEN
 MASKEVT();
END_IF;
IF %M8 THEN
 UNMASKEVT();
END_IF;

UNMASKEVT()

%M0

%M8

MASKEVT()
TLX DR PL7 xx 75

Standard instructions
NOP Instructions

General The NOP instruction does not perform any action. It is used to "reserve" lines in a
program and thus makes it possible to write instructions without any modification of
line numbers.
76 TLXDRPL7xx

TLX DR PL7 xx
2

Advanced instructions
Introduction

Contents of this
section

This section describes the advanced instructions for PL7 language.

What's in this
Chapter?

This Chapter contains the following Sections:

Section Topic Page

2.1 Introduction to advanced instructions 79

2.2 Advanced predefined function blocks 80

2.3 Shift instructions 104

2.4 Floating point instructions 106

2.5 Numerical conversion instructions 124

2.6 Word table instructions 134

2.7 Character string instructions 159

2.8 Time management instructions: Dates, Times, Duration 190

2.9 Bit table instructions 222

2.10 "Orpheus" functions: Shift registers, counter 230

2.11 Timing functions 239

2.12 Data storage functions 249

2.13 Grafcet functions 263
77

Advanced instructions
78 TLXDRPL7xx

Advanced instructions
2.1 Introduction to advanced instructions

Introduction to the advanced instructions

General The instructions described in this chapter are intended for advanced programming
needs.
They have the same effects in any language. Only the syntax is different.

These are:
� either standard software instructions,
� or functions considered as extensions of the software.

Instructions for the Function type ranges are used to enhance the basic software
using specific programming instructions.
� Operations on character strings, word tables, etc,
� Task functions: Communication, Regulation, Operator dialog, etc.

Instruction
families

They consist of the following families:
� Character strings,
� Integer tables,
� Managing dates, times, periods,
� Conversions,
� Bit tables,
� "Orpheus" functions.

The following families are described in the tasks concerned:
� Communication,
� Regulation,
� Operator dialog,
� Movement command.

Note: Function type instructions imply additional application memory occupation
(only when they are actually used in the program). This memory occupation is to
be taken into account by the programmer for each function, whatever their user
number, and this is in accordance with the maximum memory size of the reserve
PLC.
TLX DR PL7 xx 79

Advanced instructions
2.2 Advanced predefined function blocks

Introduction

Subject of this
sub-section

This sub-section describes PL7 language advanced predefined function blocks

What's in this
Section?

This Section contains the following Maps:

Topic Page

Introduction to Monostable function block 81

Monostable block function operation 82

Configuring and programming monostable function blocks 83

Introduction to Register function block 85

Register function block operation in FIFO mode 86

Register function block operation in LIFO mode 87

Programming and configuring the Register block function 88

Introduction to the Cyclic Programmer (Drum) function block 90

Cyclic Programmer (Drum) function block operation 92

Programming and configuring the cyclic programmer function block (Drum) 94

Introduction to Timer function block series 7 96

Timer function block series 7 operation 97

Programming the series 7 timer in "Delay on engagement" mode 98

Programming the series 7 timer in "Delay on release" mode 99

Programming the series 7 timer in "Delay accumulated on engagement" mode 100

Programming the series 7 timer in "Delay accumulated on release" mode 101

Introduction to the vertical comparison operation block 102

Operation of vertical comparison operation block 103
80 TLXDRPL7xx

Advanced instructions
Introduction to Monostable function block

General The monostable function block is used to create a pulse of precise duration. This
duration is programmable and may or may not be modifiable using the terminal

Illustration Graphic representation of the monostable function block

Characteristics Characteristics of the monostable function block

S R

TB: 1mn

MN.P:9999
MODIF:Y

%MNi

Characteristic Address Value

Number %MNi 0 to 7 for a TSX 37, 0 to 254 for a TSX 57

Time base TB 1min, 1s, 100ms, 10ms (1mn by default)

Current value %MNi.V Word which decreases from %MNi.P to 0 on completion of
the timer cycle. May be read, tested but not written.

Preset value %MNi.P . Word which can be read, tested and

written. The pulse period (PRESET) is equal to: %MNi.P x
TB

MODIF
modification

Y/N � Y: possibility to modify the preset value in adjust mode,
� N: cannot be accessed in adjust mode.

Input "Start" (or
instruction)

S (Start) On the rising edge %MNi.V = %MNi.P then %MNi.V
decreases to 0

Output
"Monostable"

R (Running) The associated %MNi.R bit is at 1 if %MNi.V > 0
(monostable "elapsing") %MNi.R = 0 si %MNi.V = 0

0 %MNi.P 9999≤ ≤
TLX DR PL7 xx 81

Advanced instructions
Monostable block function operation

General The monostable function block is used to generate a pulse of precise duration.

Illustration Timing diagram illustrating the monostable operation

Operation Description of monostable operation

PRESET PRESET PRESET

S

%MNi.P
%MNi.V

R

Input “start” S :

Current value
%MNi.V :

Output “running” R :

(1)

(2)

(3)

(1) (1) (1)

(2) (2) (2)

(3) (3)

(4) (4) (4)

Phase Description

1 From the appearance of a rising edge on the monostable S input, the current
value %MNi.V takes the preset value %MNi.P.

2 The current value %MNi.V decreases to 0 by one unit at each pulse of the time
base TB.

3 The output bit %MNi.R (Running) associated with the R output moves to state
1 when the current value %MNi.V is different from 0.

4 When the current value %MNi.V = 0, the output bit %MNi.R returns to state 0.
82 TLXDRPL7xx

Advanced instructions
Configuring and programming monostable function blocks

Example Flashing for variable cyclic periods: the preset value of each monostable defines the
duration of each pulse.

Configuration The following parameters are to be entered in the variables editor:
� TB: 1mn, 1s, 100ms, 10ms or 1 ms (100ms in this example),
� %MNi.P: 0 à 9999 (%MN0.P = 50 et %MN1.P = 20 in this example,
� MODIF: Y or N.

Programming Ladder

Instruction list language
LDN %MN1.R
S %MN0
LD %MN0.R
ST %Q3.0
LDN %MN0.R
S %MN1

5s 5s
2s 2s

%Q3.0

S R

S R

%MN1.R %MN0 %Q3.0

%MN0.R %MN1
TLX DR PL7 xx 83

Advanced instructions
Structured text language
%M0:=NOT %MN1.R;
IF RE %M0 THEN
 START %MN0;
END_IF;
%Q3.0:=%MN0.R;
%M1:=NOT %MN0.R;
IF RE %M1 THEN
 START %MN1;
END_IF;

In the example below, the output %Q3.0 is set at state 1 for 5s (%MN0.P) and reset
at state 0 for 2s (%MN1.P).

Observations � In structured text language, the instruction START%MNi is used to initiate
execution of the monostable function block. This instruction forces a rising edge
on the S input of the block, which has the effect of resetting the function block.
Use of this instruction must therefore be pulse-based.

� The monostable function may also be carried out by the %TMi function block in
TP mode (See Operation of timer function block %TMi in TP mode, p. 38).

Specific cases � Incidence of a "cold restart": (%S0 = 1) loads the preset value %MNi.P in the
current value %MNi.V. Since the preset value, which may have been altered by
the terminal, has been lost, the ouput %MNi.R is reset to 0.

� Incidence of a "warm restart": There is no incidence of (%S1) on the current
value of the monostable (%MNi.V).

� Incidence of a switch into stop mode, deactivation of the task and
breakpoint: the switch of the PLC into stop mode does not freeze the current
value. The same applies when the current task is deactivated or on execution of
a breakpoint.

� Incidence of a program jump: Not polling the network in which the monostable
block is programmed does not freeze the current value %MNi.V which continues
to decrease to 0. Similarly, the %MNi.R bit associated to the monostable block
output maintains its normal operation and can thus be tested on another network.
However the spools which are directly connected to the block output (ex %Q3.0)
are not activated since they are not examined by the PLC.

� Test of %MNi.R bit : this bit can change state during its cycle.
84 TLXDRPL7xx

Advanced instructions
Introduction to Register function block

General A register is a memory block which is used to store up to 255 words of 16 bits in two
different ways:
� queue (first in, first out) called FIFO stack (First In, First Out),
� queue (last in, first out) called the LIFO stack (Last In, First Out).

Illustration The following is the graphic presentation of the register function block:

Characteristics Characteristics of the Register function block:

%Ri
R

I

O

E

F
MODE:LIFO
LEN:16

Characteristic Address Value

Number %Ri 0 to 3 for a TSX 37, 0 to 254 for a TSX 57

Mode FIFO LIFO Stack Queue (choice by default)

Length LEN Number of words of 16 bits (1< LEN< 255) making up the register memory block.

Input word %Ri.I Access word for register. May be read, tested and written.

Output word %Ri.O On a rising edge, causes an information word to be stored in the word %Ri.O

Input (or instruction)
"Store"

I (In) On a rising edge, causes the contents of the word %Ri.I to be stored

Input (or instruction)
"Destore"

O (Out) On a rising edge, causes an information word to be stored in the word %Ri.O

Input (or instruction)
"Resetting to zero"

R (Reset) At state 1, initiates the register

Output "Empty" E (Empty) E associated %Ri.E bit indicates that the register is empty. May be tested.

Output "Full" F (Full) The associated %Ri.F bit indicates that the register is full. May be tested.

Note: When the two inputs I and O are activated simultaneously, storage is carried out before the
destocking.
TLX DR PL7 xx 85

Advanced instructions
Register function block operation in FIFO mode

General In FIFO mode (First IN – First Out), the first information input in the register stack is
the first output.

Operation This table describes the operation of the FIFO mode

Step Description

1 On a rising edge on
the input I or on
activation of
instruction I, the
content of the
previously loaded
input word %Ri.I is
stored at the top of the
stack. When the stack
is full, loading is impossible and the system bit %S18 switches to 1.

2 On a rising edge on
the input O or on
activation of
instruction O, the
information word
which is lowest in the
queue is stored in the
output word %Ri.O.

3 Once the word has
been transferred into
Ri.O, the contents of
the register are shifted
down one step. When
the register is empty
(output E=1)
destocking is impossible. The output word %Ri.O moves no more and
maintains its value. The stack can be reset at any time (state 1 on input
R or activation of instruction R).

%Ri.I

50

80
2020

60

50

80
20

%Ri.O
50

60

80

%Ri.O
5060
86 TLXDRPL7xx

Advanced instructions
Register function block operation in LIFO mode

General In LIFO mode (Last In - First Out), the last information input in the register stack is
the first output.

Operation This table describes the operation of the FIFO mode

Step Description

1 On a rising edge on the input I
or on activation of instruction I,
the contents of the previously
loaded input word %Ri.I is
stored at the top of the stack.
When the stack is full, loading
is impossible and the system
bit %S18 switches to 1.

2 On input O rising edge or on
instruction O activation, the
information word which is
highest in the stack (last input
information) is stored in the
output word %Ri.O.

3 As soon as the word is
transferred into Ri.O, the
following register word is
available. When the register is
empty (output E=1) destocking
is impossible. The output word
%Ri.O moves no more and
maintains its value. The stack
can be reset at any time (state
1 on input R or activation of instruction R).

%Ri.I

50

80
2020

60

80
20

%Ri.O
20

50

80 %Ri.O
20

50
60
TLX DR PL7 xx 87

Advanced instructions
Programming and configuring the Register block function

Example The following example shows the loading of %R2.I with the word %MW34 on
request from input %I1.2, if the register R2 is not full (%R2.F=0). The input request
to the register is assured by %M1. The output request is made by input %I1.3 and
the storage of %R2.O in %MW20 is carried out if the register is not empty
(%R2.E=0).

Configuration The following parameters are to be entered in the configuration editor:
� Number: 1 to 4 for a TSX 37, 1 to 255 for a TSX 57,
� Length: 1 to 255.
The operation mode (FIFO or LIFO) is to be entered in the variables editor.

Programming Ladder

Instruction list language
LD %M1
I %R2
LD %I1.3
O %R2
LD %I.3
ANDN %R2.E
[%MW20:=%R2.O]
LD %I.2
ANDN %R2.F
[%R2.I:=%MW34]
ST %M1

%R2

R

I

O

E

F
%M1

%I1.3

%I1.3 %R2.E

%I1.2 %R2.F

%M1

%MW20:=%R2.O

%R2.I:=%MW34
88 TLXDRPL7xx

Advanced instructions
Structured text language
IF RE %M1 THEN
 PUT %R2;
END_IF;
IF RE %I1.3 THEN
 GET %R2;
END_IF;
IF (%I1.3 AND NOT %R2.E) THEN
 %MW20:=%R2.O;
END_IF;
%M1:=%I1.2 AND NOT %R2.F;
IF %M1 THEN
 %R2.I:=%MW34;
END_IF;

Note In structured text language, 3 instructions are used to program the register function
blocks:
� RESET %Ri: Initialize register,
� PUT %Ri: Causes the content of word %R.I to be stored in the register,
� GET %Ri: Causes an information word to be stored in word %Ri.O
The instructions PUT and GET create a rising edge, on the function block inputs I
and O respectively. Use of this instruction must therefore be pulse-based.

Specific cases � Incidence of a "cold" restart: (%S0=1) initializes the contents of the register.
The output bit %Ri.E associated with the output E is set to 1,

� Incidence of a "warm" restart: There is no incidence of (%S1=1) on the
contents of the register, or on the status of the output bits,

� On reset to 0 (input R or instruction R):
� In ladder, the input I and O logs are updated with the wired values,
� In instruction list language, the input I and O logs are not updated: each retains

the value which it had before the call,
� In structured text language, the input I and O logs are updated with 0.
TLX DR PL7 xx 89

Advanced instructions
Introduction to the Cyclic Programmer (Drum) function block

General With a similar operating principle to the cam programmer, the cyclic programmer
changes step according to external events. At each step, the upper point of a cam
gives a command processed by the automatic operation In the case of a cyclic
programmer, these upper points are symbolized by a state 1 at the level of each step
and are assigned to the output bits %Qi.j or internal bits %Mi called the command
bits.

Illustration Graphic representation of the Cyclic Programmer function block (Drum)

%DRi

R

U
%TB:1mn

LEN:16

F

90 TLXDRPL7xx

Advanced instructions
Characteristics Characteristics of the cyclic programmer function block

Characteristic Address Value

Number %DRi 0 to 7 for a TSX 37, 0 to 254 for a TSX 57

Number of steps LEN 1 to 16 (16 by default).

Time base TB 1mn, 1s, 100ms, 10ms (1mn by default).

Time out or duration of
current step

%DRi.V . Word which can be reset to

zero at each change of step. May be read, tested but
not written. The pulse period is equal to %DRi.V x TB

Number of step in
progress

%DRi.S . Word which can be read and

tested. Can only be written from an immediate value.

Input "return to step 0" R (RESET) At state 1, initialize the programmer at step 0

Input "advance" U (UP) On rising edge, causes the programmer to advance
one step and the command bits to be updated.

Output F (FULL) Indicates that the last defined step is in progress. The
associated %DRi.F bit can be tested (%DRi.F=1 if
%DRi.S=number of configured steps -1).

Status of a step %DRi.Wj 16 bit word defining the status of step j of the
programmer i. May be read, tested but not written.

Command bits %DRi.Wj Outputs or internal bits associated with the step
(16 command bits).

Note: The %S18 bit switches to 1, if an unconfigured step is written.

0 %DRi.V 9999≤ ≤

0 %Di.S 15≤ ≤
TLX DR PL7 xx 91

Advanced instructions
Cyclic Programmer (Drum) function block operation

General The cyclic programmer comprises:
� a matrix of constant data (cams) organized in columns: in steps from 0 to N-1 (N

being the number of configured steps), each column gives the status of the step
in the form of 16 pieces of binary information listed from 0 to F,

� a list of command bits (1 per line) corresponding to the outputs %Qxy.i or to the
internal bits %Mi. When a step is in progress, the command bits take the binary
status defined for this step.

Illustration The table below summarizes the main characteristics of the cyclic programmer
(programmer configured with 16 steps)

In the example below, for step 1, the command bits %Q2.1;%Q3.5
;%Q2.8;%Q3.6;%M5 and %M6 are set at state 1; the other command bits are set at
0.

%DRO Nbr pas : 16

OK Cancel

0 Address1 2 3 4 5 6 7 8 9 10 11 12130 14 15
0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 00 %Q2.1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 %Q2.3
1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 02 %Q3.5
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 032 %M0
0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 04 %M10
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 05 %Q2.6
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 06 %Q2.7
1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 07 %Q2.8
0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 08 %M20
0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 09 %M30
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0A %Q2.9
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1B %Q3.6
1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0C %M5
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1D %M6
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0E %M7

Control Bits

Step

BIT
92 TLXDRPL7xx

Advanced instructions
Diagram of operation

The number of the step in progress is incremented at each rising edge on the input
U (or activation of instruction U). This number may be modified by program.

0 1 2 3 N-1 0 1 2 0 1

U:

R:

%DRi.S

%DRi.F

%DRi.V

Input

Input

No. not

Output

Time
envelope
TLX DR PL7 xx 93

Advanced instructions
Programming and configuring the cyclic programmer function block (Drum)

Example In this example, the first 5 outputs from %Q2.0 to %Q2.4 are activated one after the
other, each time the input %I1.1 is set to 1. The input I1.0 resets the outputs at step
0.

Configuration The following information is defined in the variables editor:
� number of steps: (LEN:5),
� time base (TB: 1mn),
� state of outputs (command bits) for each step of the programmer.

Programming Ladder language

Instruction list language
LD %I1.0
R %DR1
LD %I1.1
U %DR1
LD %DR1.F
ST %Q2.8

Step:

0 1 2 3 4

0 : 1 0 0 0 0 %Q2.0

1 : 0 1 0 0 0 %Q2.1

Bits: 2 : 0 0 1 0 0 %Q2.2

3 : 0 0 0 1 0 %Q2.3

4 : 0 0 0 0 1 %Q2.4

%DR1

R

U
%TB:1mn

LEN:5

F
%I1.0

%I1.1

%Q2.8
94 TLXDRPL7xx

Advanced instructions
Structured text language
IF %I1.0 THEN
 RESET %DR1;
END_IF;
IF RE %I1.1 THEN
 UP %DR1;
END_IF;
%Q2.8:=%DR1.F;

Observations In structured text language, 2 instructions are used to program the cyclic
programmer function blocks:
� RESET %DRi: Initialize the programmer to step 0,
� UP %DRi: Causes the programmer to advance one step and the command bits

to be updated. This instruction creates a rising edge on the function block input
U; its use must therefore be pulse-based.

Specific cases � Incidence of a "cold restart": (%S0=1) resets the programmer to step 0 (and
updates the command bits).

� Incidence of a "warm restart": (%S1=1) resets the command bits, according to
the step which is in progress.

� Incidence of a program jump, deactivation of the task and breakpoint: not
polling the cyclic programmer does not cause the command bits to reset to 0.

� The command bits :are only updated when the step changes or on a warm or
cold restart.

Note: On reset to 0 (input R, instruction R or instruction RESET):
� In ladder language, the input U archive is updated with the connected values.
� In instruction list language, the input U archive is not updated; it retains the

values it had before the call.
� In structured text language, the U archive is updated with 0.
TLX DR PL7 xx 95

Advanced instructions
Introduction to Timer function block series 7

General This timer function block which is compatible with blocks of series 7 PL7-2/3 is used
to give timed commands for specific actions. This value of this time delay is
programmable and can be modified if necessary by the terminal.

Illustration Graphic representation of the timer function block series 7

Characteristics Characteristics of the timer function block series 7

%Ti

E

C

D

R
TB : 1mn

T.P:9999
MODIF:Y

Characteristic Address Value

Number %Ti 0 to 63 for a TSX 37, 0 to 254 for a TSX 57

Time base TB 1min, 1s, 100ms, 10ms (1mn by default)

Current value %Ti.V Word which decreases from %Ti.P to 0 on completion of the timer cycle. May be
read, tested but not written.

Preset value %Ti.P . Word which can be read, tested and written. Is set at the value

of 9999 by default. The pulse period is equal to %Ti.P x TB.

MODIF
modification

Y/N � Y: possibility to modify the preset value in adjust mode,
� N: cannot be accessed in adjust mode.

Input
"Activation"

E(Enable) At state 0, reset the timer %Ti.V = %Ti.P.

Input "Control" C(Control) At state 0, freeze the current value %Ti.V.

Output "Timer
cycle complete"

D(Done) The associated bit %Ti.D = 1, if the timer cycle is complete %Ti.V = 0.

Output "Timer
cycle complete"

R(Running) The associated bit %Ti.R = 1, if the timer %Ti.P > %Ti.V > 0 and if input C is at state 1.

0 %Ti.P 9999≤ ≤

Note: The function blocks %Ti are not programmable in an instruction list; however the block items %Ti
(%Ti.V, %Ti.P, %Ti.D and %Ti.R) can be accessed. The total number of %Tmi + %Ti must be less than
64 on the TSX 37 and 255 on the TSX 57.
96 TLXDRPL7xx

Advanced instructions
Timer function block series 7 operation

General The timer runs when its 2 inputs (E and C) are at state 1. It works as a down counter

Illustration Diagram of operation of the series 7 timer

Operation Description of operation

Instructions In structured text language, 3 instructions are used to program the timer function
blocks %Ti
� PRESET %Ti: Resets the timer,
� START %Ti: Starts the timer cycle,
� STOP %Ti: Freezes the current value of the timer.

E

C
%Ti.P
%Ti.V

%Ti.R

%Ti.D

3 3
1 1 1

2 2 2

E

C

%Ti.D

%Ti.R

0 0 11

0 1 10

%Ti.V
=

%Ti.P

%Ti.V

%Ti.P

%Ti.V
=

%Ti.P

%Ti.V
frozen

%Ti.V
fall in
%Ti.P -> 0

0 1 1 if Time0

elapsed

0 1 1 if Time0

in progress

Phase Description

1 The current value %Ti.V decreases by one unit from the preset value %Ti.P to 0 at each pulse of the time base TB.

2 The output bit %Ti.R (Timer in progress) associated with the R output is then at state 1, the output bit %Ti.D
(Timer cycle complete) associated with the D output is at state 0,

3 When the current value %Ti.V=0, %Ti.D changes to state 1 and %Ti.R returns to state 0.
TLX DR PL7 xx 97

Advanced instructions
Programming the series 7 timer in "Delay on engagement" mode

General The "Timer" function block can carry out different functions, according to how it has
been programmed. The "delay on engagement" function is described here.

Illustration Diagram of operation of the "delay on engagement" function

Programming Programming in ladder language

Programming in structured text language
IF %I1.0 THEN
 START %T0;
ELSE
 PRESET %T0;
END_IF;
%Q2.0:=%T0.D;

%I1.0 = E, C

R

D = %Q2.0
PRESET PRESET

%T0

E

C

D

R
TB : 1mn

%Ti.P=3
MOD:N

%I1.0 %Q2.0
98 TLXDRPL7xx

Advanced instructions
Programming the series 7 timer in "Delay on release" mode

General The "Timer" function block can carry out different functions, according to how it has
been programmed. The "delay on release" function is described here.

Illustration Diagram of operation of the "delay on release" function

Programming Programming in ladder language

Programming in structured text language
IF %I1.1 THEN
 PRESET %T7;
ELSE
 START %T7;
END_IF;
%Q2.1:=NOT%T7.D;

%I1.1

R

%Q2.1

PRESET

E, C

D

%T7

E

C

D

R
TB : 1s

%Ti.P=120
MOD:N

%I1.1 %Q2.1
TLX DR PL7 xx 99

Advanced instructions
Programming the series 7 timer in "Delay accumulated on engagement" mode

General The "Timer" function block can carry out different functions, according to how it has
been programmed. The "delay accumulated on engagement" function is described
here.

Illustration Diagram of operation of the "delay accumulated on engagement" function

Programming Programming in language data

Programming in structured text language
IF %I1.2 THEN
IF %I1.3 THEN
 START %T5;
ELSE
 STOP %T5;
END_IF;
ELSE
 PRESET %T5;
END_IF;
%Q2.4:=%T5.D;
%Q2.5:=%T5.R;

%I1.2 = E

%Q2.5 = R

%I1.3 = C

%Q2.4 = D

D1 D2 D3

PRESET = D1+D2+D3

%T5

E

C

D

R

TB : 1mn

%Ti.P=3
MOD:N

%I1.2 %Q2.1

%Q2.5%I1.3
100 TLXDRPL7xx

Advanced instructions
Programming the series 7 timer in "Delay accumulated on release" mode

General The "Timer" function block can carry out different functions, according to how it has
been programmed. The "delay accumulated on release" function is described here.

Illustration Diagram of operation of the "delay accumulated on release" function

Programming Programming in language data

Programming in structured text language
IF %I1.0 THEN
 PRESET %T12;
ELSE
 IF %I1.1 THEN
 STOP %T12;
ELSE
 START %T12;
END_IF;
END_IF;
%Q2.4:=NOT %T12.D;

%I1.0

%I1.1

E

%Q2.1

D1 D2 D3

C

D

R

PRESET = D1+D2+D3

%T12

E

C

D

R

TB : 10mn

%Ti.P=40
MOD:Y

%I1.0 %Q2.4

%I1.1
TLX DR PL7 xx 101

Advanced instructions
Introduction to the vertical comparison operation block

General The vertical comparison block is used to compare 2 operands (OP). These 2
operands are words of 16 possibly indexed bits, or words of immediate value.
The number of vertical comparison blocks is not limited and is not enumerated.

Illustration Graphic representation of the vertical comparison operation block

Characteristics Characteristics of the vertical comparison operation block

>

=

<

<>

EN

OP1

OP2

COMPARE

Characteristic Addres
s

Value

Command input EN At state 1, compares the two operands.

Output "Greater" > Is at state 1 if the content of the OP1 is greater than that of
OP2.

Output "Equal" = Is at state 1 if the content of the OP1 is equal to that of OP2.

Output "Less" < Is at state 1 if the content of the OP1 is less than that of
OP2.

Output "Different" <> Is at state 1 if the content of the OP1 is different from that of
OP2.

Operand number 1 OP1 This operand is a single length word object (it may be
indexed).

Operand number 2 OP2 This operand is a single length word object (it may be
indexed).
102 TLXDRPL7xx

Advanced instructions
Operation of vertical comparison operation block

Operation Setting the command input to 1 compares the two operands; the four outputs are
activated according to the result of the comparison. Setting the command input to 0
sets the activated outputs to zero.

Example The program below shows the comparison of the word %MW2 indexed by the word
%MW40 and of the immediate value of 150. In this case where the content of
%MW2[%MW40] is greater than 150 and if %I1.3 = 1, spool %Q2.7 is commanded.
If the content is equal to 150, spool %MW10:X4 is commanded. Spool %M5 is only
controlled if the content is different from 150 (< or >).

Ladder language

Specific cases � Incidence of a "cold" restart: (%S0) resets the operand OP1 and possibly OP2
(if OP2 is an internal word) to zero, the outputs are activated according to the
comparsion with the new values.

� Incidence of a "warm" restart: There is no incidence of (%S1) on the
comparison block.

Note: This function block does not exist in instruction list language or in structured
text language. Use the comparison operations >, <, =, <>.

EN
%I1.3

>

=

<

<>

%Q2.7

%MW10:X4

%M5

%MW2
[%MW40]

150
TLX DR PL7 xx 103

Advanced instructions
2.3 Shift instructions

Shift instructions

General The shift instructions involve moving the bits of a word or double word operand by a
number of positions to the right or left. There are two types of shift:
� the logic shift:

� SHL(op2,i) logic shift of i positions towards the left.
� SHL(op2,i) logic shift of i positions towards the right.

� the rotate shift:
� ROL(op2,i) rotate shift of i positions towards the left,
� ROL(op2,i) rotate shift of i positions towards the right.

If the operand which is to be shifted is a simple length operand, the variable i will be
between 1 and 16. If the operand which is to be shifted is a double length operand,
the variable i will be between 1 and 32. The state of the last output bit is memorized
in the %S17 bit.
Illustration of the two types of shift:

Logic shift Rotate shift

%S17

15 (ou 31)

0

0

%S17

%S17

0

0

%S17

15 (ou 31)
104 TLXDRPL7xx

Advanced instructions
Structure Ladder language:

Instruction list language:
LDR %I1.1
[%MW0:=SHL(%MW10,5)]

Structured text language:
IF RE%I1.2 THEN
 %MW10:=ROR(%KW9,8);
END_IF;

Syntax Operators: SHL, SHR, ROL, ROR
Operands:

Syntax: Op1:=Operator(Op2,i)

%MW0:=SHL(%MW10,5)

%MW10:=ROR(%KMW9,8)

P

P

Type Operand 1 (Op1) Operand 2 (Op2)

Words which can be indexed %MW %MW, %KW, %Xi.T

Words which can not be
indexed

%QW, %SW, %NW, %BLK Imm.val., %IW, %QW, %SW,
%NW, %BLK, Expr. num.

Double words which can be
indexed

%MD %MD, %KD

Double words which can not
be indexed

%QD, %SD Imm.val., %ID, %QD, %SD,
Expr. num.
TLX DR PL7 xx 105

Advanced instructions
2.4 Floating point instructions

Introduction

Subject of this
sub-section

This sub-section describes PL7 language floating point instructions.

What's in this
Section?

This Section contains the following Maps:

Topic Page

Floating point instructions 107

Floating point comparison instructions 110

Assign instructions on the floating point 112

Arithmetic instructions on a floating point 114

Logarithm and Exponential Instructions 116

Trigonometric Instructions 118

Conversion instructions 120

Rounding off a floating point value in ASCII format 122
106 TLXDRPL7xx

Advanced instructions
Floating point instructions

General Operations on floating objects can be carried out with PL7 software.

The floating format used is the standard IEEE STD 734-1985 (equivalent IEC 559).
The length of the words is 32 bits, which corresponds to the single decimal point
floating numbers.

The floating values can be represented with or without exponent; they must always
have a decimal point (floating point).

Examples of floating values:
without exponent: 1285.28
with exponent: 1.28528e3

Floating values range from -3.402824e+38 and -1.175494e-38 to 1.175494e-38 and
3.402824e+38 (grayed out values on the diagram). They also have the value 0,
written 0.0
.

When a calculation result is between -1.175494e-38 and 1.175494e-38, it is
rounded off to 0. A value within this range cannot be entered as a floating point value
if it is entered in another format; the symbol 1.#DN or - 1.#DN will be displayed.

When a calculation result is:
� less than -3.402824e+38, the symbol -1.#INF (for -infinite) is displayed,
� greater than +3.402824e+38, the symbol 1.#INF (for +infinite) is displayed.

When the result of an operation is undefined (for example square root of a negative
number), the symbol 1.#NAN or -1.#NAN is displayed.

When the result is not within the valid range, the system bit %S18 is set to 1.

-1.#INF -1.#DN 1.#DN 1.#INF

-3.402824e+38 -1.175494e-38 +1.175494e-38 +3.402824e+380
TLX DR PL7 xx 107

Advanced instructions
The status word %SW17 bits indicate the cause of an error in a floating operation:
Different bits of the word SW17:

This word is reset to 0 by the system on cold start, and also by the program for re-
usage purposes.

Representation precision is 2-24. To display floating point numbers, it is
unnecessary to display more than 6 digits after the decimal point.

Addressing floating objects

Possibility of overlap between objects:
Single, double length and floating words are stored inside the data space in one
memory zone. Thus, the floating word %MFi corresponds to the single length words
%MWi and %MWi+1 (the word %MWi containing the least significant bits and the
word %MWi+1 the most significant bits of the word %Mfi).

%SW17:X0 Invalid operation, result is not a number (1.#NAN or -1.#NAN)

%SW17:X1 Non-standardized operand (between -1.175494e-38 and 1.175494e-38),
result is rounded off to 0.

%SW17:X2 Divided by 0, result is infinite (-1.#INF or 1.#INF)

%SW17:X3 Result greater in absolute value than +3.402824e+38, result is infinite (-1.#INF
or 1.#INF)

%SW17:X4 Result less than 1.175494e-38, result is 0.

%SW17:X5 Imprecise result

Note:
� the value "1285" is interpreted as a whole value; in order for it to be recognized

as a floating point value, it must be written thus: "1285.0",
� instructions for Integer <--> Floating conversion are used to move from one

format to another.

Abbreviations Complete
addressing

Type of floating
point

Access Indexed form

Imm.val. - Immediate values R -

%MF %MFi Internal floating point R/W %MFi[index]

%KF %KFi Floating constant
value

R %KFi[index]
108 TLXDRPL7xx

Advanced instructions
Illustration:

Example:
%MF0 corresponds to %MW0 and %MW. %KF543 corresponds to %KW543 and
%KW544.

%MW0

%MW1

%MW2

%MW3

%MWi

%MWi+1

%MF0

%MF1

%MF2

%MF3

%MFi
TLX DR PL7 xx 109

Advanced instructions
Floating point comparison instructions

General The comparison instructions are used to compare two operands.

The result is at 1 when the requested comparison is true.

Structure Language data

The comparison blocks program themselves in the test zone

Instruction list language
LD [%MF10>129.7]
ST %Q2.3
LD %M0
AND [%MF10<KF35]
ST %Q2.2
LD %I1.2
OR [%MF30>=MF40]
ST %Q2.4
The comparison is made inside the fasteners behind the LD, AND and OR
instructions.

Structured text language
%Q2.3:=%MF10>129.7;
%Q2.2:=(%MF20<%KF35) AND %M0;
%Q2.4:=(%MF30>=%MF40) OR %I1.2;

> test if operand 1 is above operand 2,

>= test if operand 1 is above or equal to operand 2,

< test if operand 1 is below operand 2,

<= test if operand 1 is below or equal to operand 2,

= test if operand 1 is equal to operand 2,

<> test if operand 1 is different from operand 2

%MF10>129.7

%MF10<KF35

%MF30>=MF40

%Q2.3

%Q2.2

%Q2.4

%M0

%I1.2
110 TLXDRPL7xx

Advanced instructions
Syntax Operators: >,>=,<,<=,=,<>
Operands:

Type Operands 1 and 2 (Op1 and Op2)

Floating points which can
be indexed

%MF,%KF

Floating point which can
not be indexed

Immediate floating point value, Digital floating point expression

Note: In instruction list language, the comparison instructions can be used within
the brackets.
TLX DR PL7 xx 111

Advanced instructions
Assign instructions on the floating point

General The assignment operations can be performed on the following floating points:
� floating point (indexed) -> floating point (indexed). See e.g. 1,
� immediate floating point value -> floating point (indexed). See e.g. 2.

Structure Language data:

Instruction list language:
E.g. 1
LD TRUE
[%MF10:=%KF10]

LD %I3.2
[%MF5:=%KF0[%MW20]]

E.g. 2
LDR %I3.3
[%MF100:=150.25]

Structured text language:
E.g. 1
%MF10:=%KF10;
IF %I3.2 THEN
 %MF5:=%KF0[%MW20];
END_IF;

E.g. 2
IF RE %I1.3 THEN
 %MF100:=150.25;
END_IF;

%MF10:=%KF100

%MF5:=%KF0[%MW20]

%MF100:=150.25P

%I3.2

%I3.3
112 TLXDRPL7xx

Advanced instructions
Syntax Operators: :=
Operands:

Syntax: Op1:=Op2

Type Operands 1 (Op1) Operands 2 (Op2)

Floating points which
can be indexed

%MF %MF, %KF

Floating point which can
not be indexed

Immediate floating point value,
Digital floating point expression

Note: It is possible to perform multiple assignments. Example:
%MF0:=%MF2:=%MF4
TLX DR PL7 xx 113

Advanced instructions
Arithmetic instructions on a floating point

General These instructions are used to perform an arithmetic operation between two
operands or on one operand.

Structure Ladder langauge

Instruction list language
LD %M0
[%MF0:=%MF10+129.7]

LD %I3.2
[%MF1:=SQRT(%MF10)]

LDR %I3.3
[%MF2:=ABS(%MF20)]

LDR %I3.5
[%MD8:=TRUNC(%MF2)]

+ addition of two operands SQRT square root of an operand

- subtraction of two operands ABS absolute value of an operand

* multiplication of two operands TRUNC whole part of a floating point value

/ division of two operands

P

P

%M0

%I3.2

%I3.3

%I3.5

%MF0:=%MF10+129.7

%MF1:=SQRT(%MF10)

%MF2:=ABS(%MF20)

%MD8:=TRUNC(%MF2)
114 TLXDRPL7xx

Advanced instructions
Structured text language
IF %M0 THEN
 %MF0:=%MF10+129.7;
END_IF;
IF %I3.2 THEN
 %MF1:=SQRT(%MF10);
END_IF;
IF %I3.3 THEN
 %MF2:=ABS(%MF20);
END_IF;
IF %I3.2 THEN
 %MD8:=TRUNC(%MF2);
END_IF

Syntax Operators and syntax of arithmetic instructions on floating point

Operands of arithmetic instructions on floating point

(1) %MD in the case of instruction TRUNC

Rules of use � operations on floating point and integer values can not be directly mixed.
Conversion operations (See Numerical conversion instructions, p. 124) convert
into one or other of these formats,

� System bit %S18 is managed in exactly the same way as the operations on
integers (See Arithmetic instructions on integers, p. 58), the word %SW17 (See
Floating point instructions, p. 107) indicates the cause of the error.

Operators Syntax

+, - *, / Op1:=Op2 Operator Op3

SQRT, ABS, TRUNC Op1:=Operator(Op2)

Type Operand 1 (Op1) Operand 2 (Op2)

Words which can be
indexed

%MF (1) %MF, %KF

Words which can not
be indexed

- Immediate floating point
value, Numeric floating point
expr.
TLX DR PL7 xx 115

Advanced instructions
Logarithm and Exponential Instructions

General These instructions enable the user to perform logarithmic and exponential
operations.

Structure Ladder language

Instruction list language
LD %M0
[%MF0:=LOG(%MF10]

LD %I3.2
[%MF2:=LN(%MF20)]

LDR %I3.3
[%MF4:=EXP(%MF40)]

LDR %I3.4
[%MF6:=EXPT(%MF50,%MF52)]

LOG base 10 logarithm

LN Napierian logarithm

EXP natural exponential

EXPT exponentiation of an actual by an actual

%MF6:=EXPT(%MF50,%MF52)

P

P

%M0

%I3.2

%I3.3

%I3.4

%MF0:=LOG(%MF10)

%MF2:=LN(%MF20)

%MF4:=EXP(%MF40)
116 TLXDRPL7xx

Advanced instructions
Structured text language
IF %M0 THEN
 %MF0:=LOG(%MF10);
END_IF;
IF %I3.2 THEN
 %MF2:=LN(%MF20);
END_IF;
IF %I3.3 THEN
 %MF4:=EXP(%MF40);
END_IF;
IF %I3.4 THEN
 %MF6:=EXPT(%MF50,%MF52);
END_IF;

Syntax Operators and syntax of the logarithmic and exponential instructions

Operands of the logarithmic and exponential instructions

Rules for Use � when the operand of the function is an invalid number (e.g.: logarithm of a
negative number), it produces an indeterminate or infinite result and changes the
bit %S18 to 1,the word %SW17 indicates the cause of the error (General (See
Floating point instructions, p. 107)),

� in the case of logarithm functions, for the values near to 1.0 (between 0.99 and
1.0 or 1.0 and 1.01), the result will be equal to 0, the bits %S18 and %SW17:X5
are set to 1.

Operators Syntax

LOG, EXP, LN Op1:=Operator(Op2)

EXPT Op1:=Operator (Op2,Op3)

Type Operand 1 (Op1) Operand 2 (Op2) Operand 3 (Op3)

Indexable words %MF %MF, %KF %MF

Non-indexable words - Floating imm.value
Floating num. expr.

Floating imm.value
TLX DR PL7 xx 117

Advanced instructions
Trigonometric Instructions

General These instructions enable the user to perform trigonometric operations.

Structure Ladder language

Instruction list language
LD %M0
[%MF0:=SIN(%MF10)]

LD %I3.2
[%MF2:=TAN(%MF10)]

LDR %I3.3
[%MF4:=ATAN(%MF20)]

Structured text language
IF %M0 THEN
 %MF0:=SIN(%MF10);
END_IF;
IF %I3.2 THEN
 %MF2:=TAN(%MF10);
END_IF;
IF %I3.3 THEN
 %MF4:=ATAN(%MF20);
END_IF;

SIN sine of an angle expressed as a
radian,

ASIN

arc sine (result within and)

COS cosine of an angle expressed as a
radian,

ACOS arc cosine (result within 0 and)

TAN tangent of an angle expressed as a
radian,

ATAN

arc tangent (result within and)

-π
2
--- π

2

π

-π
2
--- π

2

P

%M0

%I3.2

%I3.3

%MF0:=SIN(%MF10)

%MF2:=TAN(%MF10)

%MF4:=ATAN(%MF20)
118 TLXDRPL7xx

Advanced instructions
Syntax Operators and syntax of trigonometric operations instructions

Operands of the trigonometric operations instructions:

Rules for Use � when the operand of the function is an invalid number (e.g.: arc cosine of a
number greater than 1), it produces an indeterminate or infinite result and
changes bit %S18 to 1, the word %SW17 (See Floating point instructions, p. 107)
indicates the cause of the error,

� the functions SIN/COS/TAN allow as a parameter an angle between
and but their precision decreases progressively for the angles outside the

period and because of the imprecision brought by the modulo
carried out on the parameter before any operation,

� For the values 0<Op2<0.01 and 0.999<Op2<1.0 of ASIN, bit %S18 and bit
%SW17:X5 change to 1, denoting an imprecise measurement.

Operators Syntax

SIN, COS, TAN, ASIN,
ACOS, ATAN

Op1:=Operator(Op2)

Type Operand 1 (Op1) Operand 2 (Op2)

Indexable words %MF %MF, %KF

Non-indexable words - Floating imm.value
Floating num. expr.

4096π–

4096π
2– π +2π 2π
TLX DR PL7 xx 119

Advanced instructions
Conversion instructions

General These instructions are used to carry out conversion operations.

Structure Ladder language

Instruction list language
LD %M0
[%MF0:=DEG_TO_RAD(%MF10)]

LD %M2
[%MF2:=RAD_TO_DEG(%MF20)]

Structured text language
IF %M0 THEN
 %MF0:=DEG_TO_RAD(%MF10);
END_IF;
IF %M2 THEN
 %MF2:=RAD_TO_DEG(%MF20);
END_IF;

DEG_TO_RAD conversion of degrees into radian, the result is the value

of the angle between 0 and

RAD_TO_DEG cosine of an angle expressed in radian, the result is the
value of the angle between 0 and 360 degrees

2π

%M0

%M2
%MF2:=RAD_TO_DEG(%MF20)

%MF0:=DEG_TO_RAD(%MF10)
120 TLXDRPL7xx

Advanced instructions
Syntax Operators and syntax of conversion instructions:

Operands of conversion instructions:

Rules of use The angle to be converted must be between -737280.0 et +737280.0 (for
DEG_TO_RAD conversions) or between and (for RAD_TO_DEG
conversions).
For values outside these ranges, the displayed result will be + 1.#NAN, the %S18
and %SW17:X0 bits being set at 1.

Operators Syntax

DEG_TO_RAD
RAD_TO_DEG

Op1:=Operator(Op2)

Type Operand 1 (Op1) Operand 2 (Op2)

Words which can be
indexed

%MF %MF, %KF

Words which can not be
indexed

- Imm. floating point value
Numeric floating point Expr.

4096π– 4096π
TLX DR PL7 xx 121

Advanced instructions
Rounding off a floating point value in ASCII format

General The ROUND function supplies the approximate value of a floating point number
represented by a string of characters.

This function uses 3 parameters:

ROUND(string 1, Long, String 2)

� String 1: Table of bytes constituting the string of source characters,
� Long: Word giving the position in the string of characters from which the rounding

off will be made (the position is calculated by counting the number of characters
from the decimal point, including the decimal point),

� String 2: Byte tables constituting the resulting character string.

Structure Ladder language

Instruction list language
LD TRUE
[ROUND(%MB10:15,%MW100,%MB50:15)]

Structured text language
ROUND(%MB10:15,%MW100,%MB50:15);

ROUND(%MB10:15,%MW100,%MB50:15)
122 TLXDRPL7xx

Advanced instructions
Examples Examples of ASCII floating point values roundoffs

Syntax Operators and syntax of conversion instructions:

Operands of conversion instructions:

Rules of use � The length of the source and result character strings must be between 15 and 255
bytes. If this is not the case, the %S15 bit is set at 1,

� The Long length parameters must be between 0 and 8. If this is not the case, the
%S20 bit (index overflow) is set at 1. Special case: for L=0 or L=8, the roundoff
is not made (source string = result string),

� When the last character different from 0 is > to 5, the previous character is
incremented.

“-” “1” “.” “2” “3” “4” “5” “6” “7” “0” “e” “+” “2” “6” $00

“-” “1” “.” “2” “3” “4” “5” “0” “0” “e” “+” “2” “6” $00

“-” “1” “.” “1” “3” “5” “4” “9” “4” “2” “e” “-” “3” “0” $00

“+” “1” “.” “1” “0” “0” “0” “0” “0” “0” “e” “-” “3” “0” $00

“0”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

%MB10:15

%MW100 = 4

%MB50:15

%MB10:15

%MW100 = 2

%MB50:15

Operators Syntax

ROUND Op(string 1,Long, string 2)

Type Operand 1 (Op1) Operand 2 (Op2)

Byte table %MB:15 -

Words which can not be indexed - %MW
TLX DR PL7 xx 123

Advanced instructions
2.5 Numerical conversion instructions

Introduction

Subject of this
sub-section

This sub-section describes PL7 language floating point instructions.

What's in this
Section?

This Section contains the following Maps:

Topic Page

BCD conversion instructions <-> Binary 125

Integer Conversion Instructions <-> Floating 128

Instructions for Gray <-> Integer conversion 131

Word conversion Instructions <--> double word 132
124 TLXDRPL7xx

Advanced instructions
BCD conversion instructions <-> Binary

General There are six conversion instructions.

Instruction list:

Reminder
concerning BCD
code

The BCD code (Binary Coded Decimal) is used to represent a decimal number from
0 to 9 by a set of 4 bits. A bit object of 16 bits can thus contain a number expressed
in 4 digits (0 < N < 9999).

Equivalence between decimal and BCD:

Examples of BCD coding:
� Word %MW5 expressing the BCD value "2450" which corresponds to the binary

value: 0010 0100 0101 0000,
� Word %MW12 expressing the BCD value "2450" which corresponds to the binary

value : 0000 1001 1001 0010.

The instruction BCD_TO_INT changes the word %MW5 to the word %MW12.
The instruction INT_TO_BCD changes the word %MW12 to the word %MW5.

BCD_TO_INT conversion of a 16 bit BCD number into a 16 bit integer

INT_TO_BCD conversion of a 16 bit integer into a 16 bit BCD number

DBCD_TO_DINT conversion of a 32 bit BCD number into a 32 bit integer

DINT_TO_DBCD conversion of a 32 bit integer into a 32 bit BCD number

DBCD_TO_INT conversion of a 32 bit BCD number into a 16 bit integer

INT_TO_DBCD conversion of a 16 bit integer into a 32 bit BCD number

Decimal 0 1 2 3 4 5 6 7 8 9

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001
TLX DR PL7 xx 125

Advanced instructions
Structure Ladder language

Instruction list language
LD TRUE
[%MW0:=BCD_TO_INT(%MW10)]

LD I1.2
[%MW10:=INT_TO_BCD(%KW9)]

Structured text language
%MW0:=BCD_TO_INT(%MW10);
IF %I1.2 THEN
 %MW10:=INT_TO_BCD(%KW9);
END_IF;

Syntax Operators and syntax (conversion of a 16 bit number):

Operands (conversion of a 16 bit number):

%MW0:=BCD_TO_INT(%MW10)

%MW10:=INT_TO_BCD(%KW9)

%I1.2

Operators Syntax

BCD_TO_INT Op1=operator(Op2)

INT_TO_BCD

INT_TO_DBCD

Type Operand 1 (Op1) Operand 2 (Op2)

Words which can be
indexed

%MW %MW,%KW,%Xi.T

Words which can not be
indexed

%QW,%SW,%NW,%BLK Imm.val.,%IW,%SW%NW,%BLK,
Numeric Expr.

Double words which can
be indexed

%MD -

Double words which can
not be indexed

%QD,%SD -
126 TLXDRPL7xx

Advanced instructions
Operators and syntax (conversion of a 32 bit number):

Operands (conversion of a 32 bit number):

Example of
applications

The BCD_TO_INT instruction is used to process a setpoint value present in PLC
input on BCD encoded encoder wheels.
The INT_TO_BCD instruction is used to display digital values (eg: calculation result,
current value of function block) on BCD coded displays.

Rules of use � BCD->Binary conversion
The BCD-->Binary conversion instructions ensure that the conversion operator is
working on a BCD coded value. If the value is not a BCD value, the %S18 system
bit is set at 1 and the result returns the value of the first nibble which is at fault.
E.g.: BCD_TO_INT(%MW2)with %MW2=4660 gives 1234 as the result. However,
%MW2=242 (16#00F2) causes %S18 to set at 1 and the result is 15.
For the DBCD_TO_INT instruction, if the BCD number is greater than 32767, the
system bit %S18 is set at 1 and the value -1 is stored in the result.

� Binary->BCD conversion
When the last character different from 0 is > at 5, the previous character is
incremented.
The instruction INT_TO_BCD (or DINT_TO_BCD) ensures that the conversion
operator is working on a value between 0 and 9999 (or 0 and 9999 9999). If this
is not the case, the system bit %S18 is set at 1 and the result returns the input
parameter value.
E.g.: INT_TO_BCD (%MW2) with %MW2=2478 gives 9336 as the result.
However, %MW2=10004 causes %S18 to set at 1 and the result is 10004.
For the INT_TO_DBCD instruction, if the input parameter is negative, the system
bit %S18 is set at 1 and the result returns the input parameter value.

Operators Syntax

DBCD_TO_DINT Op1=operator(Op2)

DINT_TO_DBCD

DBCD_TO_INT

Type Operand 1 (Op1) Operand 2 (Op2)

Words which can be indexed %MW %MW,%KW,%Xi.T

Words which can not be indexed %QW,%SW,%NW,%BLK -

Double words which can be indexed %MD %MD,%KD

Double words which can not be indexed %QD,%SD Imm. val.,%ID,%QD%SD, Numeric Expr.
TLX DR PL7 xx 127

Advanced instructions
Integer Conversion Instructions <-> Floating

General Four conversion instructions are offered.
Integer conversion instructions list<-> floating:

Structure Ladder language

Instruction list language
LD TRUE
[%MF0:=INT_TO_REAL(%MW10)]

LD I1.8
[%MD4:=REAL_TO_DINT(%MF9)]

Structured text language
%MF0:=INT_TO_REAL(%MW10);
IF %I1.8 THEN
 %MD4:=REAL_TO_DINT(%MF9);
END_IF;

INT_TO_REAL conversion of an integer word --> floating

DINT_TO_REAL double conversion of integer word --> floating

REAL_TO_INT floating conversion --> integer word (the result is the nearest
algebraic value)

REAL_TO_DINT floating conversion --> double integer word (the result is the
nearest algebraic value)

%MF0:=INT_TO_REAL(%MW10)

%MD4:=REAL_TO_DINT(%MF9)
%I1.8
128 TLXDRPL7xx

Advanced instructions
Syntax Operators and syntax (conversion of an integer word --> floating):

Operands (conversion of an integer word --> floating):

Example: integer word conversion --> floating: 147 --> 1.47e+02

Operators and syntax (double conversion of integer word --> floating):

Operands (double conversion of integer word --> floating):

Example:integer double word conversion --> floating: 68905000 --> 6.8905e+07

Operators and syntax (floating conversion --> integer word or integer double word):

Operators (floating conversion --> integer word or integer double word):

Operators Syntax

INT_TO_REAL Op1=INT_TO_REAL(Op2)

Type Operand 1 (Op1) Operand 2 (Op2)

Indexable words - %MW,%KW,%Xi.T

Non-indexable words - Imm. val.,%IW,%QW,%SW%NW,%BLK,Num
expr.

Indexable floating
words

%MF -

Operators Syntax

DINT_TO_REAL Op1=DINT_TO_REAL(Op2)

Type Operand 1 (Op1) Operand 2 (Op2)

Indexable words - %MD,%KD

Non-indexable words - Imm. val.,%ID,%QD%SD,Num expr.

Indexable floating
words

%MF -

Operators Syntax

REAL_TO_INT Op1=Operator(Op2)

REAL_TO_DINT

Type Operand 1 (Op1) Operand 2 (Op2)

Indexable words %MW -

Non-indexable words %QW,%NW,%BLK -
TLX DR PL7 xx 129

Advanced instructions
Example:
floating conversion --> integer word: 5978.6 --> 5979
floating conversion --> integer double word: -1235978.6 --> -1235979

Precision of
Rounding

Standard IEEE 754 defines 4 rounding modes for floating operations.
The mode employed by the instructions above is the "rounded to the nearest" mode:
"if the nearest representable values are at an equal distance from the theoretical

result, the value given will be the value whose low significance bit is equal to 0".
In certain cases, the result of the rounding can thus take a default value or an excess
value.

For example:
Rounding of the value 10.5 -> 10
Rounding of the value 11.5 -> 12

Indexable double
words

%MD -

Non-indexable
double words

%QD -

Indexable floating
words

- %MF,%KF

Non-indexable
floating words

- Floating imm.val.

Note: If during a real to integer (or real to integer double word) conversion the
floating value is outside the limits of the word (or double word),bit %S18 is set to 1.

Type Operand 1 (Op1) Operand 2 (Op2)
130 TLXDRPL7xx

Advanced instructions
Instructions for Gray <-> Integer conversion

General The GRAY_TO_INT instruction converts a Gray code word into integer (pure binary
code).

Reminder
concerning Gray
code

The Gray code or "considered binary" is used to code a changing digital value in a
series of binary configurations which differ from each other by the change in status
of one and only one bit.
For example, this code is used to avoid the following hazard: in pure binary, the
change of a value from 0111 to 1000 can create random values between 0 and
1000, the bits do not change value in a perfectly simultaneous way.

Equivalence between decimal, BCD and Gray:

Structure Ladder language

Instruction list language
LD TRUE
[%MW0:=GRAY_TO_INT(%MW10)]

Structured text language
%MW0:=GRAY_TO_INT(%MW10);

Syntax Operators and syntax:

Operands:

Décimal 0 1 2 3 4 5 6 7 8 9

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Gray 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101

%MW0:=GRAY_TO_INT(%MW10)

Operators Syntax

GRAY_TO_INT Op1=GRAY_TO_INT(Op2)

Type Operand 1 (Op1) Operand 2 (Op2)

Words which can be
indexed

%MW %MW,%KW,%Xi.T

Words which can not
be indexed

%QW,%SW,%NW,%BLK Imm.val.,%IW,%QW,%SW,%NW,%BLK,
Numeric Expr.
TLX DR PL7 xx 131

Advanced instructions
Word conversion Instructions <--> double word

General The instructions described below are useful for purely symbolic objects (such as
DFB function blocks).
For objects which can be addressed, the overlap mechanisms (example: %MD0
double word is made from the words %MW0 and %MW1) make these instructions
unnecessary.

Instruction list for word conversion <--> double word:

Syntax Extract instruction operators and syntax from the least significant word from a
double word:

Extract instructions operands from the least significant word from a double word

Example:
Pressure_cuve:=LW(Parameter_1)
if Parameter_1=16#FFFF1234, Pressure_cuve=16#1234

Extract instruction operators and syntax from the most significant word from a
double word:

Extract instructions operands from the most significant word from a double word

Example:
Pressure_cuve:=HW(Parameter_1)
if Parameter_1=16#FFFF1234, Pressure_cuve=16#FFFF

LW Extract instructions from the least significant word from a double word

HW Extract instructions from the most significant word from a double word

CONCATW 2 word concatenation instructions

Operators Syntax

LW Op1=LW(Op2)

Op1 Single length word (type Word)

Op2 Double length word (type DWord)

Operators Syntax

HW Op1=HW(Op2)

Op1 Single length word (type Word)

Op2 Double length word (type DWord)
132 TLXDRPL7xx

Advanced instructions
Operators and syntax of the 2 single word concatenation instructions and transfer
into a double word:

Operands of the 2 single word concatenation instructions and transfer into a double
word:

Example:
Pressure_cuve:=CONCATW(Parameter_1,Parameter_2)
if Parameter_1=16#1234, Parameter_1=16#FFFF,
Pressure_cuve=16#FFFF1234

Operators Syntax

CONCATW Op1=CONCATW(Op2,
Op3)

Op1 Double length word (type DWord)

Op2 Single length word (type Word)

Op3 Single length word (type Word)
TLX DR PL7 xx 133

Advanced instructions
2.6 Word table instructions

Introduction

Subject of this
sub-section

This sub-section describes PL7 language word table instructions

What's in this
Section?

This Section contains the following Maps:

Topic Page

Word table instructions 135

Arithmetic instructions on tables 137

Logic table instructions 139

Table summing functions 141

Table comparison functions 143

Table search functions 145

Table search functions for maxi and mini values 148

Number of occurrences of a value in a table 150

Table rotate shift function 152

Table sort function 155

Table length calculation function 157
134 TLXDRPL7xx

Advanced instructions
Word table instructions

General Operations on tables can be carried out with PL7 software:
� common words,
� double words,
� floating words.
Word tables are collections of adjacent words of the same type and defined length: L
Example of a word table: %KW10:5

Word table characteristics

(1) Nmax = maximum number of words defined in software configuration
(2) Only the words %SW50 to %SW53 may be addressed in the form of tables.

Type Format Maximum
address

Size Write
access

Internal words Simple length %MWi:L i+L<=Nmax (1) Yes

Double length %MWDi:L i+L<=Nmax-1 (1) Yes

Floating point %MFi:L i+L<=Nmax-1 (1) Yes

Constant words Single length %KWi:L i+L<=Nmax (1) No

Double length %KWDi:L i+L<=Nmax-1 (1) No

Floating point %KFi:L i+L<=Nmax-1 (1) No

System word Single length %SW50:4 (2) - Yes

16 bits%KW10

%KW14
TLX DR PL7 xx 135

Advanced instructions
General rules on
table operations

� table operations can only be carried out on tables containing objects of the same
type,

� table operations can only be carried out on a maximum of 2 tables,
� if the tables in an operation are of different sizes, the result table will correspond

to the smaller of the 2 operand tables,
� the user must avoid carrying out operations on tables with overlap (for example:

%MW100[20]:=%MW90[20]+%KW100[20]),
� an operation on 2 tables is carried out on each element of the same rank in both

tables and the result is transferred into the element of the same rank in the result
table,

� if during an operation between 2 elements, the system bit %S18 is set at 1, the
result for this operation is invalid, but the operation for the following elements is
carried out correctly,

� when one of the operands is a numeric expression, this must be put between
brackets,

� the rank of a word in a table corresponds to the position of the word in the table;
the first position corresponds to rank 0.
136 TLXDRPL7xx

Advanced instructions
Arithmetic instructions on tables

General These instructions are used to perform an arithmetic operation between two word
table operands (or a word and a word table).

Instruction list

Structure Language data

Instruction list language
LD %M0
[%MW0:10:=%MW20:10+100]

LD %I3.2
[%MD50:5:=%KD0:5+%MD0:5]

Structured text language
IF RE %I3.3 THEN
 %MW0:10:=%KW0:10*%MW20;
END_IF;

+ : addition * : multiplication

- : subtraction / : division

REM : remainder of the division: -

%MW0:10:=%MW20:10+100
%M0

%MW50:5:=%KD0:5+%MD0:5
%I3.2

%MW0:10:=%KW0:10*%MW20
%I3.3

P

TLX DR PL7 xx 137

Advanced instructions
Syntax Operators and syntax of arithmetic table instructions:

Operands of arithmetic word table instructions:

Operands of arithmetic double word table instructions:

Operators Syntax

+, -, *, /, REM Op1:=Op2 Operator Op3

Type Operand 1 (Op1) Operand 2 and 3 (Op2 and 3)

Word tables which
can be indexed

%MW:L %MW:L,%KW:L,%Xi.T:L

Words which can be
indexed

- %MW,%KW,%Xi.T

Words which can not
be indexed

- Imm.val.,%IW,%QW,%SW,%NW,
%BLK,Num. expr.

Type Operand 1 (Op1) Operand 2 and 3 (Op2 and 3)

Word tables which
can be indexed

%MD:L %MD:L,%KD:L

Double words which
can be indexed

- %MD,%KD

Double words which
can not be indexed

- Imm. val., %ID,%QD, Numeric expr.
138 TLXDRPL7xx

Advanced instructions
Logic table instructions

General These instructions are used to perform an arithmetic operation between two word
table operands (or a word and a word table).

Instruction list

Structure Ladder language

Instruction list language
LD %M0
[%MW0:5:=%KW0:5 AND 16#FF00]

Structured text language
IF %I3.2 THEN
 %MD0:10:=%KD5:10 OR %MD50:10;
END_IF;
IF RE %I3.3 THEN
 %MW100:50:= NOT %MW0:50;
END_IF;

AND: AND (bit by bit) XOR: exclusive OR (bit by bit)

OR: logic OR (bit by bit) NOT: logic complement (bit by bit) of a table (1 single
operand)

%MD0:10:=%KD5:10OR%MD50:10

%M0

%I3.2

%I3.3
P

%MW0:5:=%KW0:5AND16#FF00

%MW100:50:=NOT%MW0:50
TLX DR PL7 xx 139

Advanced instructions
Syntax Operators and syntax of arithmetic table instructions:

Operands of logic word table instructions:

Operands of logic double word table instructions:

Operators Syntax

AND,OR,XOR Op1:=Op2 Operator Op3

NOT Op1:=NOT Op2

Type Operand 1 (Op1) Operand 2 and 3 (Op2 and Op3)

Word tables which
can be indexed

%MW:L %MW:L,%KW:L,%Xi.T:L

Words which can be
indexed

- %MW,%KW,%Xi.T

Words which can not
be indexed

- Imm.val.,%IW,%QW,%SW,%NW,%BLK,
Numeric Expr.

Type Operand 1 (Op1) Operand 2 and 3 (Op2 and 3)

Word tables which
can be indexed

%MD:L %MD:L,%KD:L

Double words which
can be indexed

- %MD,%KD,%SD

Double words which
can not be indexed

- Imm. val., %ID,%QD, Numeric expr.
140 TLXDRPL7xx

Advanced instructions
Table summing functions

General Functions SUM and SUM_ARR add all the elements of a word table:
� if the table is made up of simple format words, the result is given in the form of a

single format word (SUM function),
� if the table is made up of double words, the result is given in the form of a double

word (SUM function),
� if the table is made up of floating words, the result is given in the form of a floating

word (SUM_ARR function).

Structure Ladder language

Instruction list language
LD %I3.2
[%MW5:=SUM(%MW32:12]

Structured text language
%MD50:=SUM(%KD50:20)

%MF0:=SUM_ARR(%KF8:5)

%I3.2
%MW5:=SUM(%MW32:12)

%MF0:=SUM_ARR(%KF8:5)

%MD50:=SUM(%KD50:20)
TLX DR PL7 xx 141

Advanced instructions
Syntax Syntax of table summing instructions:

Parameters of table summing instructions:

Example %MW5:=SUM(%MW30:4)
with %MW30=10, %MW31=20, %MW32=30, %MW33=40
%MW5=10+20+30+40=100

Res:=SUM(Tab)

Res:=SUM_ARR(Tab)

Type Result (res) Table (Tab)

Word tables which can be indexed - %MW:L,%KW:L,%Xi.T:L

Words which can be indexed %MW -

Words which can not be indexed %QW,%SW,%NW -

Double word tables which can be
indexed

- %MD:L,%KD:L

Double words which can be indexed %MD -

Double words which can not be indexed %QD,%SD -

Floating word tables which can be
indexed

- %MF:L,%KF:L

Floating words which can be indexed %MF -

Note: When the result is not within the valid word or double word format range
according to the table operand, the system bit %S18 is set to 1.
142 TLXDRPL7xx

Advanced instructions
Table comparison functions

General The EQUAL (on integer) and EQUAL-ARR (on floating point) functions carry out a
comparison of two tables, element by element.

If a difference is shown, the rank of the first dissimilar elements is returned in the
form of a word, otherwise the returned value is equal to -1.

The third parameter supplies the rank from which the comparison begins (example:
0 to start at the beginning). This third parameter is optional (it is not authorized with
the EQUAL_ARR function); when it is omitted, the comparison is carried out on the
whole table.

Structure Ladder language

Instruction list language
LD %I3.2
[%MW5:=EQUAL(%MD20:7,KD0:7,3)]

Structured text language
%MW0:=EQUAL(%MD20:7,%KD0:7)

%MW1:=EQUAL_ARR(%MF0:5,%KF0:5)

%MW5:=EQUAL(%MW20:7,%KW0:7,3)
%I3.2

%MW0:=EQUAL(%MW20:7,%KD0:7)

%MF1:=EQUAL_ARR(%MF0:5,%KF0:5)
TLX DR PL7 xx 143

Advanced instructions
Syntax Syntax of table comparison instructions:

Parameters of table comparison instructions:

Example %MW5:=EQUAL(%MW30:4,%KW0:4,1)
Comparison of 2 tables:

The value of the word %MW5 is 3 (different first rank).

Res:=EQUAL(Tab1,Tab2,rang)

Res:=EQUAL_ARR(Tab1,Tab2)

Type Result (Res) Table (Tab) Rank

Word tables - %MW:L,%KW:L,%
Xi.T:L

-

Words which can be
indexed

%MW - %MW,%KW,%Xi.T

Words which can not
be indexed

%QW,%SW,%NW - Imm.val.,%QW,%IW,%
SW,%NW, Numeric
Expr.

Double word tables - %MD:L,%KD:L -

Double words which
can be indexed

%MD - %MD,%KD

Double words which
can not be indexed

%QD,%SD - Imm.val.,%QD,%ID,
%SD, Num. expr.

Floating word tables - %MF:L,%KF:L -

Floating words %MF - -

Note:
� it is mandatory that the tables are of the same length,
� if the parameter rank is greater than the size of the tables, the result is equal to

this rank.

Rank Word tables Constant word tables Difference

0 %MW30=10 %KW0=20 Ignored (rank<1)

1 %MW31=20 %KW1=20 =

2 %MW32=30 %KW2=30 =

3 %MW33=40 %KW3=60 Different
144 TLXDRPL7xx

Advanced instructions
Table search functions

General There are 11 search functions:

� FIND_EQW: searches for the position in a word table of the first element which
is equal to a given value,

� FIND_GTW: searches for the position in a word table of the first element which is
greater than a given value,

� FIND_LTW: searches for the position in a word table of the first element which is
less than a given value,

� FIND_EQD: searches for the position in a double word table of the first element
which is equal to a given value,

� FIND_GTD: searches for the position in a double word table of the first element
which is greater than a given value,

� FIND_LTD: searches for the position in a double word table of the first element
which is less than a given value,

� FIND_EQR: searches for the position in a floating word table of the first element
which is equal to a given value,

� FIND_GTR: searches for the position in a floating word table of the first element
which is greater than a given value,

� FIND_LTR: searches for the position in a floating word table of the first element
which is less than a given value,

� FIND_EQWP: searches for the position in a word table of the first element which
is equal to a value given from a rank,

� FIND_EQDP: searches for the position in a double word table of the first element
which is equal to a value given from a rank.

The result of these instructions is equal to the rank of the first element which is found
or at -1 if the search is unsuccessful.

Structure Ladder language

%MW5:=FIND_EQW(%MW20:7,%KW0)
%I3.2

%MW0:=FIND_GTD(%MD20:7,%KD0)

%MW1:=FIND_LTR(%MF40:5,%KF5)

%I1.2
TLX DR PL7 xx 145

Advanced instructions
Instruction list language
LD %I3.2
[%MW5:=FIND_EQW(%MW20:7,Kw0)]

Structured text language
IF %I1.2 THEN
 %MW0:=FIND_GTD(%MD20:7,%KD0);
END_IF;

%MW1:=FIND_LTR(%MF40:5,%KF5);

%MW9:=FIND_EQWP(%MW30:8,%KF5,%MW4);

Syntax Syntax of table search instructions:

Parameters of word table search instructions
(FIND_EQW,FIND_GTW,FIND_LTW,FIND_EQWP)

Function Syntax

FIND_EQW Res:=Function(Tab,Val)

FIND_GTW

FIND_LTW

FIND_EQD

FIND_GTD

FIND_LTD

FIND_EQR

FIND_GTR

FIND_LTR

FIND_EQWP Res:=Function(Tab,Val,rank)

FIND_EQDP

Type Result (Res) Table (Tab) Value (val), rank

Word tables which
can be indexed

- %MW:L,%KW:L,%
Xi.T:L

-

Words which can be
indexed

%MW - %MW,%KW,%Xi.T

Words which can not
be indexed

%QW,%SW,%NW - Imm.val.,%QW,%IW,%
SW,%NW, Numeric
Expr.
146 TLXDRPL7xx

Advanced instructions
Parameters of double word table search instructions
(FIND_EQD,FIND_GTD,FIND_LTD,FIND_EQDP)

Parameters of floating word table search instructions
(FIND_EQR,FIND_GTR,FIND_LTR)

Example %MW5:=FIND_EQW(%MW30:4,%KW0)
Search for the position of the first word =%KW0=30 in the table:

Type Result (Res) Table (Tab) Value (val)

Word tables which
can be indexed

- %MD:L,%KD:L,%Xi
.T:L

-

Double words which
can be indexed

%MW - %MD,%KD

Double words which
can not be indexed

%QW,%SW,%NW - Imm.val.,%QD,%ID,
%SD, Num. expr.

Note: For the rank, see the word table (idem FIND_EQWP)

Type Result (Res) Table (Tab) Value (val)

Floating word tables - %MF:L,%KF:L -

Floating words which
can be indexed

%MW - %MF,%KF

Floating words which
can not be indexed

%QW,%SW,%NW - Imm.val., Num. Expr.

Rank Word Table Result

0 %MW30=10 -

1 %MW31=20 -

2 %MW32=30 %MW5=2 Value (val), rank

3 %MW33=40 -
TLX DR PL7 xx 147

Advanced instructions
Table search functions for maxi and mini values

General There are 6 search functions:

� MAX_ARW: search for the maximum value in a word table,
� MIN_ARW: search for the minimum value in a word table,
� MAX_ARD: search for the maximum value in a double word table,
� MIN_ARD: search for the minimum value in a double word table,
� MAX_ARR: search for the maximum value in a floating word table,
� MIN_ARR: search for the minimum value in a floating word table.

The result of these instructions is equal to the maximum value (or minimum) found
in the table.

Structure Ladder language

Instruction list language
LD %I3.2
[%MW5:=MAX_ARW(%MW20:7)]

Structured text language
IF %I1.2 THEN
 %MD0:=MIN_ARD(%MD20:7);
END_IF;
%MF8:=MIN_ARR(%MF40:5);

%MW5:=MAX_ARW(%MW20:7)
%I3.2

%MD0:=MIN_ARD(%MD20:7)

%MF8:=MIN_ARR(%MF40:5)

%I1.2
148 TLXDRPL7xx

Advanced instructions
Syntax Syntax of table search instructions for max and min values:

Parameters of table search instructions for max and min values:

Function Syntax

MAX_ARW Res:=Function(Tab)

MIN_ARW

MAX_ARD

MIN_ARD

MAX_ARR

MIN_ARR

Type Result (Res) Table (Tab)

Word tables which can
be indexed

- %MW:L,%KW:L,%Xi.T:L

Words which can be
indexed

%MW -

Words which can not be
indexed

%QW,%SW,%NW -

Double word tables
which can be indexed

- %MD:L,%KD:L

Double words which can
be indexed

%MD -

Double words which can
not be indexed

%QD,%SD -

Floating word tables - %MF:L,%KF:L

Floating words which
can be indexed

%MF -
TLX DR PL7 xx 149

Advanced instructions
Number of occurrences of a value in a table

General There are 3 search functions:

� OCCUR_ARW: searches in a word table for the number of elements which are
equal to a given value,

� OCCUR_ARD: searches in a double word table for the number of elements which
are equal to a given value,

� OCCUR_ARR: searches in a floating word table for the number of elements
which are equal to a given value.

Structure Ladder language

Instruction list language
LD %I3.2
[%MW5:=OCCUR_ARW(%MW20:7,%KW0)]

Structured text language
IF %I1.2 THEN
 %MW0:=OCCUR_ARD(%MD20:7,200);
END_IF;

%MW5:=OCCUR_ARW(%MW20:7,%KW0)
%I3.2

%MW0:=OCCUR_ARD(%MD20:7,200)

%I1.2
150 TLXDRPL7xx

Advanced instructions
Syntax Syntax of table search instructions for max and min values:

Parameters of table search instructions for max and min values:

Function Syntax

OCCUR_ARW Res:=Function(Tab,Val)

OCCUR_ARD

OCCUR_ARR

Type Result (Res) Table (Tab) Value (Val)

Word tables which
can be indexed

- %MW:L,%KW:L,%Xi
.T:L

-

Words which can be
indexed

%MW - %MW,%KW,%Xi.T

Words which can not
be indexed

%QW,%SW,%NW - Imm.val.,%QW,%IW,
%SW,%NW, Numeric
Expr.

Double word tables
which can be indexed

- %MD:L,%KD:L -

Double words which
can be indexed

%MW - %MD,%KD

Double words which
can not be indexed

%QW,%SW,%NW - Imm.val.,
%QD,%ID,%SD,Num.
Expr.

Floating word tables - %MF:L,%KF:L -

Floating words which
can be indexed

%MF - %MF,%KF

Floating words which
can not be indexed

%QW,%SW,%NW - Imm. val., Num. Expr.
TLX DR PL7 xx 151

Advanced instructions
Table rotate shift function

General There are 6 shift functions:

� ROL_ARW: performs a rotate shift of n positions from top to bottom of the
elements in a word table,

� ROL_ARD: performs a rotate shift of n positions from top to bottom of the
elements in a double word table,

� ROL_ARR: performs a rotate shift of n positions from top to bottom of the
elements in a floating word table.

Illustration of the ROL_ functions

� ROL_ARW: performs a rotate shift of n positions from bottom to top of the
elements in a word table,

� ROR_ARD: performs a rotate shift of n positions from bottom to top of the
elements in a double word table,

� ROR_ARR: performs a rotate shift of n positions from bottom to top of the
elements in a floating word table.

Illustration of the ROR_ functions

0
1
2
3
4
5

0
1
2
3
4
5

152 TLXDRPL7xx

Advanced instructions
Structure Ladder language

Instruction list language
LDR %I3.2
[ROL_ARW(%KW0,%MW0)]

Structured text language
IF RE %I1.2 THEN
 ROR_ARD(2,%MD20:7);
END_IF;
IF RE %I1.3 THEN
 ROR_ARR(2,%MF40:5);
END_IF;

Syntax Syntax of rotate shift instructions in word tables ROL_ARW and ROR_ARW

Parameters of rotate shift instructions in word tables ROL_ARW and ROR_ARW:

ROL_ARW(%KW0,%MW20:7)
%I3.2

ROR_ARD(2,%MD20:7)

%I1.2

P

P

ROR_ARR(2,%MF40:5)

%I1.3

P

Function Syntax

ROL_ARW Function(n,Tab)

ROR_ARW

Type Number of positions (n) Table (Tab)

Word tables which can be indexed - %MW:L

Words which can be indexed %MW,%KW,%Xi.T -

Words which can not be indexed Imm.val.,%QW,%IW,%SW,
%NW, Num.expr.

-

TLX DR PL7 xx 153

Advanced instructions
Syntax of rotate shift instructions in double word tables ROL_ARD and ROR_ARD

Parameters of rotate shift instructions in double word tables ROL_ARD and
ROR_ARD:

Syntax of rotate shift instructions in floating word tables ROL_ARR and ROR_ARR

Parameters of rotate shift instructions for floating word tables: ROL_ARR and
ROR_ARR:

Function Syntax

ROL_ARD Function(n,Tab)

ROR_ARD

Type Number of positions (n) Table (Tab)

Word tables which can be indexed - %MD:L

Words which can be indexed %MW,%KW,%Xi.T -

Words which can not be indexed Imm.val.,%QW,%IW,%SW,
%NW, Num.expr.

-

Function Syntax

ROL_ARR Function(n,Tab)

ROR_ARR

Type Number of positions (n) Table (Tab)

Word tables which can be indexed - %MF:L

Words which can be indexed %MW,%KW,%Xi.T -

Words which can not be indexed Imm.val.,%QW,%IW,%SW,
%NW, Num.expr.

-

Note: if the value of n is negative or null, no shift is performed.
154 TLXDRPL7xx

Advanced instructions
Table sort function

General There are 3 sort functions:

� SORT_ARW: performs sorts in ascending or descending order of the elements
of the word table and stores the result in the same table,

� SORT_ARD: performs sorts in ascending or descending order of the elements of
the double word table and stores the result in the same table,

� SORT_ARR: performs sorts in ascending or descending order of the elements of
the floating word table and stores the result in the same table.

Structure Ladder language

Instruction list language
LD %I3.2
[SORT_ARW(%MW20,%MW0:6)]

Structured text language
IF %I1.2 THEN
 SORT_ARD(-1,%MD20:6);
END_IF;
IF %I1.3 THEN
 SORT_ARR(0,%MF40:8);
END_IF;

SORT_ARW(%MW0,%MW0:6)
%I3.2

SORT_ARD(-1,%MD20:6)

%I1.2

SORT_ARD(0,%MD40:8)

%I1.3
TLX DR PL7 xx 155

Advanced instructions
Syntax Syntax of table sort functions:

� the "direction" parameter gives the order of the sort: direction > 0 the sort is done
in ascending order; direction < 0, the sort is done in descending order,

� the result (sorted table) is returned in the Tab parameter (table to sort).
Parameters of table sort functions:

Function Syntax

SORT_ARW Function(direction,Tab)

SORT_ARD

SORT_ARR

Type Sort direction Table (Tab)

Word tables (SORT_ARW) - %MW:L

Double word tables
(SORT_ARD)

- %MD:L

Floating word tables
(SORT_ARR)

- %MF:L

Words which can be indexed %MW,%KW -

Words which can not be
indexed

Imm.val.,%QW,%IW,%SW,
%NW, Num.expr.

-

156 TLXDRPL7xx

Advanced instructions
Table length calculation function

General There are 4 table length calculation functions. These functions are especially useful
for programming the DFB function blocks when the table lengths have not been
explicitly defined:
� LENGTH_ARW: calculation of the length of a word table by the number of

elements,
� LENGTH_ARD: calculation of the length of a double word table by the number of

elements,
� LENGTH_ARR: calculation of the length of a floating word table by the number

of elements,
� LENGTH_ARX: calculation of the length of a bit table by the number of elements.

Structure Ladder language

Instruction list language
LD %I3.2
[LENGTH_ARW(tab_mot)]

Structured text language
IF %I1.2 THEN
 LENGTH_ARD(tab_dmot);
END_IF;
IF %I1.3 THEN
 LENGTH_ARX(tab_bit);
END_IF;

LEN_ARW(tab_mot)
%I3.2

LENGTH_ARD(tab_dmot)

%I1.2

LENGTH_ARX(tab_bit)

%I1.3
TLX DR PL7 xx 157

Advanced instructions
Syntax Syntax of table length calculation functions:

Parameters of table length calculation functions:

Function Syntax

LENGTH_ARW Result=Fonction(Tab)

LENGTH_ARD

LENGTH_ARR

LENGTH_ARX

Type Table (Tab) Result (Res)

Tables (LENGHT_ARW) word -

Tables (LENGHT_ARD) double word -

Tables (LENGHT_ARR) floating word -

Tables (LENGTH_ARX) bit -

Words which can be indexed - %MW

Words which can not be
indexed

- %QW,%SW,NW

Note: the table parameters will be purely symbolic objects.
158 TLXDRPL7xx

Advanced instructions
2.7 Character string instructions

Introduction

Subject of this
sub-section

This section describes PL7 language character string instructions

What's in this
Section?

This Section contains the following Maps:

Topic Page

Format of a string of characters or table of characters 160

Assignment on string of characters 161

Alphanumeric comparisons 162

Numeric conversion functions <---> ASCII 164

binary-->ASCII conversion 165

ASCII-->binary conversion 167

Floating point-->ASCII conversion 169

ASCII-->Floating point conversion 171

Concatenation of two strings 173

Deletion of a substring of characters 175

Inserting a substring of characters 177

Replacing a substring of characters 179

Extracting a substring of characters 181

Extracting characters 183

Comparing two character strings 185

Searching for a character substring 187

Length of a character string 189
TLX DR PL7 xx 159

Advanced instructions
Format of a string of characters or table of characters

General � A table of characters is made up of a collection of bytes in which a string of
characters can be stored. The size of the table specifies the maximum
permissible length of the string of characters (maximum 255).
Example: %MB4:6 represents a table of 6 bytes containing a string of
maximum 6 characters.

� The first byte at the beginning of a table must be even (it is not possible to enter
a table of bytes beginning with an odd byte, e.g.: %MB5:6).

� Tables of bytes use the same memory zone as the words %MW, %MD; there is
therefore a risk of overlap ("Overlay Rules" - Reference Manual Volume 1).

� The term string of characters represents all the characters included between the
beginning of the table and the first string end found.

� The character NUL (code hexa 00) is called String End. It is symbolized by Ø in
the rest of the chapter.

� The length of a string of characters is therefore given either by the number of
characters before the string end, or by the size of the table if no string end is
detected.

Examples:

Note: The system bit %S15 is set in the following cases:
� When writing a string in a table, if this string is longer than the size of the table

(impossible to write the string end Ø),
� When an attempt is made to access a character which is not in the string in

question,
� Incoherence of parameters: Length to delete null (DELETE function), length to

extract null (MID function), length to replace null (REPLACE function), search of
a substring longer than the string (FIND function).

The following table (of 12 elements) contains the “ABCDE” character string
(length: 5):

The following table (of 10 elements) contains the “ABCDEJKLMN” character
string (length: 10):

“A” “B”“C”“D” “E” “J” “K” “L”“M”“N”“O”Ø

“A”“B”“C” “D” “E” “J” “K” “L”“M”“N”
160 TLXDRPL7xx

Advanced instructions
Assignment on string of characters

General Used to transfer a string of characters into a table of bytes of length L.

Structure Ladder language

Instruction list language
LD TRUE
[%MB30:12:='set_to_run']

Structured text language
%MB30:12:='set_to_run';

Example Transfer of the string of characters 'set_to_run' into the byte table of length 12

Syntax Assignment operators on string of characters

Assignment operands on string of characters

OPERATE
%MB30:12:=’mise_en_run

%MB 30 31 32 33 34 35 36 37 38 39 40 41

‘m’ ‘i’ ‘s’ ‘e’ ‘_’ ‘e’ ‘n’ ‘_’ ‘r’ ‘u’ ‘n’ Ø

Op1:=Op2

Type Operand 1 (Op1) Operand 2 (Op2)

Byte table %MB:L %MB:L,KB:L, Immediate value
TLX DR PL7 xx 161

Advanced instructions
Alphanumeric comparisons

General These operators are used to compare two strings of characters contained in the byte
tables in parameters. The comparison is made character by character.
The result is a bit with a value of 1 if the two strings satisfy the condition supplied by
the operator, character by character; if this is not the case, the bit has a value of 0.
The order of the characters is given by the table of codes ASCII (ISO 646). For
example, the string 'Z' is larger than the string 'AZ' which is larger than the string
'ABC'.

Structure Ladder language

Instruction list language
LD [%MB20:12<%MB40:12]
ST %M10

Structured text language
%MB10<%MB40:12;

Example Example: %MB20:12<%MB40:12 ==> YES The result has a value of 1

illustration

The elements after the string end are not taken into account.

Note: The comparison blocks program themselves in the test zone.

Note: The comparison is made inside the square brackets behind the LD, AND and
OR instructions.

OPERATE
%MB20:12<%MB40:12

%M10

%MB 20 21 22 23 24 25 26 27 28 29 30 31

‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘f’ ‘g’ ‘i’ Ø ‘k’ ‘w’ ‘z’

%MB 40 41 42 43 44 45 46 47 48 49 50 51

‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘f’ ‘h’ ‘i’ Ø ‘k’ ‘w’ ‘z’
162 TLXDRPL7xx

Advanced instructions
Syntax Operators of alphanumeric comparisons

Operands of alphanumeric comparisons

Operators Syntax

<, >, <=, >=, =, <> Op1 Operator Op2

Type Operand 1 (Op1) and Operand 2 (Op2)

Byte table %MB:L, %KB:L, immediate value
TLX DR PL7 xx 163

Advanced instructions
Numeric conversion functions <---> ASCII

General These functions are used to convert a numeric value (or floating point value) into a
string of ASCII coded characters, or vice versa.
The result of the conversion must be transferred into a PL7 object via an assignment
operation: byte table, single or double length word, floating point.

List of the possible numeric <---> ASCII conversion functions

Reminder on the floating point format (See Floating point instructions, p. 107)

Reminder concerning ASCII code:
All of the 256 alphanumeric and control characters can be coded on 8 bits. This code
called ASCII (American Standard Code for Information Interchange) is compatible
with the notion of bytes. Any table of n bytes can therefore be formed by n ASCII
codes defining n characters.

Operators Description

INT_TO_STRING Binary-->ASCII (words) conversion

DINT_TO_STRING Binary-->ASCII (double words) conversion

STRING_TO_INT ASCII-->Binary (single words) conversion

STRING_TO_DINT Binary-->ASCII (double words) conversion

REAL_TO_STRING Floating point-->ASCII conversion

STRING_TO_REAL ASCII-->Floating point conversion
164 TLXDRPL7xx

Advanced instructions
binary-->ASCII conversion

General These functions are used to convert a numeric value (single or double length word)
into a string of ASCII coded characters.
Each digit and the value sign in the parameter is coded in ASCII in an element of the
result byte table.

� Function INT_TO_STRING: The content of a single length word can be between
-32768 and +32767, that is 5 digits plus the sign; the result will be a table of 6
characters plus the string end. The sign '+' or '-' is stored in the first character and
the units in the sixth character, the tens in the fifth, and so on.

� Function DINT_TO_STRING: The content of a double length word can be
between -2147483648 and +2147483647, that is 10 digits plus the sign; the result
will be a table of 12 characters plus the string end. The sign '+' or '-' is stored in
the first character, the units in the twelfth character, the tens in the eleventh, and
so on. The second character is always 0.

Structure Ladder language

Instruction list language
LD TRUE
[%MB10:7:=INT_TO_STRING(%MW20)]

Structured text language
%MB2:13:=DINT_TO_STRING(%MD30);

OPERATE
%MB10:7:=INT_TO_STRING(%MW20)

OPERATE
%MB2:13:=DINT_TO_STRING(%MD30)
TLX DR PL7 xx 165

Advanced instructions
Examples Binary-->ASCII conversion
%MB10:7:=INT_TO_STRING(%MW20) with %MW20 = - 3782 in decimal
==> The result is stored in the table of 7 bytes according to %MB10:

Illustration

Example: %MB2:13:=DINT_TO_STRING(%MD30)
with %MD30 = - 234701084

Illustration

Syntax Binary-->ASCII conversion operators

Binary-->ASCII conversion operands

Binary-->ASCII (double words) conversion operators

Binary-->ASCII (double words) conversion operands

%MB 10 11 12 13 14 15 16

‘_’ ‘0’ ‘3’ ‘7’ ‘8’ ‘2’ Ø

%MB 2 3 4 5 6 7 8 9 10 11 12 13

‘-’ ‘0’ ‘0’ ‘2’ ‘3’ ‘4’ ‘7’ ‘0’ ‘1’ ‘0’ ‘8’ ‘4’

14

Ø

Syntax

Result:=INT_TO_STRING (value)

Type Result (res) value

Table of 6 bytes + string end %MB:7 -

Words which can be indexed - %MW,%KW,%Xi.T

Words which can not be
indexed

- %IW,%QW,%SW,%NW,Imm.val.,Nu
m. Expr.

Syntax

Result:=DINT_TO_STRING (value)

Type Result (res) value

Table of 12 bytes + string end %MB:13 -

Words which can be indexed - %MD,%KD

Words which can not be
indexed

- %ID,%QD,%SD,Imm.val.,Num. expr.
166 TLXDRPL7xx

Advanced instructions
ASCII-->binary conversion

General These functions are used to convert a string of characters representing a numeric
value into binary (result transferred into a single or double length word). Each
element of the table in the parameter represents the ASCII code of a character.
Authorized characters are the digits and the characters '+' and '-'.

� Function STRING_TO_INT: converts a string of 6 characters representing a
numeric value between -32768 et +32767. The first character must represent the
sign and the following characters the value: the second, the tens of thousands;…
; the sixth character, the units. The value must be set to the right of the string.

� Function STRING_TO_DINT: converts a chain of 12 characters representing a
numeric value between -2147483648 and +2147483647. The first character must
represent the sign and the following characters the value: The second character
is 0; the third, the billions;… ; the twelfth, the units. The value must be set to the
right of the string.

Structure Ladder language

Instruction list language
LD TRUE
[%MW13:=STRING_TO_INT(%MB20:7)]

Structured text language
%MD2:=STRING_TO_DINT(%MB30:13);

Examples Example: %MW13:=STRING_TO_INT(%MB20:7) , with

The result in %MW13 = -2347 in decimal

OPERATE
%MW13:=STRING_TO_INT(%MB20:7)

%MB 20 21 22 23 24 25 26

‘-’ ‘0’ ‘2’ ‘3’ ‘4’ ‘7’ Ø
TLX DR PL7 xx 167

Advanced instructions
Syntax ASCII-->Binary conversion operators

ASCII-->Binary conversion operands

ASCII-->Binary (double words) conversion operators

ASCII-->Binary (double words) conversion operands

Syntax

Result:=STRING_TO_INT (string)

Type Result (res) value

Words which can be indexed %MW -

Words which can not be
indexed

%QW,%SW,%NW -

Table of 6 bytes + string end - %MB:7,%KB:7,Imm.val.

Note: The %S18 bit is set if the value described by the string is not between -32768
et +32767 or if one of the 6 characters is invalid.

Syntax

Result:=DINT_TO_STRING (string)

Type Result (res) value

Words which can be indexed %MD -

Words which can not be
indexed

%QD,%SD -

Table of 12 bytes + string end - %MB:13,%KB:13,Imm.val.

Note: The %S18 bit is set if the value described by the string is not between -
2147483648 et +2147483647 or if one of the 12 characters is invalid.
168 TLXDRPL7xx

Advanced instructions
Floating point-->ASCII conversion

General This function is used to convert a real numeric value contained in a floating word into
a string of ASCII coded characters. The result is transferred to a table of 13 bytes +
the string end.
Each digit of the value as well as the characters '+', '-', '.', 'e' and 'E' are coded in
ASCII in an element of the result table.
The value sign is in the first character, the decimal point (.) in the third, the exponent
'e' in the tenth, the exponent sign in the eleventh.

Structure Ladder language

Instruction list language
LD TRUE
[%MB20:14:=REAL_TO_STRING(%MF30)]

Structured text language
%MB20:14:=REAL_TO_STRING(%MF30);

Examples Example: %MB20:14:=REAL_TO_STRING(%MF30) with %MF30=-
3.234718e+26
===> Result:

OPERATE
%MB20:14:=REAL_TO_STRING(%MF30)

%MB 20 21 22 23 24 25 26

‘-’ ‘3’ ‘.’ ‘2’ ‘3’ ‘4’ ‘7’ ‘1’ ‘8’ ‘e’ ‘+’ ‘2’ ‘6’ Ø

27 28 29 30 31 32 33
TLX DR PL7 xx 169

Advanced instructions
Syntax Floating point-->ASCII conversion operators

Floating point-->ASCII conversion operands

Syntax

Result:=REAL_TO_STRING (value)

Type Result (res) value

Table of 13 bytes + string end %MB14 -

Words which can be indexed - %MF,%KF

Words which can not be
indexed

- Imm.val.,Num. expr.

Note: The %S18 bit is set to 1if the floating value in the parameter is not between
3.402824e+38 and -1.175494e-38 or +1.175494e-38 and +3.402824e+38. In this
case, the result value is invalid.
170 TLXDRPL7xx

Advanced instructions
ASCII-->Floating point conversion

General This function is used to convert a string of characters representing a real numeric
value into a floating point value (result transferred into a floating word).
Each element of the table in the parameter represents the ASCII code of a
character. Authorized characters are the digits and the characters ‘+’, ‘-’, ‘.’, ‘e’ and
‘E’. The string end is not used to determine the end of the string which means that
the 13 characters of the table must all be correct.
The value sign must be in the first character, the decimal point (.) in the third, the ‘e’
in the tenth, the exponent sign in the eleventh. For example, the value 3.12 must be
given in the form ‘+3.120000e+00’.

Structure Ladder language

Instruction list language
LD TRUE
[%MF18:=STRING_TO_REAL(%MF20:13)]

Structured text language
%MB18:=STRING_TO_REAL(%MB20:13);

Examples Example: %MF18:=STRING_TO_REAL(%MB20:13) with

===> result: %MF18 = -3.234718e+26

OPERATE
%MF18:=STRING_TO_REAL(%MB20:13)

%MB 20 21 22 23 24 25 26

‘-’ ‘3’ ‘.’ ‘2’ ‘3’ ‘4’ ‘7’ ‘1’ ‘8’ ‘e’ ‘+’ ‘2’ ‘6’

27 28 29 30 31 32
TLX DR PL7 xx 171

Advanced instructions
Syntax ASCII-->Floating point conversion operators

ASCII-->Floating point conversion operands

Syntax

Result:=STRING_TO_REAL (string)

Type Result (res) value

Words which can be indexed %MF -

Table of 13 bytes - %MB:13,%KB:13,Immediate value

Note: The %S18 bit is set to 1:
� if the value described by the string is not between -3.402824e+38 and -

1.175494e-38,
� if the value described by the string is not between +1.175494e-38 et

+3.402824e+38,
� if one of the 13 characters is invalid.
172 TLXDRPL7xx

Advanced instructions
Concatenation of two strings

General These instructions perform the concatenation of two strings of characters defined in
parameters. The result is a byte table containing a string of characters.

Structure Ladder language

Instruction list language
LD TRUE
[%MB30:14:=CONCAT(%MB4:6,%MB14:9)]

Structured text language
%MB30:14:=CONCAT(%MB4:6,%MB14:9);

Examples Example: %MB30:14:=CONCAT(%MB4:6,%MB19:9)

OPERATE
%MB30:14:=CONCAT(%MB4:6,%MB14:9)

%MB 4 5 6 7 8 9

‘i’ ‘n’ ‘c’ ‘o’ ‘n’ Ø

%MB 14 15 16 17 18 19 20

‘t’ ‘e’ ‘s’ ‘t’ ‘a’ ‘b’ ‘l’ ‘e’ Ø

21 22

%MB 30 31 32 33 34 35 36

‘i’ ‘n’ ‘c’ ‘o’ ‘n’ ‘t’ ‘e’ ‘s’ ‘t’ ‘a’ ‘b’ ‘l’ ‘e’

37 38 39 40 41 42

Ø

43
TLX DR PL7 xx 173

Advanced instructions
Syntax String concatenation operators

String concatenation operands

Syntax

Result:=CONCAT(string 1, string 2)

Type Result (res) String 1 and 2

Byte tables %MB:L %MB:L,%KB;L,Immediate value

Note:
� If the result table is too short, it is truncated and the system bit %S15 is set to 1.

%MB30:10:=CONCAT(%MB4:6, %MB14:9)

� If the result table is too long, the string is completed with end characters 'Ø'.
%MB30:15:=CONCAT(%MB4:6,%MB14:9)

%MB 30 31 32 33 34 35 36

‘i’ ‘n’ ‘c’ ‘o’ ‘n’ ‘t’ ‘e’ ‘s’ ‘t’

37 38

‘Ø’

38

==>%S15=1

%MB 30 31 32 33 34 35 36

‘i’ ‘n’ ‘c’ ‘o’ ‘n’ ‘t’ ‘e’ ‘s’ ‘t’ ‘a’ ‘b’ ‘l’ ‘e’

37 38 39 40 41 42

‘Ø’

43

‘Ø’
174 TLXDRPL7xx

Advanced instructions
Deletion of a substring of characters

General Deletes a number of characters (zone of length L), from a given rank onwards
(position of the first character to be deleted) in the string defined in the parameter.
The result is a byte table containing a string of characters.

Structure Ladder language

Instruction list language
LD TRUE
[%MB14:9:=DELETE(%MB30:14,%MW2,%MW4)]

Structured text language
%MB14:9:=DELETE(%MB30:14,%MW2,%MW4);

Examples Example: %MB314:9:=DELETE(%MB30:14,%MW2,%MW4)
with %MW2 = 5 (5 characters to be deleted) %MW4 = 3 (position = 3)

OPERATE
%MB14:9:=DELETE(%MB30:14,%MW2,%MW4)

%MB 14 15 16 17 18 19 20

‘t’ ‘e’ ‘s’ ‘t’ ‘a’ ‘b’ ‘l’ ‘e’ Ø

21 22

%MB 30 31 32 33 34 35 36

‘i’ ‘n’ ‘c’ ‘o’ ‘n’ ‘t’ ‘e’ ‘s’ ‘t’ ‘a’ ‘b’ ‘l’ ‘e’

37 38 39 40 41 42

Ø

43
TLX DR PL7 xx 175

Advanced instructions
Syntax Operator for deletion of a substring of characters

Operands for deletion of a substring of characters

Syntax

Result:=DELETE(string 1, long, pos)

Type Result (res) String Long (length), Pos
(position)

Byte tables %MB:L %MB:L,%KB;L,Imme
diate value

-

Indexable words - - %MW,%KW,%Xi.T

Non-indexable
word

- - %IW,%QW,%SW,%NW,
Imm.val., Num. Expr.

Note: Possibility of overlap between the parameters following the indexes of the
PL7 objects:
� Table containing the source string,
� Table containing the result string,
� Word containing the length to be deleted,
� Word containing the position of the first character to be deleted.
A negative length or position is interpreted as being equal to 0. The parameter
position starts at the value 1, which corresponds to the first position in the string of
characters.
176 TLXDRPL7xx

Advanced instructions
Inserting a substring of characters

General Insertion of the substring of characters defined by the second parameter (string2) in
the string of characters defined by the first parameter (string1).
The insertion is carried out in the first string, after the character situated at the
position given by the parameter position (Pos).
The result of the insertion is a new string of characters transferred into a byte table.

Structure Ladder language

Instruction list language
LD TRUE
[%MB2:14:=INSERT(%MB20:9,%MB30:6,%MW40)]

Structured text language
%MB2:14:=INSERT(%MB20:9,%MB30:6,%MW40);

Examples Example: %MB2:14:=INSERT(%MB20:9,%MB30:6,%MW40)
with %MW40=position 2

OPERATE
%MB2:14:=INSERT(%MB20:9,%MB30:5,%MW40)

%MB 20 21 22 23 24 25 26

‘i’ ‘n’ ‘s’ ‘t’ ‘a’ ‘b’ ‘l’ ‘e’ Ø

27 28

%MB 2 3 4 5 6 7 8

‘i’ ‘n’ ‘c’ ‘o’ ‘n’ ‘t’ ‘e’ ‘s’ ‘t’ ‘a’ ‘b’ ‘l’ ‘e’

9 10 11 12 13 14

Ø

15

%MB 30 31 32 33 34 35

‘c’ ‘o’ ‘n’ ‘t’ ‘e’ Ø
TLX DR PL7 xx 177

Advanced instructions
Syntax Operators for insertion of a substring of characters

Operands for insertion of a substring of characters

Syntax

Result:=INSERT (string1, string2, pos)

Type Result (res) String 1 and 2 Pos (position)

Byte tables %MB:L %MB:L,%KB;L -

Indexable words - - %MW,%KW,%Xi.T

Non-indexable
words

- - %IW,%QW,%SW,%NW,
Imm.val., Num. Expr.

Note:
� The parameter position starts at the value 1 which corresponds to the first

position in the string of characters,
� It is impossible to carry out an insertion at the beginning of a string. For this, use

the CONCAT function,
� If the table is too long, it is completed with end characters,
� Word containing the position of the first character to be deleted,
� The system bit %S15 is set to 1 in the following cases:

� The value of the parameter position is negative or equal to 0. In this case, it
is interpreted as being equal to 0 and the result table contains an empty string
(made up of string end characters),

� The result table is too short; it is then truncated.
178 TLXDRPL7xx

Advanced instructions
Replacing a substring of characters

General Replaces a section of a string of characters defined in the source table (string1) with
a substring of characters defined in the replacement table (string2). The
replacement which is to be made is defined by the position (pos.) and length (long.)
parameters. This length corresponds to the length of the string which disappears
and not to the length of the substring which replaces it.

Structure Ladder language

Instruction list language
LD TRUE
[%MB2:13:=REPLACE(%MB20:12,%MB30:9,%MW40,%MW41)]

Structured text language
%MB2:13:=REPLACE(%MB20:12,%MB30:12,%MW40,%MW41);

Examples Example: %MB2:13:=REPLACE(%MB20:12,%MB30:12,%MW40,%MW41)
with %MW40=3 (length=3) and %MW41=9 (position 9)

OPERATE
%MB2:13:=REPLACE(%MB20:12,%MB30:9,

%MW40,%MW41)

%MB 20 21 22 23 24 25 26

‘m’ ‘i’ ‘s’ ‘e’ ‘_’ ‘e’ ‘n’ ‘_’ ‘r’

27 28

%MB 2 3 4 5 6 7 8

‘m’ ‘i’ ‘s’ ‘e’ ‘_’ ‘e’ ‘n’ ‘_’ ‘s’ ‘t’ ‘o’ ‘p’ Ø

9 10 11 12 13 14

%MB 30 31 32 33 34 35

‘s’ ‘t’ ‘o’ ‘p’ Ø ‘r’

29 3130

3836 37

‘u’ ‘n’ Ø

‘u’ ‘n’ Ø

Chaîne 1

Chaîne 2
TLX DR PL7 xx 179

Advanced instructions
Syntax Operators for replacement of a substring of characters

Operands for replacement of a substring of characters

Syntax

Result:=REPLACE (string1, string2, long., pos.)

Type Result (res) String 1 and 2 Long (length), Pos
(position)

Byte tables %MB:L %MB:L,%KB;L -

Indexable words - - %MW,%KW,%Xi.T

Non-indexable
words

- - %IW,%QW,%SW,%NW,
Imm.val., Num. Expr.

Note:
� The parameter position starts at the value 1 which corresponds to the first

position in the string of characters.
� If the output table is too long, the string is completed with end characters.
The system bit %S15 is set to 1 in the following cases:
� If the value of the position parameter is negative or equal to 0. In this case, it is

interpreted as being equal to 0 and the result table contains an empty string
(made up of string end characters).

� If the position parameter is greater or equal to the length of the source string,
the result table will contain an empty string (made up of end characters).

� If the result table is too short; it is truncated.
� Word containing the position of the first character to be deleted.
� If the position of the first string end is less than or equal to the position of the first

character which is to be replaced, the output table will be a copy of the source
table up until the string end, completed by end characters.
180 TLXDRPL7xx

Advanced instructions
Extracting a substring of characters

General Extraction of a number of characters from a source string entered as a parameter
(string).
The rank of the first character to be extracted is determined by the position
parameter (pos.), and the number of characters to be extracted is determined by the
length parameter (length). The extracted string is stored in a byte table (result).

Structure Ladder language

Instruction list language
LD TRUE
[%MB14:7:=MID(%MB30:13,%MW2,%MW4)]

Structured text language
%MB14:7:=MID(%MB30:13,%MW2,%MW4);

Examples Example: %MB14:7:=MID(%MB30:13,%MW2,%MW4)
with %MW2=4 (length) and %MW4=9 (position)

OPERATE

%MB14:7:=MID(%MB30:13,%MW2,%MW4)

%MB 30 31 32 33 34

‘m’ ‘i’ ‘s’ ‘e’ ‘_’ ‘e’ ‘n’ ‘_’ ‘s’ ‘t’ ‘o’ ‘p’ Ø

%MB 14 15 16 17 18 19

‘s’ ‘t’ ‘o’ ‘p’ Ø Ø

20

Ø

Résultat :

35 36 37 38 39 40 41 42
TLX DR PL7 xx 181

Advanced instructions
Syntax Operators for extraction of a substring of characters

Operands for extraction of a substring of characters

Syntax

Result:=MID (string, length, position)

Type Result String Length, Pos (position)

Byte tables %MB:L,Imm.val.. %MB:L,%KB;L -

Indexable words - - %MW,%KW,%Xi.T

Non-indexable
words

- - %IW,%QW,%SW,%NW,
Imm.val., Num. Expr.

Note:
� The position parameter starts at the value 1 which corresponds to the first

position in the string of characters.
� If the output table is too long, the string is completed with end characters.
� If the length set as a parameter is greater than the size of the source string, the

result table will contain the source string.
� If the last element of the table or the string end is reached before the number of

characters defined by the parameter length has been extracted, the extraction
stops there.

The system bit %S15 is set in the following cases:
� If the value of the parameter length to be extracted is negative or zero. In this

case, it is interpreted as being equal to 0 and the result table contains an empty
string (made up of string end characters).

� If the value of the position parameter at the start of the extraction is zero or
greater than or equal to the length of the table or greater than or equal to the
position of the first string end. In this case, the result table contains an empty
string (made up of string end characters).

� If the result table is too short; it is truncated.
182 TLXDRPL7xx

Advanced instructions
Extracting characters

General Extraction of a number of characters the furthest to the left (LEFT) or the furthest to
the right (RIGHT) in a source string entered as a parameter (string).
The number of characters which is to be extracted is defined by the length
parameter. The extracted string is stored in a byte table (result).

Structure Ladder language

Instruction list language
LD TRUE
[%MB10:10:=LEFT(%MB30:13,%MW2)]

Structured text language
%MB10:10:=LEFT(%MB30:13,%MW2);

Examples Example: %MB10:10:=LEFT(%MB30:13,%MW2)
with %MW2=8 (length)

OPERATE

%MB10:10:=LEFT(%MB30:13,%MW2)

%MB 30 31 32 33 34 35 36

‘m’ ‘i’ ‘s’ ‘e’ ‘_’ ‘e’ ‘n’ ‘_’ ‘s’ ‘t’ ‘o’ ‘p’ Ø

37 38 39 40 41 42

%MB 10 11 12 13 14 15

‘m’ ‘i’ ‘s’ ‘e’ ‘_’ ‘e’

17

Ø

Résultat :

16 18 19

Ø‘_’‘n’
TLX DR PL7 xx 183

Advanced instructions
Syntax Operators for extraction of characters

Operands for extraction of characters

Syntax

Result:=LEFT (string, length)

Result:=RIGHT (string, length)

Type Result String Length, Pos (position)

Byte tables %MB:L %MB:L,%KB;L,Imm.
val.

-

Indexable words - - %MW,%KW,%Xi.T

Non-indexable
words

- - %IW,%QW,%SW,%NW,
Imm.val., Num. Expr.

Note:
� If the output table is too long, the result string is completed with end characters.
� If the length in the parameter is greater than the size of the source string, the

result table will contain the source string.
The system bit %S15 is set to 1 in the following cases:
� If the value of the length parameter to be extracted is negative or zero. In this

case, the result table contains an empty string (made up of string end
characters).

� If the value of the position parameter at the start of the extraction is zero or
greater than or equal to the length of the table or greater than or equal to the
position of the first string end. In this case, the result table contains an empty
string (made up of string end characters).

� If the result table is too short; it is truncated.
184 TLXDRPL7xx

Advanced instructions
Comparing two character strings

General Comparison of two character strings. The result is a word containing the position of
the first different character.
In the case of perfect equality between the two character strings, the result value is
-1.

Structure Ladder language

Instruction list language
LD TRUE
[%MW2:=EQUAL_STR(%MB18:14,%MB50:14)]

Structured text language
%MW2:=EQUAL_STR(%MB18:14,%MB50:14);

Examples Example: %MW2:=EQUAL_STR(%MB18:14,%MB50:14)
with

OPERATE
%MW2:=EQUAL_STR(%MB18:14,%MB50:14)

%MB 18 19 20 21 22 23 24

‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘f’ ‘g’ ‘h’ ‘i’ ‘p’ ‘w’ ‘x’ ‘y’

25 26 27 28 29 30

%MB 50 51 52 53 54 55

‘a’ ‘b’ ‘c’ ‘d’ ‘?’ ‘f’

57

‘Ø’

Résultat :

56 58 59

‘Ø’‘h’‘g’

31

‘z’

60 61 62 63

‘v’ ‘x’‘w’ ‘y’ ‘z’

==> MW2:= 5
TLX DR PL7 xx 185

Advanced instructions
Syntax Operators for comparison of two character strings

Operands for comparison of two character strings

Syntax

Result:=EQUAL_STR (string1, string2)

Type Result String 1 and 2

Byte tables - %MB:L,%KB;L,Imm. val.

Indexable words %MW -

Non-indexable
words

%QW,%SW,%NW -

Note:
� A negative length or position is interpreted as being equal to 0.
� Upper case letters are different from lower case letters.
186 TLXDRPL7xx

Advanced instructions
Searching for a character substring

General Search for the substring of characters defined by the second parameter in the
character string defined by the first parameter.
The result is a word containing the position, in the first string, of the beginning of the
searched substring.
In case of failure in the search, the result value is -1.

Structure Ladder language

Instruction list language
LD TRUE
[%MW2:=FIND(%MB18:14,%MB50:4)]

Structured text language
%MW2:=FIND(%MB18:14,%MB50:4);

Examples Example: %MW2:=FIND(%MB18:14,%MB50:4) with:

==> MW2:= 6 Indicates that the beginning of the searched string starts at the sixth
character.

OPERATE
%MW2:=FIND(%MB18:14,%MB50:4)

%MB 18 19 20 21 22 23 24

‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘f’ ‘g’ ‘h’ ‘i’ Ø ‘w’ ‘x’ ‘y’

25 26 27 28 29 30

%MB 50 51 52 53

‘f’ ‘g’ ‘h’ Ø

31

‘z’
TLX DR PL7 xx 187

Advanced instructions
Syntax Search operators for character substrings

Search operands for characters substrings

Syntax

Result:=FIND (string1, string2)

Type Result String 1 and 2

Indexable words %MW -

Non-indexable
words

%QW,%SW,%NW -

Byte tables - %MB:L,%KB;L,Imm. val.

Note: A negative length or position is interpreted as being equal to 0.
188 TLXDRPL7xx

Advanced instructions
Length of a character string

General This function returns the length of the character string in the parameters, i.e. the
number of characters before the string end.

Structure Ladder language

Instruction list language
LD TRUE
[%MW2:=LEN(%MB20:14)]

Structured text language
%MW2:=LEN(%MB20:14);

Examples Example: %MW2:=LEN(%MB20:14 with:))

==> MW2:= 7

Syntax Operator for length of a character string

Operands for length of a characters string

OPERATE
%MW2:=LEN(%MB20:14)

%MB 20 21 22 23 24 25 26

‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘f’ ‘g’ ‘Ø’ ‘n’ o’ ‘p’ ‘r’

27 28 29 30 31

Syntax

Result:=LEN (string)

Type Result String 1 and 2

Indexable words %MW -

Non-indexable words %QW,%SW,%NW -

Byte tables - %MB:L,%KB;L,Imm. val.

Note: If no string end is found, this function returns the size of the table as indicated
in: "Formats of a character string or character table" (See Format of a string of
characters or table of characters, p. 160).
TLX DR PL7 xx 189

Advanced instructions
2.8 Time management instructions: Dates, Times,
Duration

Introduction

Subject of this
sub-section

This sub-section describes the time management instructions: Dates, Times,
Duration, of PL7 language

What's in this
Section?

This Section contains the following Maps:

Topic Page

Format of parameters in the time management instructions 191

Using system bits and words - General 194

Real time clock function 195

Reading system date 198

Updating the system date 199

Reading stop date and code 201

Reading day of the week 202

Addition / Subtraction of a duration from a date 203

Addition / Subtraction of a duration from a time of day 205

Interval between two dates (without time) 207

Interval between two dates (with time) 209

Interval between two times 211

Conversion of a date into a string of characters 212

Conversion of a complete date into a string of characters 214

Conversion of a duration into a string of characters 216

Conversion of a time of day to a character string 218

Conversion of a duration into HHHH:MM:SS 220
190 TLXDRPL7xx

Advanced instructions
Format of parameters in the time management instructions

General The Date, Time, Duration parameters used by these instructions correspond to the
typical formats defined by the standard IEC1131-3.

Duration Format
(TIME Type)

This format is used to encode durations periods expressed in tenths of a second and
corresponds to the TIME format in the standard.
Such values are displayed in the form: sssssssss.d

This gives for example: 3674.3 , for 1 hour, 1 minute, 14 seconds et 3 tenths
The value is coded in 32 bits (a double word) with the range fixed at [0, 4294967295]
tenths of a second, which represents approximately 13 years and 7 months.

Date Format
(DATE Type)

This format is used to code the year, the month and the day. It corresponds to the
DATE format in the standard.
The value is displayed in the form: yyyy-mm-dd

This gives for example: 1984-06-25
The value is coded in BCD in 32 bits (a double word) with 3 fields:

Example, expressed in hexadecimals:

Note: Only values within the interval [00:00:00, 23:59:59] are allowed.

Note: Only values within the interval [1990-01-01, 2099-12-31] are allowed.

Year Month Day

31 16 8 0 Year: 4 digits
Month: 2 digits
Day: 2 digits

19H 06H 25H = 1984-06-2584H
TLX DR PL7 xx 191

Advanced instructions
Time of day
Format (TOD
Type)

This format is used to code the hour, the minutes and the seconds. It corresponds
to the TIME_OF_DAY format in the standard.
The value is displayed in the form: hh:mm:ss

This gives for example: 23:12:34
The value is coded in BCD in 32 bits (a double word) with 3 fields:

Example, expressed in hexadecimals:

Date and time
Format (DT Type)

This format is used to code the year, the month, the day, the hour, the minutes and
the seconds. It corresponds to the DATE_AND_TIME format in the standard.
The value is displayed in the form: yyyy-mm-dd-hh:mm:ss

This gives for example: 1984-06-25-23:12:34
The value is coded in BCD in 64 bits (a table of words of length 4):

Example, expressed in hexadecimals:

Note: Only values within the interval [00:00:00, 23:59:59] are allowed.

8 01624

Hour Mins. Sec.

31 Hours: 2 digits (most significant words)
Minutes: 2 digits (most significant words)
Seconds: 2 digits (least significant words)

23H 12H 34H = 23:12:34

Note: Only values within the interval [1990-01-01-00:00:00, 2099-12-31-23:59:59]
are allowed.

Year Month Day

64 8 0162448 40

Hour Mins. Sec.

32

1984H 06H 25H 23H 12H 34H
192 TLXDRPL7xx

Advanced instructions
Hour, Minute,
Second Format
(HMS Type)

This format used exclusively by the TRANS_TIME function is used to code the
hours, the minutes and the seconds.
The value is displayed in the form: hh:mm:sss

This gives for example: 23:12:34
The value is coded in BCD in 32 bits (a double word) with 3 fields:

Example, expressed in hexadecimals:

8 016

Hour Mins. Sec.

31 Hours: 4 digits (most significant words)
Minutes: 2 digits (least significant words)
Seconds: 2 digits (least significant

23H 12H 34H = 23:12:34
TLX DR PL7 xx 193

Advanced instructions
Using system bits and words - General

System Bit %S17 The system bit %S17 is set in the following cases:
� Result of an operation outside the range of permitted values,
� An input parameter cannot be interpreted and is not coherent with the desired

format (DATE, DT or TOD),
� Operation on a Time of Day (TOD) format involving a change of day,
� Real time clock access conflict.

System bit %S15 The system bit %S15 is set to 1 when a string is being written in a table, when this
string is longer than the size of the table.

System words System words:
� %SD18: absolute time counter is also used to calculate durations (incremented

every 1/10 of a second by the system),
� %SW49 à %SW53 (See Description of system words %SW48 to %SW59, p. 283)

can also be used to display dates.
194 TLXDRPL7xx

Advanced instructions
Real time clock function

General This function is used to send commands at predefined or calculated times and
dates.
It sets the output parameter OUT to 1 providing the date provided by the PLC clock
at the moment of the function call falls within the period programmed in the input
parameters.

Syntax Real time clock function operator

Characteristics
of parameters:

SCHEDULE (DBEG, DEND, WEEK, HBEG, HEND, OUT)

Output OUT Bit containing the result of the comparisons made by
the real time clock function: at 1 during the periods
defined by the parameters.

Start date DBEG Word encoding the start date of the period (month-
date) in BCD (thresholds: 01-01 to 12-31)

End date DEND Word encoding the end date of the period (month-
date) in BCD (thresholds: 01-01 to 12-31)

Day of the week WEEK Word encoding the day or days of the week which
are included in the period defined by the parameters
DBEG and DEND.
The 7 least significant bits represent the 7 days of
the week: bit 6 = Monday, bit 5 = Tuesday,…, bit 0 =
Sunday.

Start time HBEG Double word encoding the start time of the period in
the day (hours-minutes-seconds) in Time of Day
BCD format (type: TOD). Thresholds: 00:00:00,
23:59:59

End time HEND Double word encoding the end time of the period in
the day (hours-minutes-seconds) in Time of Day
BCD format (type: TOD). Thresholds: 00:00:00,
23:59:59
TLX DR PL7 xx 195

Advanced instructions
Structure Ladder language

Instruction list language
LD TRUE
[SCHEDULE(%KW0,%KW1,%KW2,%KD3,%KD5,%M0)]

Structured text language
SCHEDULE(%KW0,%KW1,%KW2,%KD3,%KD5,%M0);

Examples Example: Programming 2 non-continuous time ranges

OPERATE
SCHEDULE(%KW0,%KW1,%KW2,%KD3,%KD5,%M0)

SCHEDULE (16#0501,
16#1031,
2#0000000001111100,
16"08300000,
16#12000000,
%M0
);

(*start date: 1st May*)
(*end date: 31st October*)
(*Monday to Friday*)
(*start time: 8.30a.m.*)
(*end time: 6p.m.*)
(*result in %M0*)

SCHEDULE (16#0501,
16#1031,
2#0000000001111100,
16"14000000,
16#18000000,
%M1
);

(*start date: 1st May*)
(*end date: 31st October*)
(*Monday to Friday*)
(*start time: 2p.m.*)
(*end time: 6p.m.*)
(*result in %M1*)

%Q0.0:=%M0 OR %M1;
196 TLXDRPL7xx

Advanced instructions
Operands Real time clock function operands

Type DBEG,DEND,WEEK HBEG,HEND OUT

Indexable words %MW,%KW,%Xi.T - -

Non-indexable
words

%IW,%QW,%SW,%N
W,Imm.val.,Num.expr.

- -

Indexable double
words

- %MD,%KD -

Non-indexable
double words

- %ID,%QD,Imm.val.,
Num.expr.

-

Bits - - %I,%Q,%M,%S,
%BLK,%*:Xk,%X

Note:
� The 2 parameters DBEG and DEND define a range of days in the year; this

range can overlap 2 civil years. Example: from 10th October to 7th April. The
29th February can be included in this period; it will ignored in non-leap years.

� The 2 parameters HBEG and HEND define a range of time in the day; this range
can overlap 2 civil days. Example: from 10p.m. to 6:10:20a.m.

� If one of the DBEG and DEND dates or one of the HBEG and HEND times is
invalid, i.e. it does not correspond to a real date or time, the OUT output will be
at 0 and the %S17 bit will be set to 1.

� If the target PLC does not have an internal clock (as in TSX37-10), the output
will be at 0 and the system bit %S17 will be set to 1.

� It is possible to lighten the load on a PLC processor where precision is not
important by cadencing the call to the SCHEDULE function using the system bit
%S6 or %S7.
TLX DR PL7 xx 197

Advanced instructions
Reading system date

General Reading the system date (Real Time Clock) and transferring into the object set in
the parameters in Date and Time format (DT).

Structure Ladder language

Instruction list language
LD %M6
[RRTC(%MW2:4)]

Structured text language
IF %M6 THEN
 RRTC(%MW2:4);
END_IF;

Examples Example: RRTC(%MW2:4)
The result is transferred to the table of internal words of length 4: %MW2 to %MW5.

Syntax System date read operator

System date read operands

OPERATE
RRTC(%MW2:4)

%M6

Syntax

RRTC(date)

Type Date

Table of 4 Words in Date and
Time format

%MW:4
198 TLXDRPL7xx

Advanced instructions
Updating the system date

General Updating the system date (Real Time Clock) and transferring into the object given
in parameter in Date and Time format (DT).

Structure Language data

Instruction list language
LD %M7
[%MW2:=16#4300]
[%MW3:=16#1732]
[%MW4:=16#1124]
[%MW5:=16#1995]
[WRTC(%MW2:4)]

Structured text language
IF %M7 THEN
 %MW2:=16#4300;
 %MW3:=16#1732;
 %MW4:=16#1124;
 %MW5:=16#1995;
 WRTC(%MW2:4);
END_IF;

Examples Example: The new date is loaded into an internal word table with a length of 4
%MW2:4, then sent to the system by the WRTC functions

OPERATE
%MW2:=16#4300

OPERATE
%MW3:=16#1732

OPERATE
%MW4:=16#1124

WRTC(%MW2:4)

%MW5:=16#1995

%M7

OPERATE

OPERATE
TLX DR PL7 xx 199

Advanced instructions
Syntax System date updating operator

System date updating operands

Syntax

WRTC(date)

Type Date

4 Word Table %MW:4,%KW:4 in date and time format
200 TLXDRPL7xx

Advanced instructions
Reading stop date and code

General Reading of the date of the last PLC stop and of the code specifying the cause of this
stop (in the 5th word, equivalent to %SW58 (See Description of system words
%SW48 to %SW59, p. 283))

Structure Ladder language

Instruction list language
LD %M7
[PTC(%MW4:5)]

Structured text language
IF %M7 THEN
 PTC(%MW4:5);
END_IF;

Examples Example: PTC(%MW4:5)
The result is transferred to the table of internal words of length 5: %MW4 to %MW8

Syntax Read stop date and code operator

Read stop date and code operands

OPERATE
PTC(%MW4:5)

%M7

Syntax

PTC (date)

Type Date

5 Word table in Date and Time format %MW:5
TLX DR PL7 xx 201

Advanced instructions
Reading day of the week

General This result of this function is to supply current day of the week information in the form
of a digit between 1 and 7 transferred in a word (1 = Monday, 2 = Tuesday, 3 =
Wednesday, 4 = Thursday. 5 = Friday, 6 = Saturday, 7 = Sunday).

Structure Ladder language

Instruction list language
LD %M7
[%MW5:=DAY_OF_WEEK()]

Structured text language
IF %M7 THEN
 %MW5:=DAY_OF_WEEK();
END_IF;

Examples Example: %MW5:=DAY_OF_WEEK()
%MW5:=4 corresponds to Thursday

Syntax Read day of the week operator

Read day of the week operands

OPERATE
%MW5:=DAY_OF_WEEK()

%M7

Syntax

Result:=DAY_OF_WEEK()

Type Result (res)

Indexable words %MW

Non-indexable words %QW,%SW,%NW

Note: If the function has not been able to update the result following a real-time
clock access error, the result returned is 0 and the system bit %S17 is set at 1.
202 TLXDRPL7xx

Advanced instructions
Addition / Subtraction of a duration from a date

General Addition or subtraction of a duration (in tenths of a second) (In2) from a source date
(In1). The result is a new date transferred in a 4 word table.
ADD_DT () = Addition of a duration
SUB_DT () = Subtraction of a duration

Structure Ladder language

Instruction list language
LD %M7
[RRTC(%MW2:4)]
[%MD8:=906]
[%MW2:4:=ADD_DT(%MW2:4,%MD8)]
[WRTC(%MW2:4)]

Structured text language
IF %M7 THEN
 RRTC(%MW2:4);
 %MD8:=906;
 %MW2:4:=ADD_DT(%MW2:4,%MD8);
 WRTC(%MW2:4);
END_IF;

OPERATE
RRTC(%MW2:4)

%M7

OPERATE

OPERATE

OPERATE

%MD8:=906

%MW2:4:=ADD_DT(%MW2:4,%MD8)

WRTC(%MW2:4)
TLX DR PL7 xx 203

Advanced instructions
Examples Example: %MW2:4:=ADD_DT(%MW2:4,%MD8)
%MW2:4:= Source date
%MD8:=906 (906 tenths of a second rounded off to 1 min. 31s)
%MW2:4:= New date

Syntax Operators for addition/subtraction of a time duration from a date

Operands for addition/subtraction of a time duration from a date

Syntax

Result:=ADD_DT(In1, In2)

Result:=SUB_DT(In1, In2)

Type Result (res) In1 (source date) In2 (duration)

Tables of 4 Words in
Date and Time format

%MW4 %MW4:4,%KW:4 -

Indexable double
words

- - %MD,%KD

Non-indexable
double words

- - %ID,%QD,Imm.val.,
Num.expr.

Note:
� The rounding off principle will be applied to the ‘duration’ parameter (expressed

in tenths of a second) to enable the addition or subtraction from the date (precise
to the second).
� sssssssss.0 à sssssssss.4 rounded off to sssssssss.0
� sssssssss.5 à sssssssss.9 rounded off to sssssssss.0 +1.0

� The application is to provide for the management of leap years.
� If the result of the operation is outside the interval for permitted values, the

system bit %S17 is set at 1 and the result value is equal to the minimum limit
(for SUB_DT) or remains blocked at the maximum (for ADD_DT).

� If the input parameter ‘source date’ cannot be interpreted and is not coherent in
DT format (DATE_AND_TIME), the system bit %S17 is set at 1 and the result
value is equal to 0001-01-01-00:00:00.
204 TLXDRPL7xx

Advanced instructions
Addition / Subtraction of a duration from a time of day

General Addition or subtraction of a duration to a time of day. The result is a new time of day
transferred in a double word.
ADD_TOD () = Addition of a duration
SUB_TOD () = Subtraction of a duration

Structure Ladder language

Instruction list language
LD %M7
[%MD8:=906]
[%MD2:=ADD_TOD(%MD2,%MD8)]

Structured text language
IF %M7 THEN
 %MD8:=906;
 %MD2:=ADD_TOD(%MD2,%MD8);
END_IF;

Examples Example: %MD2:=ADD_TOD(%MD2,%MD8)
%MD2:= Source time (e.g.: 12:30:00)
%MD8:= 906 (906 tenths of a second rounded off to 1 min. 31s)
%MD2:= New time (e.g.: 13:31:31)

OPERATE

%MD2:=ADD_TOD(%MD2,%MD8)

%M7

OPERATE

%MD8:=906
TLX DR PL7 xx 205

Advanced instructions
Syntax Operators for addition/subtraction of a time duration from a time of day

Operands for addition/subtraction of a time duration from a time of day

result and In1 are in TOD format, In2 is in duration format.

Syntax

Result:=ADD_TOD(In1, In2)

Result:=SUB_TOD(In1, In2)

Type Result (res) In1 (source time) and In2 (duration)

Indexable double
words

%MD %MD,%KD

Non-indexable
double words

%QD %ID,%QD,Imm.val.,Num.expr.

Note:
� The rounding off principle will be applied to the ‘duration’ parameter (expressed

in tenths of a second) to enable the addition or subtraction from the date (precise
to the second).
� sssssssss.0 à sssssssss.4 rounded off to sssssssss.0
� sssssssss.5 à sssssssss.9 rounded off to sssssssss.0 +1.0

� The day is changed if the result of the operation is outside the interval for
permitted values. In this case, the system bit %S17 is set at 1 and the value of
the result can be interpreted with a 24:00:00 rollover.

� If the input parameter ‘time of day’ cannot be interpreted in TOD format, the
system bit %S17 is set at 1 and the result value is equal to 00:00:00.
206 TLXDRPL7xx

Advanced instructions
Interval between two dates (without time)

General Calculates the time interval between two dates. The result, given as an absolute
value, is transferred in a double word.

Structure Ladder language

Instruction list language
LD %M7
[%MD10:=DELTA_D(%MD2,%MD4)]

Structured text language
IF %M7 THEN
 %MD10:=DELTA_D(%MD2,%MD4);
END_IF;

Examples %MD10:=DELTA_D(%MD2,%MD4)
%MD2:= Date number1 (e.g.: 1994-05-01)
%MD4:= Date number2 (e.g.: 1994-04-05)
==> %MD10:= 22464000 (==> interval = 26 days)

OPERATE%M7

%MD10:=DELTA_D(%MD2,%MD4)
TLX DR PL7 xx 207

Advanced instructions
Syntax Operator for an interval between two dates (without time)

Operands for an interval between two dates (without time)

result is in TIME format, Date 1 and 2 are in DATE format.
The TIME format is defined with precision to a tenth of a second. The DATE format
is defined with precision to a day. The calculated time interval will be a multiple of
864000 (= 1day = 24 h x 60 mn x 60 s x 10 tenths).

Syntax

Result:=DELTA_D(Date1, Date2)

Type Result (res) Date 1 and 2

Indexable double
words

%MD %MD,%KD

Non-indexable
double words

%QD %ID,%QD,Imm.val.,Num.expr.

Note:
� There is overflow if the result exceeds the maximum value permitted for a

duration (TIME). In this case, the result is equal to 0 and the system bit %S18 is
set at 1.

� If one of the input parameters cannot be interpreted and is not coherent in DATE
format, the system bit %S17 is set at 1 and the result is equal to 0.
208 TLXDRPL7xx

Advanced instructions
Interval between two dates (with time)

General Calculates the time interval between two dates. The result, given as an absolute
value, is transferred in a double word.

Structure Ladder language

Instruction list language
LD TRUE
[%MD10:=DELTA_DT(%MW2:4,%MW6:4)]

Structured text language
%MD10:=DELTA_DT(%MW2:4,%MW6:4);

Examples %MD10:=DELTA_DT(%MW2:4,%MW6:4)
%MW2:4:= Date number1 (e.g.: 1994-05-01-12:00:00)
%MW6:4:= Date number2 (e.g.: 1994-05-01-12-01-30)
==> %MD10:= 900 (==> interval = 1 minute and 30 seconds)

OPERATE

%MD10:=DELTA_DT(%MW2:4,%MW6:4)
TLX DR PL7 xx 209

Advanced instructions
Syntax Operator for an interval between two dates (with time)

Operands for an interval between two dates (with time)

result is in TIME format, Date 1 and 2 are in DT format.
The TIME format is defined with precision to a tenth of a second. The DT format is
defined with precision to a second. The calculated time interval is a multiple of 10.

Syntax

Result:=DELTA_DT(Date1, Date2)

Type Result (res) Date 1 and 2

Indexable double
words

%MD -

Non-indexable
double words

%QD -

4 word table in DT
format

- %MW:4,%KW:4

Note:
� There is overflow if the result exceeds the maximum value permitted for a

duration (TIME). In this case, the result is equal to 0 and the system bit %S18 is
set at 1.

� If one of the input parameters cannot be interpreted and is not coherent in DT
format, the system bit %S17 is set at 1 and the result is equal to 0.
210 TLXDRPL7xx

Advanced instructions
Interval between two times

General Calculates the time interval between two times of day. The result is transferred in a
double word as an absolute value giving a duration.

Structure Ladder language

Instruction list language
LD TRUE
[%MD10:=DELTA_TOD(%MD2,%MD4)]

Structured text language
%MD10:=DELTA_TOD(%MD2,%MD4);

Examples %MD10:=DELTA_TOD(%MD2,%MD4)
%MD2:= Time1 (e.g.: 02:30:00)
%MD4:= Time2 (e.g.: 02 41 00)
==> %MD10:= 6600 (==> interval = 11 minutes)

Syntax Operator for an interval between two times

Operands for an interval between two times

result is in TIME format, Time 1 and 2 are in TOD format.

The TIME format is defined with precision to a tenth of a second. The TOD format is
defined with precision to a second. The calculated time interval is a multiple of 10.

OPERATE
%MD10:=DELTA_TOD(%MD2,%MD4)

Syntax

Result:=DELTA_TOD(Date1, Date2)

Type Result (res) Time 1 and 2

Indexable double words %MD %MD,%KD

Non-indexable double words %QD %ID,%QD, Immediate value, Numeric expr.

Note: If one of the input parameters cannot be interpreted and is not coherent in
TOD format, the system bit %S17 is set at 1 and the result is equal to 0.
TLX DR PL7 xx 211

Advanced instructions
Conversion of a date into a string of characters

General This instruction converts a date into a string of characters (without time) in the
following format: YYYY-MM-DD (10 characters). This string ends with an end
character Ø. Each character Y,M,D symbolizes a digit.

Structure Ladder language

Instruction list language
LD TRUE
[%MB2:11=DATE_TO_STRING(%MD40)]

Structured text language
%MB2:11=DATE_TO_STRING(%MD40);

Examples %MB2:11=DATE_TO_STRING(%MD40)
%MD40:= Date (e.g.: 1998-12-27)

OPERATE

%MB2:11=DATE_TO_STRING(%MD40)

2 3 4 5 6 7 8 9 10 11 12%MB

‘1’ ‘9’ ‘9’ ‘8’ ‘-’ ‘1’ ‘2’ ‘-’ ‘2’ ‘7’ Ø
212 TLXDRPL7xx

Advanced instructions
Syntax Date to string conversion operator

Date to string conversion operands

Syntax

Result:=DATE_TO_STRING(Date)

Type Result (res) Date

Tables of 11 bytes %MB:11 -

Indexable double
words

- %MD,%KD

Non-indexable
double words

- %ID,%QD, Immediate value, Numeric expr.

Note:
� If the input (date) parameter cannot be interpreted and is not coherent in DATE

format, the system bit %S17 is set at 1 and the function returns the string ****
- ** - **.

� If the output string is too short, it is truncated and the system bit %S15 is set to 1.
%MB2:8 := DATE_TO_STRING(%MD40)

� If the output string is too long, it is completed with end characters Ø.
%MB2:12 := DATE_TO_STRING(%MD40)

2 3 4 5 6 7 8%MB

‘1’ ‘9’ ‘9’ ‘8’ ‘-’ ‘1’ ‘2’

==>

==> %S15 = 1‘-’

9

2 3 4 5 6 7 8 9 10 11 12%MB

‘1’ ‘9’ ‘9’ ‘8’ ‘-’ ‘1’ ‘2’ ‘-’ ‘2’ ‘7’ Ø

13

Ø

==>
TLX DR PL7 xx 213

Advanced instructions
Conversion of a complete date into a string of characters

General This instruction converts a complete date (with time) into a string of characters in the
following format: YYYY-MM-DD-HH:MM:SS (19 characters). This string ends with
an end character Ø. Each character Y,M,D,H,M,S symbolizes a digit.

Structure Ladder language

Instruction list language
LD TRUE
[%MB2:20=DT_TO_STRING(%MW50:4)]

Structured text language
%MB2:20=DT_TO_STRING(%MW50:4);

Examples %MB2:20=DT_TO_STRING(%MW50:4)
%M50:4:= Date and time (type DT) (e.g.: 1998-12-27-23:14:37)

OPERATE

%MB2:20=DT_TO_STRING(%MW50:4)

2 3 4 5 6 7 8 9 10 11 12

‘1’ ‘9’ ‘9’ ‘8’ ‘-’ ‘1’ ‘2’ ‘-’ ‘2’ ‘7’ ‘-’ ‘2’ ‘3’ ‘:’ ‘1’ ‘4’ ‘:’ ‘3’ ‘7’ Ø

13 14 15 16 17 18 19 20 21

Ø

22%MB
==>
214 TLXDRPL7xx

Advanced instructions
Syntax Complete date to string conversion operator

Complete date to string conversion operands

Syntax

Result:=DT_TO_STRING(Date)

Type Result (res) Date

Tables of 20 bytes %MB:20 -

4 word table in DT
format

- %MW:4,%KW:4

Note:
� If the (date) input parameter cannot be interpreted and is not coherent in

DT (DATE_AND_TIME) format, the system bit %S17 is set at 1 and the function
returns the string ****-**-**-**:**:** .

� If the output string is too short, it is truncated and the system bit %S15 is set to 1.
%MB2:8:=DT_TO_STRING(%MW50:4)

� If the output string is too long, it is completed with end characters Ø.
%MB2:21:=DT_TO_STRING(%MD50:4)

2 3 4 5 6 7 8%MB

‘1’ ‘9’ ‘9’ ‘8’ ‘-’ ‘1’ ‘2’

==>

==> %S15 = 1‘-’

9

2 3 4 5 6 7 8 9 10 11 12

‘1’ ‘9’ ‘9’ ‘8’ ‘-’ ‘1’ ‘2’ ‘-’ ‘2’ ‘7’ ‘-’ ‘2’ ‘3’ ‘:’ ‘1’ ‘4’ ‘:’ ‘3’ ‘7’ Ø

13 14 15 16 17 18 19 20 21

Ø

22%MB
==>
TLX DR PL7 xx 215

Advanced instructions
Conversion of a duration into a string of characters

General This instruction converts a duration (in TIME format) into a string of characters. The
format of the result is in hours, minutes, seconds and tenths of a second expressed
in 15 characters: HHHHHH:MM:SS.D. This string ends with the end character Ø.
Each character H,M,S,D symbolizes a digit.
The maximum duration corresponds to 119304 hours, 38 minutes, 49 seconds and
5 tenths.

Structure Ladder language

Instruction list language
LD TRUE
[%MB2:15=TIME_TO_STRING(%MD40)]

Structured text language
%MB2:15=TIME_TO_STRING(%MD40);

Examples %MB2:15=TIME_TO_STRING(%MD40)
%MD40:= 27556330.3 (TIME format)

OPERATE

%MB2:15=TIME_TO_STRING(%MD40)

2 3 4 5 6 7 8 9 10 11 12%MB

‘0’ ‘0’ ‘7’ ‘6’ ‘5’ ‘4’ ‘:’ ‘3’ ‘2’ ‘:’ ‘1’

13

‘0’

14 15

‘.’ ‘3’

16

Ø

216 TLXDRPL7xx

Advanced instructions
Syntax Duration to string conversion operator

Duration to string conversion operands

Duration is in TIME format

Syntax

Result:=TIME_TO_STRING(Duration)

Type Result (res) Duration

Tables of 15 bytes %MB:15 -

Indexable double
words

- %MD,%KD

Non-indexable
double words

- %ID,%QD, Immediate value, Numeric expr.

Note:
� If the output string is too short, it is truncated and the system bit %S15 is set to 1.

%MB2:8:=TIME_TO_STRING(%MD40)

� If the output string is too long, it is completed with end characters Ø.
%MB2:16:=TIME_TO_STRING(%MD40)

2 3 4 5 6 7 8%MB

‘0’ ‘0’ ‘7’ ‘6’ ‘5’ ‘4’ ‘:’

==>

==> %S15 = 1‘3’

9

2 3 4 5 6 7 8%MB

‘0’ ‘0’ ‘7’ ‘6’ ‘5’ ‘4’ ‘:’

==>

‘3’

9 10 11 12 13 14 15 16

‘2’ ‘:’ ‘1’ ‘0’ ‘.’ ‘3’ Ø

17

Ø

TLX DR PL7 xx 217

Advanced instructions
Conversion of a time of day to a character string

General This instruction converts a time of day (in TOD – TIME_OF_DAY format) into a
character string with 8 characters in HH:MM:SS format plus an end character Ø.
Each chracter H,M,S symbolizes a digit.

Structure Ladder language

Instruction list language
LD TRUE
[%MB2:9=TOD_TO_STRING(%MD40)]

Structured text language
%MB2:9=TOD_TO_STRING(%MD40);

Examples %MB2:9=TOD_TO_STRING(%MD40)
%MD40:= 23:12:27 (TOD format)

OPERATE

%MB2:9=TOD_TO_STRING(%MD40)

2 3 4 5 6 7 8 9 10%MB

‘2’ ‘3’ ‘:’ ‘1’ ‘2’ ‘:’ ‘2’ ‘7’ Ø
218 TLXDRPL7xx

Advanced instructions
Syntax Time of day to string conversion operator

Time of day to string conversion operands

Time is in TOD format

Syntax

Result:=TOD_TO_STRING(Duration)

Type Result (res) Time

9 byte tables %MB:9 -

Indexable double
words

- %MD,%KD

Non-indexable
double words

- %ID,%QD, Immediate value, Numeric expr.

Note:
� If the output string is too short, it is truncated and the system bit %S15 is set to 1.

%MB2:8 := TOD_TO_STRING (%MD40) (where %MD40 := 23:12:27)

� If the output string is too long, it is completed with end characters Ø.
%MB2:10 := TOD_TO_STRING (%MD40) (where %MD40 := 23:12:27)

2 3 4 5 6 7 8%MB

‘2’ ‘3’ ‘:’ ‘1’ ‘2’ ‘:’ ‘2’

==>

==> %S15 = 1‘7’

9

2 3 4 5 6 7 8%MB

‘2’ ‘3’ ‘:’ ‘1’ ‘2’ ‘:’ ‘2’

==>

‘7’

9 10 11

Ø Ø
TLX DR PL7 xx 219

Advanced instructions
Conversion of a duration into HHHH:MM:SS

General This instruction converts a duration (in TIME format) into hours-minutes-seconds:
HHHH:MM:SS. Threshold [0000:00:00 , 9999:59:59].

Structure Ladder language

Instruction list language
LD TRUE
[%MD100=TRANS_TIME(%MD2)]

Structured text language
%MD100=TRANS_TIME(%MD2);

Examples %MD100=TRANS_TIME(%MD2)
where %MD2:= 36324873 tenths of a second

values are expressed in hexadecimal

OPERATE

%MD100=TRANS_TIME(%MD2)

31 16 8 0
%MD2

2 3 9 7 5 4 4 7
==>
220 TLXDRPL7xx

Advanced instructions
Syntax Duration to HHHH:MM:SS conversion operator

Duration to HHHH:MM:SS conversion operator

Result is in HMS format
Duration is in TIME format

Syntax

Result:=TRANS_TIME(Duration)

Type Result (res) Duration

Indexable double
words

%MD %MD,%KD

Non-indexable
double words

%QD %ID,%QD, Immediate value, Numeric expr.

Note:
� The rounding off principle will be applied to the "duration" parameter (expressed

in tenths of a second) to enable conversion (precise to the second).
� sssssssss.0 à sssssssss.4 rounded off to sssssssss.0
� sssssssss.5 à sssssssss.9 rounded off to sssssssss.0 +1.0

� The maximum converted duration may be up to 10000 hours. This means that
if the duration value (TIME) in the parameter is equal or greater than
360000000, it cannot be converted. %S15 system bit is set to 1 and the result
is equal to 0000:00:00.
TLX DR PL7 xx 221

Advanced instructions
2.9 Bit table instructions

Introduction

Subject of this
sub-section

This sub-section describes PL7 language bit table instructions

What's in this
Section?

This Section contains the following Maps:

Topic Page

Copying a bit table into a bit table 223

Logic instructions on bit tables 224

Copying a bit table into a word table 226

Copy of a word table in a bits table 228
222 TLXDRPL7xx

Advanced instructions
Copying a bit table into a bit table

General This function copies a bit table bit by bit into another bit table.

Structure Ladder language

Instruction list language
LD TRUE
[%MD10:5=COPY_BIT(%M20:5)]

Structured text language
%MD10:5=COPY_BIT(%M20:5);

Syntax Bit table copy operator

Bit table copy operands

OPERATE
%MD10:5=COPY_BIT(%M20:5)

Syntax

Result:=COPY_BIT(Tab)

Type Result (res) Tab (table)

Bit table %M:L,%Q:L,%I:L %M:L,%Q:L,%I:L,%Xi:L

Note:
� Tables can be of different sizes. In this case, the result table contains the result

of the function executed for a length equivalent to the smallest of the tables, and
the rest of the table has not been modified.

� Be careful of possible overlap between the input table and the result table.
TLX DR PL7 xx 223

Advanced instructions
Logic instructions on bit tables

General Associated functions are used to carry out a bit by bit logic operation between two
bit tables, and arrange the result in another bit table.
� AND_ARX: logic AND (bit by bit),
� OR_ARX: logic OR (bit by bit),
� XOR_ARX: Exclusive OR (bit by bit),
� NOT_ARX: logic (bit by bit) complement of a table.

Structure Ladder language

Instruction list language
LD TRUE
[%MD10:7=AND_ARX(%M20:7,%M30:7)]

LD TRUE
[%MD50:10=NOT_ARX(%M60:10)]

Structured text language
%MD10:7=AND_ARX(%M20:7,%M30:7);
%MD50:10=NOT_ARX(%M60:10);

OPERATE
%MD10:7=AND_ARX(%M20:7,%M30:7)

OPERATE

%MD50:10=NOT_ARX(%M60:10)
224 TLXDRPL7xx

Advanced instructions
Syntax Logic instruction on bit table operators

Logic instruction on bit tables operands

Syntax

Result:=AND_ARX(Tab 1, Tab 2)

Result:=OR_ARX(Tab 1, Tab 2)

Result:=XOR_ARX(Tab 1, Tab 2)

Result:=NOT_ARX(Tab 1)

Type Result (res) Tab 1 and Tab 2 (table)

Bit table %M:L,%Q:L,%I:L %M:L,%Q:L,%I:L,%Xi:L

Note:
� Tables can be of different sizes. In this case, the result table contains the result

of the function executed for a length equivalent to the smallest of the tables, and
the rest of the table has not been modified.

� Possibility of overlap between the input table and the result table.
TLX DR PL7 xx 225

Advanced instructions
Copying a bit table into a word table

General This function copies the bits of a bit table or part of a bit table and copies them into
a word (or double word) table.
In the bit table, the bits are taken starting from a certain position (brow) for a set
number of bits (nbit).
In the word (or double word) table, the copy is made from the position (wrow or drow)
starting with the least significant bit of each word.
� BIT_W: Copies a bit table into a word table,
� BIT_D: Copies a bit table into a double word table.

Structure Ladder language

Instruction list language
LD TRUE
[%MD10:7=BIT_W(%M20:29,3,22,2)]

LD TRUE
[%MD10:4=(%M20:29,3,22,1)]

Structured text language
%MD10:7=BIT_W(%M20:29,3,22,2);
%MD10:4=(%M20:29,3,22,1);

Example %MD10:7=BIT_W(%M20:29,3,22,2) ;

OPERATE

%MD10:7=BIT_W(%M20:29,3,22,2)

OPERATE

%MD10:4=(%M20:29,3,22,1)

%M20:29
row 0
row 3 (brow)

Number of bits (nbit):
16 + 6

row 0
bit 15 bit 0

row 2

%MW10:7
226 TLXDRPL7xx

Advanced instructions
Syntax Bit table to word table copy operators

Bit table to word table copy operands

Syntax

Result:=BIT_W(Tab, brow, nbit, wrow)

Result:=D_BIT(Tab, brow, nbit, drow)

Type Result (res) Tab (table) brow - nbit wrow or
drow

Word tables %MW:L - -

Double word tables %MD:L - -

Bit table - %M:L,%Q:L,%I:L,%
Xi:L

-

Indexable words - - %MW,%KW,%Xi.T

Non-indexable words - - %IW,%QW,%SW,
%NW, Imm. value.,
Num. expr.

Note:
� If the number of bits to be processed is greater than the number of bits

remaining in the tables from position (brow), the function copies up to the last
table element.

� If the number of bits to be copied is greater than the number of bits that make
up the remaining words in the result table, the function stops copying at the last
element of the word (or double word) table.

� A negative value in the brow, nbit, wrow or drow parameters will be interpreted
as zero.
TLX DR PL7 xx 227

Advanced instructions
Copy of a word table in a bits table

General The function takes the bits that make up a word table or part of a word (or double
word) table and copies them into a bit table.
In the word (or double word) table, the deduction is made from position word (wrow
or drow) for a number of words (nwd).
In the bit table, the copy is made from the position (brow) starting with the least
significant bit of each word.
� W_BIT: Recopying a word table into a bit table,
� D_BIT: Recopying a double word table into a bit table.

Structure Language data

Instruction list language
LD TRUE
[%M20:36:=W_BIT(%MW10:7,2,2,3)]

LD TRUE
[%M20:36:=D_BIT(%MD10:4,1,1,3)]

Structured text language
%M20:36:=W_BIT(%MW10:7,2,2,3);
%M20:36:=D_BIT(%MD10:4,1,1,3);

Example %M20:36:=W_BIT(%MW10:7,2,2,3) ;

OPERATE
%M20:36:=W_BIT(%MW10:7,2,2,3)

OPERATE
%M20:36:=D_BIT(%MD10:4,1,1,3)

%M20:36row 0
row 3 (brow)

row 0
bit 15 bit 0

(wrow) row 2

%MW10:7 row 19
228 TLXDRPL7xx

Advanced instructions
Syntax Operators for copying a word table into a bit table

Operands for copying a word table into a bit table

Syntax

Result:=W_BIT(Tab, wrow, nwd, brow)

Result:=D_BIT(Tab, drow, nwd, brow)

Type Result (res) Tab (table) wrow or drow nwd -
brow

Bit tables %M:L,%Q:L,%I:L - -

Word tables - %MW:L,%KW:L -

Double word tables - %MD:L,%KD:L -

Words which can be
indexed

- - %MW,%KW,%Xi.T

Words which can not
be indexed

- - %IW,%QW,%SW,%NW,I
mm value.,Num. expr.

Note:
� If the number of bits to be processed is greater than the number of bits

remaining in the tables from position (wrow), the function recopies up to the last
table element.

� If the number of bits to be recopied is greater than the number of bits that make
up the remaining words in the result table, the function stops copying at the last
word (or double word) table element.

� If the number of bits to be recopied is greater than the number of bits remaining
in the result table, the function stops recopying at the last table element.

� A negative value in the brow, nbit, wrow or drow parameters will be interpreted
as zero.
TLX DR PL7 xx 229

Advanced instructions
2.10 "Orpheus" functions: Shift registers, counter

Introduction

Subject of this
sub-section

This sub-section describes the following "Orpheus" functions of PL7 language: shift
register and counter

What's in this
Section?

This Section contains the following Maps:

Topic Page

Shift register on words with shifted bit retrieval 231

Up/down counting with overshoot signaling 234

Rotate shifts 237
230 TLXDRPL7xx

Advanced instructions
Shift register on words with shifted bit retrieval

General The functions cause right or left arithmetic shifts on a number of shift registers (nbit)
on a word or on a double word (a).
After shifting, the value is placed in (résu) and the shifted bits are placed in (rest).
� WSHL_RBIT: Left shift on word with shifted bit retrieval.
� DSHL_RBIT: Left shift on double word with shifted bit retrieval.
� WSHRZ_C: Right shift on word, filling with 0s and shifted bit retrieval.
� DSHRZ_C: Right shift on double word, filling with 0s and shifted bit retrieval.
� WSHR_RBIT: Right shift on word with sign extension and shifted bit retrieval.
� DSHR_RBIT: Right shift on double word with sign extension and shifted bit

retrieval.

Structure Ladder language

Instruction list language
LD TRUE
[WSHL_RBIT(%MW20,%MW30,%MW21,%MW10)]

LD TRUE
[WSHRZ_C(%MW20,%MW30,%MW21,%MW10)]

LD TRUE
[DSHR_RBIT(%MD30,%MW40,%MD20,%MD10)]

Structured text language
WSHL_RBIT(%MW20,%MW30,%MW21,%MW10);

WSHRZ_C(%MW20,%MW30,%MW21,%MW10);

DSHR_RBIT(%MD30,%MW40,%MD20,%MD10);

OPERATE
WSHL_RBIT(%MW20,%MW30,%MW21,%MW10)

OPERATE
WSHRZ_C(%MW20,%MW30,%MW21,%MW10)

OPERATE
DSHR_RBIT(%MD30,%MW40,%MD20,%MD10)
TLX DR PL7 xx 231

Advanced instructions
Examples WSHL_RBIT(%MW20,%MW30,%MW21,%MW10) with %MW30 = 4

WSHRZ_C(%MW20,%MW30,%MW21,%MW10) with %MW30 = 4

DSHR_RBIT(%MD30,%MW40,%MD20,%MD10) with %MW40 = 6

0000 0000 0000 0001

rest = %MW10

1111 0110 10000001

1111 0110 1000 0000

A = %MW20

result = %MW21

Copy shifted bits

Completing bits on each zero

1000 0000 1111 0000 0000 00000001

a = %MW20 rest = %MW10

result = %MW21

Completing bits on each zero

Copy shifted bits

0001

1000 0000 11110000

1000 0000 1111 0001

0000 0000 11 00 1111 0000 0000 11 00 1111

PF

Pf

1100 0100 1111 0011

1111 11 10 0000 0011 PF

Pf

0000 0000 0000 0000

rest = %MD10a = %MD30

result = %MD20

retain sign

Copy shifted bits

spread sign bit in
bits freed by shifting
232 TLXDRPL7xx

Advanced instructions
Syntax Shift register operators on words with shifted bit retrieval

Shift register operands on words with shifted bit retrieval

Shift register operators on double words with shifted bit retrieval

Shift register operands on double words with shifted bit retrieval

Syntax

WSHL_BIT(a, nbit, résu, rest)

WSHRZ_C(a, nbit, résu, rest)

WSHR_RBIT(a, nbit, résu, rest)

Type a nbit résu, rest

Words which can be
indexed

%MW,%KW %MW,%KW,%Xi.T %MW

Words which can not
be indexed

%IW,%QW,%SW,
%NW, Imm.value,
Num.expression

%IW,%QW,%SW,
%NW, Imm.value,
Num.expression

%QW,%SW,%NW

Syntax

DSHL_BIT(a, nbit, résu, rest)

DSHRZ_C(a, nbit, résu, rest)

DSHR_RBIT(a, nbit, résu, rest)

Type a nbit résu, rest

Double words which
can be indexed

%MD,%KD - %MD

Double words which
can not be indexed

%ID,%QD,%SD,
Immediate value,
Num.expression

- %QD,%SD

Words which can be
indexed

- %MW,%KW,%Xi.T -

Words which can not
be indexed

- %IW,%QW,%SW,
%NW, Imm.value,
Num.expression

-

Note: If the parameter (nbit) is not between 1 and 16 for word shifts, or between 1
and 32 for double word shifts, the outputs (résu) and (rest) are not significant and
the %S18 system bit is set to 1.
TLX DR PL7 xx 233

Advanced instructions
Up/down counting with overshoot signaling

General The function is used to up/down count with overshoot signaling. This function is only
executed if the confirmation input (en) is set.
Two separate inputs (cu and cd) are used to up and down count the events. The
output (Qmin) is set to 1 as soon as the minimum threshold (min) has been reached,
the output (Qmax) is set to 1 as soon as the maximum threshold (max) is reached.
The initial count value is set by the parameter (pv) and the current count value is
given by the parameter (cv).
A 16 bit word (mwd) is used to store the state of the cu and cd inputs (bit 0 for storing
cu and bit 1 for storing cd).

Structure Ladder language

Instruction list language
LD TRUE
[SCOUNT(%M9,%MW10,%M11,%M12,%MW11,%MW12,%M16,%M10,%MW15,%MW2
0)]

Structured text language
SCOUNT(%M9,%MW10,%M11,%M12,%MW11,%MW12,%M16,%M10,%MW15,%MW20
);

OPERATE
SCOUNT(%M9,%MW10,%M11,%M12,%MW11,
%MW12,%M16,%M10,%MW15,%MW20)
234 TLXDRPL7xx

Advanced instructions
Examples SCOUNT(%M9,%MW10,%M11,%M12,%MW11,%MW12,%M16,%M10,%MW15,%MW20
)
with %MW10 (pv) = 5, %MW11 (min) = 0, %MW12 (max) = 7

5 4 5 6 5 6 7 5

en:%M9

cd:%M12

mcd:%MW20:X1

cu:%M11

Qmax:%M10

Qmin:%M16

cv=%MW15

mcu:%MW20:X0
TLX DR PL7 xx 235

Advanced instructions
Syntax Up/down counting operators with overshoot signaling

Up/down counting operands with overshoot signaling

Syntax

SCOUNT(en, pv, cu, cd, min, max, Qmin, Qmax, cv, mwd)

Type en, cu, cd Qmin, Qmax pv, min, max cv,mwd

Bits %I,%Q,%M,%S,
%BLK,%.:Xk

%I,%Q,%M - -

Words which can
be indexed

- - %MW,%KW,%Xi.T %MW

Words which can
not be indexed

- - %IW,%QW,%SW,
%NW, Imm.value,
Num.expression

%QW,%SW,
%NW

Note:
� If (en) = 0 then the function is no longer enabled and on each call, there is:

Qmin = Qmax = 0
mcu = mcd = 0 cv = pv

� If max > min then:
cv >= max ---> Qmax = 1 and Qmin = 0
min < cv < max ---> Qmax = Qmin = 0
cv <= min ---> Qmax = 0 and Qmin = 1

� If max < min then:
max <= cv <= min ---> Qmax = 1 and Qmin = 0
cv < max ---> Qmax = 0 and Qmin = 1
cv > min ---> Qmax = 1 and Qmin = 0

� If max = min then:
cv < min and max ---> Qmax = 0 and Qmin = 1
cv >= min and max ---> Qmax = 1 and Qmin = 0

� There is no incidence of a modification of parameter (pv) with (en) in state 1
� A negative value for parameters (pv) and (min) is interpreted as a zero value.
� A value lower than 1 for the parameter (max) is interpreted as being equal to 1.
236 TLXDRPL7xx

Advanced instructions
Rotate shifts

General The functions rotate the shifts left or right on a word or double word.
� ROLW: rotate shift left on a word with a number of calculated shift registers,
� RORW: rotate shift right on a word with a number of calculated shift registers,
� ROLD: rotate shift left on a double word with a number of calculated shift registers
� RORD: rotate shift right on a double word with a number of calculated shift

registers.

Structure Ladder language

Instruction list language
LD %M0
[%MW0:=ROLW(%MW10,%MW5)]

LD %I3.2
[%MD10:=RORD(%MD100,%MW5)]

Structured text language
IF %M0 THEN
 %MW0:=ROLW(%MW10,%MW5);
END_IF;
IF %I3.2 THEN
 %MD8:=RORD(%MD100,%MW5);
END_IF

%MW0:=ROLW(%MF10,%MW5)

%MD8:=RORD(%MD50,%MW5)

%M0

%I3.2
TLX DR PL7 xx 237

Advanced instructions
Syntax Rotate shift operators

Rotate shift operands on a word ROLW, RORW

Rotate shift operands on a double word ROLD, RORD

Operators Syntax

ROLW, RORW, ROLD, RORD Op1:=Operator(Op2,n)

Type Operand 1 (Op1) Operand 2 (Op2) Position number (n)

Words which can
be indexed

%MW %MW,%KW,%Xi.T %MW,%KW,%Xi.T

Words which can
not be indexed

- Imm.val.,%IW,%QW,%S
W,%NW,%BLK,
Num.expr.

Imm.val.%IW,%QW,
%SW,%NW,%BLK,
Num.expr.

Type Operand 1 (Op1) Operand 2 (Op2) Position number
(n)

Words which can
be indexed

%MD %MD,%KD %MW,%KW,%Xi.T

Words which can
not be indexed

%QD,%SD Imm.val.,%ID,%QD,%SD
,Num.expr.

Imm.val.
%IW,%QW,
%SW,%NW,%BLK,
Num.expr.

Note: The preferred basic instructions are ROL and ROR (when the shift register
number is static, because these instructions have a higher performance.
238 TLXDRPL7xx

Advanced instructions
2.11 Timing functions

Introduction

Subject of this
sub-section

This sub-section describes PL7 language timing functions

What's in this
Section?

This Section contains the following Maps:

Topic Page

Timing functions 240

Engagement timing (on delay) function 241

Release timing (off delay) function 243

Pulse timer function 245

Rectangular signal generator function 247
TLX DR PL7 xx 239

Advanced instructions
Timing functions

General As opposed to the predefined function blocks, these timing functions are not limited
in number and can be used in the DFB function block code.
4 timing functions are available.
� FTON: Engagement timing (on delay).
� FTOF: Release timing (off delay).
� FTP: Pulse timing: Timing
� FPULSOR: rectangular signal: Timing
240 TLXDRPL7xx

Advanced instructions
Engagement timing (on delay) function

General This function is used to manage the delays on engagement. This delay is
programmable

Structure Ladder language

Instruction list language
LD I1.2
[FTON(%I3.0,1000,%Q4.0,%MW2,%MD8)]

Structured text language
IF %I1.2 THEN
 FTON(%I3.0,1000,%Q4.0,%MW2,%MD8);
END_IF;

Syntax FTON engagement timing function operators

FTON engagement timing function operands

OPERATE
FTON(%I3.0,1000,%Q4.0,%MW2,%MD8)

%I1.2

Syntax

FTON(EN,PT,Q,ET,PRIV)

Type EN PT Q ET PRIV

Words which can be
indexed

- %MW,%KW,
%Xi.T

- %MW -

Words which can not
be indexed

- %IW,%QW,
%SW,%NW,
Immediate
value,
Numeric
expression

- %IW,%QW -

Double words which
can be indexed

- - - - %MD

Bits %I,%Q,%M,
%S,%BLK,
%*:Xk,%X

%I,%Q,%M
%S,%*:Xk,
%X

- -
TLX DR PL7 xx 241

Advanced instructions
Characteristics FTON engagement timing function characteristics

Operation FTON engagement timing function operation description

Characteristic Address Value

Input "Activation" EN The timing starts on rising edge

Preset value PT Input word which determines the timing length (in
one hundredths of a second). It is used to define a
maximum duration of 5 min and 27 s to the nearest
10 ms. (1)

Output "Timer" Q Output set to 1 on time-out.

Current value ET Output word which increases from 0 to PT on
completion of the timer cycle.

Calculation variable PRIV Double word for internal latching. An application
variable exclusively reserved for this is associated
with this double word.

Note: (1) a modification of this word is taken into account during the timing.

Step Action Description Illustration

1 Rising edge on the EN input The timer is started: its
current value ET
increases from 0 to PT
(hundredths of a
second).

2 The current value has reached PT The output bit Q switches
to 1, then stays at 1 whilst
the input EN is at 1.

3 the EN input is clear The timer is stopped
even if it was still running:
ET takes a 0 value.

ET
PT

Q

EN

(1) (2) (3) (1) (3) (1) (2)
242 TLXDRPL7xx

Advanced instructions
Release timing (off delay) function

General This function is used to manage the release delays. This delay is programmable

Structure Ladder language

Instruction list language
LD I1.2
[FTOF(%I3.0,1000,%Q4.0,%MW2,%MD8)]

Structured text language
IF %I1.2 THEN
 FTOF(%I3.0,1000,%Q4.0,%MW2,%MD8);
END_IF;

Syntax FTOF Release timing function operators

FTOF Release timing function operands: identical to FTON (See Engagement
timing (on delay) function, p. 241).

OPERATE
FTOF(%I3.0,1000,%Q4.0,%MW2,%MD8)

%I1.2

Syntax

FTOF(EN,PT,Q,ET,PRIV)
TLX DR PL7 xx 243

Advanced instructions
Characteristics FTOF Release timing function characteristics

Operation FTOF release timing function operation description

Characteristic Address Value

Input "Activation" EN The timing starts on falling edge

Preset value PT Input word which determines the timing length (in
one hundredths of a second). It is used to define a
maximum duration of 5 min and 27 s with a 10 ms
precision. (1)

Output "Timer" Q Output set to 1 on rising edge of EN and set to 0 on
time-out.

Current value ET Output word which increases from 0 to PT on
completion of the timer cycle.

Calculation variable PRIV Double word for internal latching. An application
variable exclusively reserved for this is associated
with this double word.

Note: (1) a modification of this word is taken into account during the timing.

Step Action Description Illustration

1 Rising edge on
the EN input

The current ET value takes a 0 value
(even if the timer is still running) and the
output bit Q switches to 1 (or remains at
1)

2 On falling edge of
EN input

the timer is started, then the current
value increases from 0 to PT
(hundredths of a second).

3 When the current
value has
reached PT.

Output bit Q falls back to 0.

ET
PT

Q

EN

1 2 1 1 223 3
244 TLXDRPL7xx

Advanced instructions
Pulse timer function

General This function is used to generate a pulse of precise duration. This duration can be
programmed.

Structure Ladder language

Instruction list language
LD I1.2
[FTP(%I3.0,1000,%Q4.0,%MW2,%MD8)]

Structured text language
IF %I1.2 THEN
 FTP(%I3.0,1000,%Q4.0,%MW2,%MD8);
END_IF;

Syntax FTP pulse timer function operators

FTP pulse timer function operands: identical to FTON (See Engagement timing (on
delay) function, p. 241)

OPERATE
FTP(%I3.0,1000,%Q4.0,%MW2,%MD8)

%I1.2

Syntax

FTP(EN,PT,Q,ET,PRIV)
TLX DR PL7 xx 245

Advanced instructions
Characteristics FTP pulse timer function characteristics

Operation FTP pulse timer function operating description

Characteristic Address Value

Input "Activation" EN The timing starts on falling edge

Preset value PT Input word which determines the timing length (in
one hundredths of a second). It is used to define a
maximum duration of 5 min and 27 s with a 10 ms
precision. (1)

Output "Timer" Q Output set to 1 on time-out.

Current value ET Output word which increases from 0 to PT on
completion of the timer cycle.

Calculation variable PRIV Double word for internal latching. An application
variable exclusively reserved for this is associated
with this double word.

Note: (1) a modification of this word is taken into account during the timing.

Step Action Description Illustration

1 Rising edge on
the EN input

The timer is started (if it is not already
on) and the current ET value advances
from 0 to PT (hundredths of a second).
Output bit Q switches to 1

This monostable cannot be reactivated.

2 When the current
value has
reached PT.

Output bit Q falls back to 0.

3 The EN input and
output Q are at 0

PT takes a 0 value.

ET
PT

Q

EN

1 2 1 13 3 2
246 TLXDRPL7xx

Advanced instructions
Rectangular signal generator function

General This function is for generating a periodic rectangular signal, the set slot size and
clear slot size of which can be varied by the program using 2 timers:
� TON: rise timing (for the set slot).
� TOFF: fall back timing (for the clear slot).

Structure Ladder language

Instruction list language
LD TRUE
[FPULSOR(%I3.0,500,200,%Q4.0,%MW2,%MD8)]

Structured text language
IF %I1.2 THEN
 FPULSOR(%I3.0,500,200,%Q4.0,%MW2,%MD8);
END_IF;

Syntax FPULSOR rectangular signal generator function operators

FPULSOR rectangular signal generator function operands

OPERATE

FPULSOR(%I3.0,500,200,%Q4.0,%MW2,%MD8)

Syntax

FPULSOR(EN,TON,TOFF,Q,ET,PRIV)

Type EN TON,TOFF Q ET PRIV

Words which
can be
indexed

- %MW,%KW,%Xi.T - %MW -

Words which
can not be
indexed

- - - %IW,%QW -

Double
words which
can be
indexed

- - - - %MD

Bits %BLK,%*:Xk,%X %I,%Q,%M, %S %S,%*:Xk,%X %I,%Q,%M -
TLX DR PL7 xx 247

Advanced instructions
Characteristics FPULSOR rectangular signal generator function characteristics

Operation FPULSOR rectangular signal generator function operating description:

Characteristic Address Value

Input "Activation" EN The rectangular signal generation starts on rising edge

Preset value (slot set) TON The input word determining the period (in hundredths of a
second) of the set slot period. It is used to set a maximum
duration of 5 min and 27 s to the nearest 10 ms. (1)

Preset value (slot clear) TOFF The input word determining the period (in hundredths of a
second) of the clear slot period. It is used to set a maximum
duration of 5 min and 27 s to the nearest 10 ms. (1)

Rectangular signal
output

Q Output slot clear on the TOFF period, set on the TON
period.

Current value ET Output word which increases from 0 to TON+TOFF on
completion of the timer cycle.

Calculation variable PRIV Double word for internal latching. An application
variable exclusively reserved for this is associated with
this double word.

Note: (1) a modification of these words is taken into account during timing. The
TOFF+TON sum has a maximum duration of 5 min and 27 s.

Step Action Description Illustration

1 Rising edge on
the EN input

The rectangular signal is generated:
(if the signal is not already on) its
current ET value increases from 0 to
TON+TOFF (hundredths of a
second).

2 As long as the
TOFF timing has
not elapsed

Output bit Q remains at 0.

3 TOFF is
complete, TON is
engaged

Output bit Q switches to 1 until the
end of TON and the generator loops
back on (2) and (3)

4 EN switches to 0 TON and TOFF are reset to 0, output
bit Q switches to 0

ET

Q

EN

TOFF TOFF

TON TON

TOFF

TON+TOFF
248 TLXDRPL7xx

Advanced instructions
2.12 Data storage functions

Introduction

Subject of this
sub-section

This sub-section describes PL7 language data storage functions

What's in this
Section?

This Section contains the following Maps:

Topic Page

Data Archiving Functions 250

Initializing the Extended Archiving Zone 251

Archiving Zone Initialization 253

Writing Data to the Extended Archiving Zone 255

Writing Data to the Archiving Zone 257

Reading Data to the Extended Archiving Zone 259

Reading Data to the Archiving Zone 261
TLX DR PL7 xx 249

Advanced instructions
Data Archiving Functions

At a Glance These functions allow the archiving of data by program in a dedicated zone for user
memory cards.

Example of
Application

� automatic storage of application data (status report log, history etc.) in the user
memory card located in the memory slot in the PLC processor,

� saving of production acceptance tests in the same memory card.

Different
Functions

6 functions allow data to be archived and restored.

The following functions are applied to any of the type 1 PCMCIA memory cards
(memory cards located in slot 0 of the processor) and the type 3 cards (memory
cards located in slot 1 of the processor).
� SET_PCM_EXT: to initialize at a value all or part of the memory card's archiving

zone,
� WRITE_PCM_EXT to write data into the archiving zone in the memory card,
� READ_PCM_EXT: to read data in the memory card's archiving zone.

The following functions only apply to the type 1 PCMCIA memory card (memory
cards located in slot 0 of the processor).
� SET_PCMCIA: to initialize at a value all or part of the memory card's archiving

zone,
� WRITE_PCMCIA to write data into the archiving zone in the memory card,
� READ_PCMCIA: to read data in the memory card's archiving zone.

Note: These functions require:
� PL7 V4.2 or above,
� a PLC operating system version (SV), which is equal or above 5.2.

Note: access to data stored in the archiving zone of a memory card is only possible
from the application in the PLC for these 6 base functions. A remote station
CANNOT be accessed directly through a network or communication bus.
250 TLXDRPL7xx

Advanced instructions
Initializing the Extended Archiving Zone

At a Glance The SET_PCM_EXT function allows the initialization at the desired value of all or
part of the memory card's archiving zone.

This function uses 5 parameters:

� SLOT: number of the path where the PCMCIA memory card is inserted:
� 0 for a card located in slot 0 of the CPU (type 1 PCMCIA card),
� 1 for a card located in slot 1 of the CPU (type 3 PCMCIA card).

� DEST: address of the archiving zone, from which the Initialization will be performed,
� NUM: number of words to be initialized,
� VAL: Initialization value,
� CR: code giving the result from executing the Initialization command.

Example Illustration of the user memory card:

In this example:
� SLOT = %MD1, where %MD1 contains the value of 1,
� DEST = %MD2, where %MD2 contains the value of 1500,
� NUM = %MW5, where %MW5 contains the value 30,
� VAL = %MD10, where %MD10 contains the value 100.

Structure Ladder language:

Instruction list language
LDR %I1.3
[SET_PCM_EXT(%MW1,%MD2,%MW5,%MW10,%MW0)]

Structured text language:
IF RE %I1.3 THEN
 SET_PCM_EXT(%MW1,%MD2,%MW5,%MW10,%MW0);
END_IF;

1500

1529

100
100
100

100

SET_PCM_EXT

P SET_PCM_EXT(%MW1,%MD2,%MW5,%MW10,%MW0)

%I1.3
TLX DR PL7 xx 251

Advanced instructions
Syntax Function syntax:

Parameters:

Coding of the status parameter, returned after the initialization command:

SET_PCM_EXT (SLOT,DEST,NUM,VAL,CR)

Type SLOT DEST NUM VAL CR

Indexable words %MW,
Val.imm.

- %MW,
Val.imm.

%MW,
Val.imm.

%MW

Non-indexable words - - - - %QW,%SW,
%NW

Indexable double
words

- %MW,Val.imm. - - -

Non-indexable
double words

- %QD,%SD - - -

Value
(hexadecimal)

Meaning

0000 initialization performed correctly

0201 no file zone in the memory card

0202 memory card fault

0204 memory card write-protected

0241 DEST < 0

0242 DEST + NUM - 1 -> highest address in the card

0401 NUM = 0 or negative

0402 incorrect slot number (different from 0 or 1)

0501 Functionality not supported
252 TLXDRPL7xx

Advanced instructions
Archiving Zone Initialization

At a Glance The SET_PCMCIA function allows the initialization at the desired value all or part of
the user memory card (type 1 PCMCIA) archiving zone.

This function uses 4 parameters:

� DEST: address of the archiving zone, from which the Initialization will be
performed,

� NUM: number of words to be initialized,
� VAL: Initialization value,
� CR: code giving the result from executing the Initialization command.

Example Illustration of the user memory card:

In this example:
� DEST = %MD0, where %MD0 contains the value 1500,
� NUM = %MW5, where %MW5 contains the value 30,
� VAL = %MD10, where %MD10 contains the value 100.

Structure Ladder language:

Instruction list language
LDR %I1.3
[SET_PCMCIA(%MD0,%MW5,%MW10,%MW2)]

Structured text language:
IF RE %I1.3 THEN
 SET_PCMCIA(%MD0,%MW5,%MW10,%MW2);
END_IF;

1500

1529

100
100
100

100

SET_PCMCIA

P SET_PCMCIA(%MD0,%MW5,%MW10,%MW2)

%I1.3
TLX DR PL7 xx 253

Advanced instructions
Syntax Function syntax:

Parameters:

Coding of the CR parameter, returned after the initialization command:

SET_PCMCIA (DEST,NUM,VAL,CR)

Type DEST NUM VAL CR

Indexable words - %MW,Val.imm. %MW,Val.imm. %MW

Non-indexable words - - - %QW,%SW,
%NW

Indexable double
words

%MW,Val.imm. - - -

Non-indexable
double words

%QD,%SD - - -

Value
(hexadecimal)

Meaning

0000 initialization performed correctly

0201 no file zone in the memory card

0202 memory card fault

0204 memory card write-protected

0241 DEST negative

0242 EST + NUM - 1 -> highest address in the memory card

0401 NUM = 0 or negative
254 TLXDRPL7xx

Advanced instructions
Writing Data to the Extended Archiving Zone

At a Glance The WRITE_PCM_EXT function allows the transfer of PLC RAM memory data
(%MW words) into the user memory card archiving zone.
This function uses 5 parameters:
� SLOT: number of the path where the PCMCIA memory card is inserted:

� 0 for a card located in slot 0 of the CPU (type 1 PCMCIA card),
� 1 for a card located in slot 1 of the CPU (type 3 PCMCIA card).

� DEST: address of the archiving zone, from which the data will be stored,
� NUM: number of words to be stored,
� EMIS: word containing the starting address of the zone to be transferred to the

memory card,
� CR: code giving the result of the write command.

Example Illustration:

In this example:
� SLOT = %MD1, where %MD1 contains the value 1,
� DEST = %MD2, where %MD2 contains the value 1500,
� NUM = %MW5, where %MW5 contains the value 30,
� EMIS = %MD20, where %MD20 contains the value 40.

1500

1529

WRITE_PCM_EXT

PLC RAM memory User Memory Card

%MW40

%MW69
TLX DR PL7 xx 255

Advanced instructions
Structure Ladder language:

Instruction list language:
LDR %I1.3
[WRITE_PCM_EXT(%MW1,%MD2,%MW5,%MW20,%MW0)]

Structured text language:
IF RE %I1.3 THEN
 WRITE_PCM_EXT(%MW1,%MD2,%MW5,%MW20,%MW0);
END_IF;

Syntax Function syntax:

Parameters:

Coding of the status parameter, returned after the write command:

P WRITE_PCM_EXT(%MW1,%MD2,%MW5,%MW20,%MW0)

%I1.3

WRITE_PCM_EXT (SLOT,DEST,NUM,VAL,CR)

Type SLOT DEST NUM EMIS CR

Indexable words %MW,
Val.imm.

- %MW,
Val.imm.

%MW,
Val.imm.

%MW

Non-indexable words - - - - %QW,%SW, %NW

Indexable double words - %MW,Val.imm. - - -

Non-indexable double words - %QD,%SD - - -

Value
(hexadecimal)

Meaning

0000 Write performed correctly

0102 EMIS + NUM - 1 -> maximum number of %MW declared in the PLC

0104 no valid application or no %MW in the PLC

0201 no file zone in the memory card

0202 memory card fault

0204 memory card write-protected

0241 DEST < 0

0242 DEST + NUM - 1 -> highest address in the memory card

0401 NUM = 0

0402 incorrect slot number (different from 0 or 1)

0501 Functionality not supported
256 TLXDRPL7xx

Advanced instructions
Writing Data to the Archiving Zone

At a Glance The WRITE_PCMCIA function allows the transfer of PLC RAM memory data (%MW
words) to the user memory card archiving zone (type 1 PCMCIA).
This function uses 4 parameters:
� DEST: address of the archiving zone, from which the data will be stored,
� NUM: number of words to be stored,
� EMIS: word containing the starting address of the zone to be transferred to the

memory card,
� CR: code giving the result of the write command.

Example Illustration:

In this example:
� DEST = %MD0, where %MD0 contains the value 1500,
� NUM = %MW5, where %MW5 contains the value 30,
� EMIS = %MD20, where %MD20 contains the value 40.

1500

1529

WRITE_PCMCIA

PLC RAM memory User Memory Card

%MW40

%MW69
TLX DR PL7 xx 257

Advanced instructions
Structure Ladder language:

Instruction list language:
LDR %I1.3
[WRITE_PCMCIA(%MD0,%MW5,%MW20,%MW2)]

Structured text language:
IF RE %I1.3 THEN
 WRITE_PCMCIA(%MD0,%MW5,%MW20,%MW2);
END_IF;

Syntax Function syntax:

Parameters:

Coding of the CR parameter, returned after the write command:

P WRITE_PCMCIA(%MD0,%MW5,%MW20,%MW2)

%I1.3

WRITE_PCMCIA (DEST,NUM,EMIS,CR)

Type DEST NUM EMIS CR

Indexable words - %MW,Val.imm. %MW,Val.imm. %MW

Non-indexable words - - - %QW,%SW,%NW

Indexable double words %MW,Val.imm. - - -

Non-indexable double words %QD,%SD - - -

Value
(hexadecimal)

Meaning

0000 Write performed correctly

0102 EMIS + NUM - 1 -> maximum number of %MW declared in the PLC

0104 no valid application or no %MW in the PLC

0201 no file zone in the memory card

0202 memory card fault

0204 memory card write-protected

0241 DEST < 0

0242 DEST + NUM - 1 -> highest address in the memory card

0401 NUM = 0
258 TLXDRPL7xx

Advanced instructions
Reading Data to the Extended Archiving Zone

At a Glance The READ_PCM_EXT function allows the transfer of data from the archiving zone
of the user memory card to the PLC RAM memory (%MW words).
This function uses 5 parameters:
� SLOT: number of the path where the PCMCIA memory card is inserted:

� 0 for a card located in slot 0 of the CPU (type 1 PCMCIA card),
� 1 for a card located in slot 1 of the CPU (type 3 PCMCIA card).

� SRC: address of the archiving zone, in which the data to be read is stored,
� NUM: number of words to be read,
� RCPT: word containing the starting address of the zone transferred by the

memory card,
� CR: code giving the result from executing the read command.

Example Illustration:

In this example:
� SLOT = %MD1, where %MD1 contains the value 1,
� SRC = %MD2, where %MD2 contains the value 1500,
� NUM = %MW5, where %MW5 contains the value 30,
� RCPT = %MD20, where %MD20 contains the value 40.

1500

1529

READ_PCM_EXT

PLC RAM memory User Memory Card

%MW40

%MW69
TLX DR PL7 xx 259

Advanced instructions
Structure Ladder language:

Instruction list language:
LDR %I1.4
[READ_PCM_EXT(%MW1,%MD2,%MW5,%MW20,%MW0)]

Structured text language:
IF RE %I1.4 THEN
 READ_PCM_EXT(%MW1,%MD2,%MW5,%MW20,%MW0);
END_IF;

Syntax Function syntax:

Parameters:

Coding of the CR parameter, returned after the write command:

P READ_PCM_EXT(%MW1,%MD2,%MW5,%MW20,%MW0)

%I1.4

READ_PCM_EXT (SLOT,SRC,NUM,RCPT,CR)

Type SLOT SRC NUM RCPT CR

Indexable words %MW,
Val.imm.

- %MW,
Val.imm.

%MW,
Val.imm.

%MW

Non-indexable words - - - - %QW,%SW, %NW

Indexable double words - %MW,Val.imm. - - -

Non-indexable double words - %QD,%SD - - -

Value
(hexadecimal)

Meaning

0000 read performed correctly

0102 SRC + NUM -1 -> maximum number of %MW declared in the PLC

0104 no valid application or no %MW in the PLC

0201 no file zone in the memory card

0202 memory card fault

0204 memory card write-protected

0241 SRC < 0

0242 SRC + NUM -1 -> highest address in the memory card

0401 NUM = 0

0402 incorrect slot number (different from 0 or 1)

0501 Functionality not supported
260 TLXDRPL7xx

Advanced instructions
Reading Data to the Archiving Zone

At a Glance The READ_PCMCIA function allows the transfer of user memory card (type 1
PCMCIA) archiving zone data to the PLC RAM memory (%MW words).
This function uses 4 parameters:
� SRC: address of the archiving zone, in which the data to be read is stored,
� NUM: number of words to be read,
� RCPT: word containing the starting address of the zone transferred by the

memory card,
� CR: code giving the result from executing the read command.

Example Illustration:

In this example:
� SRC = %MD0, where %MD0 contains the value of 1500,
� NUM = %MW5, where %MW5 contains the value 30,
� RCPT = %MD20, where %MD20 contains the value 40.

1500

1529

READ_PCMCIA

PLC RAM memory User Memory Card

%MW40

%MW69
TLX DR PL7 xx 261

Advanced instructions
Structure Ladder language:

Instruction list language:
LDR %I1.4
[READ_PCMCIA(%MD0,%MW5,%MW20,%MW2)]

Structured text language:
IF RE %I1.4 THEN
 READ_PCMCIA(%MD0,%MW5,%MW20,%MW2);
END_IF;

Syntax Function syntax:

Parameters:

Coding of the CR parameter, returned after the write command:

P READ_PCMCIA(%MD0,%MW5,%MW20,%MW2)

%I1.4

READ_PCMCIA (SRC,NUM,RCPT,CR)

Type SRC NUM RCPT CR

Indexable words - %MW,Val.imm. %MW,Val.imm. %MW

Non-indexable words - - - %QW,%SW,%NW

Indexable double words %MW,Val.imm. - - -

Non-indexable double words %QD,%SD - - -

Value
(hexadecimal)

Meaning

0000 read performed correctly

0102 RCPT + NUM - 1 -> maximum number of %MW declared in the PLC

0104 no valid application or no %MW in the PLC

0201 no file zone in the memory card

0202 memory card fault

0204 memory card write-protected

0241 SRC < 0

0242 RCPT + NUM - 1 -> highest address in the memory card

0401 NUM = 0
262 TLXDRPL7xx

Advanced instructions
2.13 Grafcet functions

Step activity time reset to zero function

General This function resets all sequential "Chart" processing or macro step activity times.
This function is enabled on the Premium/Atrium PLC (software version 3.0V or
above).

It has the following input and output parameters:

Structure Ladder language

Instruction list language
LD True
[%MW0:=RESET_XIT(%M1,-1)]

Structured text language
 %MW0:=RESET_XIT(%M1,-1);

Type Parameters Role

Input In Function enabling condition

Num Grafcet module number to be reset.
This is equal to:
� -1 if the module is "Chart" sequential processing,
� or the macro step number concerned.

Output Result Report on the execution of the function.

%MW0:=RESET_XIT(%M1,-1)
TLX DR PL7 xx 263

Advanced instructions
Syntax Operator:

Operands:

Result Encoding of the returned result parameter after execution of the instruction:

Syntax

Result:=RESET_XIT(In,Num)

Type Result Confirmation condition
(In)

Grafcet module number
(Num)

Bits - %M -

Words %MW - %MW, %KW,
Immediate value

Value (in
hexadecimal)

Meaning

0000 Correct operation

FFFF Input parameter outside limits: the macro step does not exist in the
application.

FFFA The PLC-type is a MICRO
264 TLXDRPL7xx

TLX DR PL7 xx
3

System objects
Introduction

Contents of this
section

This section describes all the PL7 language system bits and system words

What's in this
Chapter?

This Chapter contains the following Sections:

Section Topic Page

3.1 System Bits 267

3.2 System words 278
265

System objects
266 TLXDRPL7xx

System objects
3.1 System Bits

Introduction

Subject of this
sub-section

This chapter describes the PL7 language system bits.

What's in this
Section?

This Section contains the following Maps:

Topic Page

System bit introduction 268

Description of system bits %S0 to %S7 269

Description of system bits %S8 to %S16 270

Description of system bits %S17 to %S20 271

Description of system bits %S21 to %S26 272

Description of system bits %S30 to %S59 273

Description of system bits %S60 to %S69 274

Description of System Bits %S70 to %S92 275

Description of system bits %S94 to %S99 276

Description of system bits %S100 to %S119 277
TLX DR PL7 xx 267

System objects
System bit introduction

General The TSX 37 and TSX 57 PLCs use %Si system bits which indicate the state of the
PLC, or they can be used to operate its functioning.
This bits can be tested in the user program to detect any function event before
starting a set processing procedure. Some bits must be reset to their initial or usual
state by program. However, the system bits, which are reset to their initial or usual
state by the system, must not be done so by program or by the terminal.
268 TLXDRPL7xx

System objects
Description of system bits %S0 to %S7

In-depth
description

Description of system bits %S0 to %S7

Bit Function Description Initial
state

TSX37 TSX57

%S0 Cold start Normally on 0, this bit is set on 1 by:
� loss of data on power restart (battery fault),
� the user program,
� the terminal,
� cartridge uploading,
� pressing on the RESET button.
This bit goes to 1 during the first complete cycle. It is
reset to 0 before the following cycle.
(Operation)

0 YES YES

%S1 Warm restart Normally on 0, this bit is set on 1 by:
� power restart with data save,
� the user program,
� the terminal.
It is reset to 0 by the system at the end of the first
complete cycle and before output is updated.
(Operation)

0 YES YES

%S4 Time base 10ms An internal timer regulates the change in status of this bit.
It is asynchronous in relation to the PLC cycle.
Graph:

- YES YES

%S5 Time base 100 ms Idem %S4 - YES YES

%S6 Time base 1 s Idem %S4 - YES YES

%S7 Time base 1 mn Idem %S4 - YES YES

5ms 5ms
TLX DR PL7 xx 269

System objects
Description of system bits %S8 to %S16

In-depth
description

Description of system bits %S8 to %S16

Bit Function Description Initial
state

TSX37 TSX57

%S8 Wiring system
test

Normally on 1, this bit is used to test the wiring system
while te TSX 37 PLC is in "non-configured" state
� state 1: outputs are forced to 0,
� state 0: outputs can be modified by an adjustment

terminal.

1 YES NO

%S9 Outputs set
into fallback
position on all
buses

Normally on 0, this bit is set on 1 by the program or the
terminal:
� state 1: forces PLC (bus X, FIPIO, AS-I etc.) outputs

into fallback position,
� state 0: outputs are usually updated,

0 YES YES

%S10 I/O fault Normally on 1, it is cleared when a module on rack or a
remote module (FIPIO) I/O fault (eg. non-conforming
configuration, exchange fault, hardware fault) is detected.
The %S10 bit is reset on 1 as soon as the fault
disappears.

1 YES YES

%S11 Watchdog
overrun

Normally on 0, it is set on 1 by the system as soon as the
task execution time becomes greater than the maximum
execution time (ie the watchdog) declared in the
configuration. Watchdog overrun changes the PLC to
STOP and the application is stopped through error
(evident by flashing ERR LED).

0 YES YES

%S13 First cycle after
starting RUN

Normally on 0, it is set on 1 by the system during the first
cycle after the PLC is set on RUN.

- YES YES

%S15 Character
string fault

Normally on 0, it is set on 1 when the destination zone for
a character string is not big enough to receive the string.
This bit must be reset to 0 by the user. Each task
generates its own %S15 bit.

0 YES YES

%S16 I/O task fault Normally on 1, it is set on 0 by the system when a fault
occurs on an I/O module on rack or a remote module on
FIPIO configured in the task. The user must reset this bit
to 1. Each task generates its own %S16 bit.

1 YES YES
270 TLXDRPL7xx

System objects
Description of system bits %S17 to %S20

In-depth
description

Description of system bits %S17 to %S20

Bit Function Description Initial
state

TSX37 TSX57

%S17 Bit outputted
on shifting or a
arithmetic
report.

Normally on 0, this bit is set on 1 by the system:
� during a shift operation containing the state of the last bit,
� overshooting in unsigned arithmetic (dates).
This bit must be reset on 0 by the user.

0 YES YES

%S18 Overrun or
arithmetic error

Normally on 0, it is set on 1 should a capacity overload occur
during an operation on 16 bits, either through:
� a result above +32767 or less than –32768 in single

length,
� a result above +2,147,483,647 or less than -

2.147.483.648 in double length,
� a result above +3.402824E+38 or less than –

3.402824E+38, in floating point (software version > 1.0),
� capacity overload in DCB,
� dividing by 0,
� the root of a negative number,
� forcing a non-existent step onto a drum.
� stacking up an already full register, emptying an already

empty register.
It must be tested by the user program after each operation
where there could be an overload risk, then reset to 0 by the
user if there is indeed an overload. Each task generates its
own %S18 bit.

0 YES YES

%S19 Task period
overrun
(periodical
scanning)

Normally on 0, this bit is set on 1 by the system in the event
of a time period overrun (ie. task execution time is greater
than the period defined by the user in the configuration or
programmed into the %SW word associated with the task).
The user must reset this bit to 0.
Each task manages its own %S19 bit.

0 YES YES

%S20 Index overflow Normally on 0, it is set on 1 when the address of the indexed
object becomes less than 0 or exceeds the number of objects
declared in the configuration.
It must be tested by the user program after each operation
where there could be an overload risk, then reset to 0 if there
is indeed an overload. Each task generates its own %S20 bit.

0 YES YES
TLX DR PL7 xx 271

System objects
Description of system bits %S21 to %S26

In-depth
description

%21 to %S26 system bits associated with Grafcet

Bit Function Description Initial
state

TSX37 TSX57

%S21 Initialization This bit is managed by the user to initialize Grafcet
(preferably set on 1 for preliminary processing). It is
repositioned to 0 by the system after Grafcet has been
initialized (ie. after preliminary processing during
evaluation of the new Grafcet state). Initializing Grafcet
involves disabling all active steps and enabling the initial
steps. On a cold start, this bit is set on 1 by the system
during preliminary processing.

0 YES YES

%S22 Setting Gracfet
to 0

Normally on 0, this bit can be set on 1 by the program only
during preliminary processing.
On 1, it disables all Grafcet steps. It is reset to 0 by the
system after all has been taken into account at the end of
the preliminary processing.

0 YES YES

%S23 Freezing
Grafcet

Normally on 0, setting %S23 onto 1 preserves Grafcet in
the state is it at the time. Whatever the value of
downstream transition conditions, Grafet does not
change.
The freeze is maintained as long as the %S23 bit is on 1.
The bit is managed by the user program, and is positioned
on 1 or 0 only during preliminary processing.

0 YES YES

%S24 Setting macro-
steps to 0

Normally on 0, setting %S24 to 1 will zero the macro-steps
chosen in a 4 word table %SW22 to %SW25 system. It is
reset to 0 by the system after all has been taken into
account at the end of the preliminary processing.

0 NO YES

%S26 Table overrun
(steps/
transitions)

Normally on 0, this bit is set on 1 by the table system when
the enabling possibilities (steps or transitions) have been
overrun or when an invalid chart has been executed (eg
sending a destination to a step which does not belong to
a chart). An overrun causes the PLC to go to STOP.
The user must reset this bit to 0 on initializing the terminal.

0 YES YES
272 TLXDRPL7xx

System objects
Description of system bits %S30 to %S59

In-depth
description

Description of system bits %S30 to %S59

Bit Function Description Initial
state

TSX37 TSX57

%S30 Activating/
deactivating
the master task

Normally on 1, the user setting the bit to 0 disables the master
task.

1 YES YES

%S31 Fast task
activation

Normally on 1, the user setting the bit to 0 disables the fast
task.

1 YES YES

%S38 Enabling/
inhibiting
events

Normally on 1, the user setting the bit to 0 causes events to
be inhibited.

1 YES YES

%S39 Saturation of
event
processing

This bit is set on 1 by the system to indicate that one or
several events cannot be processed following saturation of
the queues.
The user must reset this bit to 0.

0 YES YES

%S40
to
%S47

I/O tripped
static (racks)
fault

Bits %S40 to %S47 are assigned to rack 0 to 7 respectively.
Normally on 1, each bit is set on 0 following a corresponding
rack input/output fault.
The bit is reset on 1 when the fault disappears.

1 NO YES

%S49 Reactivating
outputs

Normally on 0, this bit can be set on 1 by the user for a
request to reactivate all IOs, after the appearance of a static
outputs fault triggered by an overcurrent or a short-circuit.

0 YES NO

%S50 Updating time
and date via
words %SW50
to 53

Normally on 0, this bit can be set on 1 or 0 by the program or
the terminal.
� on 0: accesses date and time by reading words via system

words %SW50 to 53,
� on 1: updates date and time by writing system words

%SW50 to 53.

0 YES YES

%S51 Time loss in
real time clock

This system-managed bit on 1 indicates that the real-time
clock is absent or that its system words are meaningless. In
this case the clock must be reset to the correct time.

0 YES YES

%S59 Updating time
and date via
word %SW59

Normally on 0, this bit can be set on 1 or 0 by the program
date or the terminal.
� on 0: the system does not manage the system word

%SW59,
� on 1: the system manages edges on the words %SW59 to

adjust the date and current time (by increment).

0 YES YES
TLX DR PL7 xx 273

System objects
Description of system bits %S60 to %S69

In-depth
description

Description of system bits %S60 to %S69

Bit Function Description Initial
state

TSX37 TSX57

%S60 Voluntary
switching
command

system bit which controls voluntary switching on
implementation of a back-up architecture (see usage in
the "Warm Standby Premium"). This bit can be reset on 0
either by the user or by the application.

0 NO YES

%S66 Managing LED
battery

Normally on 0, this bit can be set on 1 or 0 by the program
or the terminal. It is used to activate/deactivate the LED
battery , in the event of the absence of or an error in the
backup stack.
� state 0: the LED battery is lit when the backup stack is

absent or contains a fault,
� state 1: the LED battery is always off.
On a cold start, %S66 is reset to 0 by the system.

0 YES NO

%S67 State of
cartridge stack

This bit is used to control the functioning of the RAM
cartridge memory backup stack:
� state 0: stack present and operational
� state 1: pile absent or non-operational

- YES YES

%S68 State of
processor
stack

This bit is used to control the functioning of the backup
stack for data and programming in RAM memory.
� state 0: stack present and operational
� state 1: pile absent or non-operational

- YES YES

%S69 Display of user
data on PLC
display panels

Normally on 0, this bit can be set on 1 or 0 by the program
or the terminal.
� state 0: stack present and operational
� state 1: pile absent or non-operational

0 YES NO
274 TLXDRPL7xx

System objects
Description of System Bits %S70 to %S92

Detailed
Description

Description of System Bits %S70 to %S92

Bit Function Description Initial
state

TSX37 TSX57

%S70 Data update on
AS-i bus or
TSX Nano
connection

This bit is set to 1 by the system at the end of each TSX
Nano connection cycle or AS-i bus scanning cycle. When
powered up, it indicates that all the data has been updated
at least once and that they are therefore significant. This
bit is reset to 0 by the user.

0 YES YES

%S73 Change to
protected
mode on AS-i
bus

Normally at 0, this bit is set to 1 by the user to change to
protected mode on the AS-i bus. Bit %S74 must first be at
1. This bit will only be used in cabling tests, with no
application in the PLC.

0 YES NO

%S74 Save current
configuration
on AS-i bus

Normally at 0, this bit is set to 1 by the user to save the
current configuration on the AS-i bus. This bit will only be
used in cabling tests, with no application in the PLC.

0 YES NO

%S80 Message reset
counter

Normally at 0, this bit can be set to 1 by the user to reset
to 0 the message counters %SW80 to %SW86.

0 YES YES

%S90 Update
common words

Updated every second. This bit can be set to 0 by program
or by terminal.

0 YES NO

%S92 Change to
communication
function
measurement
mode

Normally at 0, this bit can be set to 1 by the user to put the
communication functions in performance measurement
mode. The communication functions timeout parameter
then displays the return exchange time in tens of ms (if
this time <10s, otherwise not significant).

0 YES YES
TLX DR PL7 xx 275

System objects
Description of system bits %S94 to %S99

In-depth
description

Description of system bits %S94 to %S99

Bit Function Description Initial
state

TSX37 TSX57

%S94 Saving DFB
adjustments

Normally on 0, this bit can be set on 1 by the user to save
the adjustment values of user function blocks.

0 NO YES

%S95 Restoring DFB
adjustments

Normally on 0, this bit can be set on 1 by the user to
restore the adjustment values of user function blocks.

0 NO YES

%S96 Validity of
application
program saves

� on 0: application program saves are invalid,
� on 1: application program saves are valid,
This bit can be read at any time (either by the program or
while adjusting), in particular after a cold start or a warm
restart.
It is significant with regard to a PL7-effected Backup
application within the internal Flash EPROM.

- YES NO

%S97 Validity of
%MW saves

� on 0: %MW saves are invalid,
� on 1: %MW saves are valid,
This bit can be read at any time (either by the program or
while adjusting), in particular after a cold start or a warm
restart.

- YES NO

%S98 Deport of TSX
SAZ 10 module
button

Normally on 0, this bit is managed by the user:
� on 0: TSX SAZ 10 module button is enabled,
� on 1: TSX SAZ 10 button is replaced by a Discrete

input (Word %SW98 (See Description of system words
%SW98 to %SW109, p. 293)).

0 YES NO

%S99 Deport of
display block
button

Normally on 0, this bit is managed by the user:
� on 0: centralized display block button is enabled,
� on 1: centralized display block button is replaced by a

Discrete input (Word %SW99 (See Description of
system words %SW98 to %SW109, p. 293)).

0 YES NO
276 TLXDRPL7xx

System objects
Description of system bits %S100 to %S119

In-depth
description

Description of system bits %S100 to %S119

Bit Function Description Initial
state

TSX37 TSX57

%S100 Protocol on
terminal port

This bit is set on 0 or 1 by the system according to the
state of the INL/DPT shunt on the console.
� if the shunt is absent (%S100=0), then the master

UNITELWAY protocol is used,
� if the shunt is present (%S100=1) then the protocol

used is the one indicated by the application
configuration.

- YES YES

%S101 Configured
diagnostics
buffer

This bit is set on 1 by the system when the diagnostics
option has been configured – a diagnostics buffer aimed
at storing errors found by DFB diagnostics is then
reserved.

- YES YES

%S102 Full
diagnostics
buffer

This bit is set on 1 by the system when the buffer that
receives DFB errors is full.

- YES YES

%S118 General FIPIO
I/O fault

Normally on 1, this bit is set to 0 by the system when a
fault appears on a device connected to the FIPIO bus.
This bit is reset to 1 by the system when the fault
disappears.

1 YES YES

%S119 General I/O on
rack fault

Normally on 1, this bit is set to 0 by the system when a
fault appears on an I/O module placed in one of the racks.
This bit is reset to 1 by the system when the fault
disappears.

1 YES YES
TLX DR PL7 xx 277

System objects
3.2 System words

Introduction

Subject of this
sub-section

This sub-section describes the PL7 language system words.

What's in this
Section?

This Section contains the following Maps:

Topic Page

Description of system words %SW0 to %SW11 279

Description of system words %SW12 to %SW18 280

Description of system words %SW20 to %SW25 281

Description of system words %SW30 to %SW35 282

Description of system words %SW48 to %SW59 283

Description of system words %SW60 to %SW62 285

Description of system words %SW63 to %SW65 288

Description of system words %SW66 to %SW69 289

Description of system words %SW80 to %SW89 291

Description of system words %SW96 to %SW97 292

Description of system words %SW98 to %SW109 293

Description of system word %SW116 294

Description of system words %SW124 to %SW127 295

Description of system words %SW128 to %SW143 296

Description of system words %SW144 to %SW146 297

Description of system words %SW147 to %SW152 299

Description of system word %SW153 300

Description of system word %SW154 302

Description of system words %SW155 to %SW162 303
278 TLXDRPL7xx

System objects
Description of system words %SW0 to %SW11

In-depth
description

Description of system words %SW0 to %SW11

Words Function Description Management

%SW0 Master task
scanning period

The user program or the terminal modify the duration of the master task
defined in configuration. The duration is expressed in ms (1.255 ms)
%SW0=0 in cyclic operation.
On a cold restart: it takes on the value defined by the configuration.

User

%SW1 Fast task
scanning period

The user program or the terminal modify the duration of the fast task as
defined in configuration.
The duration is expressed in ms (1.255 ms)
On a cold restart: it takes on the value defined by the configuration.

User

%SW8 Acquisition of task
input monitoring

Normally on 0, this bit can be set on 1 or 0 by the program or the terminal.
It inhibits the input acquisition phase of each task.
� %SW8:X0 =1 assigned to MAST task: outputs linked to this task are

no longer guided.
� %SW8:X1 =1 assigned to FAST task: outputs linked to this task are

no longer guided.

User

%SW9 Monitoring of task
output update

Normally on 0, this bit can be set on 1 or 0 by the program or the terminal.
Inhibits the output updating phase of each task.
� %SW9:X0 =1 assigned to MAST task: outputs linked to this task are

no longer guided.
� %SW9:X1 =1 assigned to FAST task: outputs linked to this task are

no longer guided.

User

%SW10 First cycle after
cold start

If the bit for the current task is on 0, this indicates that the first cycle is
being carried out after a cold start.
� %SW10:X0: is assigned to the MAST Master task
� %SW10:X1: is assigned to the FAST fast task

System

%SW11 Watchdog
duration

Reads the duration of the watchdog as set in configuration. It is
expressed in ms (10…500 ms).

System

CAUTION

Matters relating to system words %SW8 and %SW9:

Caution: outputs for modules connected to the X bus switch automatically to fallback mode.
Outputs for devices connected to the FIPIO bus remain as they were before the bit was set to 1.

Failure to observe this precaution can result in injury or equipment damage.
TLX DR PL7 xx 279

System objects
Description of system words %SW12 to %SW18

In-depth
description

Description of system words %SW12 to %SW18

Words Function Description Management

%SW12 Terminal port UNI-
TELWAY address

UNI_TELWAY address of terminal port (in slave mode) as
defined in configuration and loaded into this word on cold
start.

System

%SW13 Main address of the
station

Indicates for the main network:
� the station number (least significant byte) from 0 to 127,
� the network number (most significant byte) from 0 to 63
(micro-switch value on PCMCIA card).

System

%SW17 Fault status on
floating operation

On detection of a fault in a floating arithmetic operation, bit
%SW18 is set to 1 and %SW17 fault status is updated
according to the following coding :
� %SW17:X0 = Invalid operation / result is not a number,
� %SW17:X1 = Non-standardized operand / result is

acceptable,
� %SW17:X2 = Divided by 0 / result is infinity,
� %SW17:X3 = Overflow / result is infinity,
� %SW17:X4 = Underflow / result is 0,
� %SW17:X5 = Result is not precise.
This word is reset to 0 by the system on cold start, and also
by the program for re-usage purposes.

System
User

%SD18 Absolute time
counter

This double word is used to calculate duration.
It is incremented every 1/10th of a second by the system
(even when PLC is on STOP). It can be read and written by
the user program or by the terminal.

System
User
280 TLXDRPL7xx

System objects
Description of system words %SW20 to %SW25

In-depth
description

Description of system words %SW20 to %SW25 (associated with Grafcet)

Words Function Description Management

%SW20 Grafcet activity level This word contains the number of active steps to be enabled
or disabled for the current cycle. It is updated by the system
on each change in the chart.

System

%SW21 Validity table for
Gracet transitions

This word contains the number of valid transitions to be
enabled and disabled for the current cycle. It is updated by the
system on each change in the chart.

System

%SW22 to
%SW25

Macro-step clearing
table

Each bit in this table corresponds with a macro-step where
%SW22:X0 is for XM0 … %SW25:X16 is for XM63
Macro-steps, for which the associated bit in this table is on 0,
will be zeroed when bit %S24 is set on 1.

User
TLX DR PL7 xx 281

System objects
Description of system words %SW30 to %SW35

In-depth
description

Description of system words %SW30 to %SW35

Words Function Description Management

%SW30 Master task
execution time

Indicates the execution time of the last master task cycle (in
ms).

System

%SW31 Maximum master
task execution time

Indicates the longest master task execution time from the last
cold start (in ms).

System

%SW32 Minimum master
task execution time

Indicates the shortest master task execution time from the last
cold start (in ms).

System

%SW33 Fast task execution
time

Indicates the execution time of the last fast task cycle (in ms). System

%SW34 Maximum fast task
execution time

Indicates the longest fast task execution time from the last
cold start (in ms).

System

%SW35 Minimum fast task
execution time

Indicates the shortest fast task execution time from the last
cold start (in ms).

System

Note: More detail on execution time: this is the time elapsed between the beginning (input acquisition)
and the end (output update) of a scanning period. This time includes the processing of event tasks and
fast tasks, as well as processing console requests.
282 TLXDRPL7xx

System objects
Description of system words %SW48 to %SW59

In-depth
description

Description of system words %SW48 to %SW59

Words Function Description Management

%SW48 Number of
Events

Indicates the number of events processed since the last cold start (in ms).
This word can be written by a program or a terminal.

System
User

%SW49
%SW50
%SW51
%SW52
%SW53

Dater
function (1)

System words containing date and current time (in BCD):
� %SW49: day of the week (1 for Monday through to 7 for Sunday),
� %SW50: Seconds (SS00),
� %SW51: Hours and Minutes (HHMM),
� %SW52: Month and Day (MMDD),
� %SW53: Year (YYYY).
These words are manages by the system when bit %S50 is on 0.
These words can be written by the user program of by the terminal when the
bit %S50 is set on 1 (See Description of system bits %S30 to %S59, p. 273).

System
User

%SW54
%SW55
%SW56
%SW57
%SW58

Dater
function (1)

System words containing date and time of the last power fault or PLC stop
(in BCD):
� %SW54: Seconds (00SS),
� %SW55: Hours and Minutes (HHMM),
� %SW56: Month and Day (MMDD),
� %SW57: Year (YYYY),
� %SW58: most significant byte containing the day of the week (1 for

Monday through to 7 for Sunday).

System

%SW58 Last stop
code

The least significant byte contains the code for the last stop:
� 1 = switch by the terminal from RUN to STOP,
� 2 = stop caused by software fault (PLC task overrun),
� 4 = power outage,
� 5 = stop caused by hardware fault,
� 6 = stop on HALT instruction.

System
TLX DR PL7 xx 283

System objects
%SW59 Adjusting the
current date

Contains two 8 bit series to adjust the current date.
The action is always performed on the rising edge of the bit.
This word is enabled by bit %S59.
Illustration:

User

Words Function Description Management

0
1
2
3
4
5
6
7

8
9
10
11
12
13
14
15

Day of the week
Secondes
Minutes
Hours
Days
Months
Years
Centuries

+ -bits

Note: (1) Only on TSX 37-21/22 and TSX 57 PLC
284 TLXDRPL7xx

System objects
Description of system words %SW60 to %SW62

In-depth
description

Description of system words %SW60 to %SW61 specific to Warm Standby Premium
diagnostics.

Words Function Description Management

%SW60 Backup PLC
diagnostics

Diagnostics specific to the backup for a local PLC (Warm
Standby Premium).
Significance of the different bits for the word %SW60:
� %SW60:X0=1 indicates that the PLC is "Normal",
� %SW60:X1=1 indicates that the PLC is in "Backup",
� %SW60:X3=0 indicates an I/O fault in FIPIO while PLC is

"Normal", it is the image of bit %S118,
� %SW60:X4=0 indicates a rack I/O fault; it is the image of

bit %S119,
� %SW60:X5=1 indicates a fault has been detected by the

self-tests in at least one of the TSX ETY 210,
� %SW60:X7=1 indicates a serious fault in the FIPIO

network, such as a short circuit or a disconnected terminal
block,

� %SW60:X8=1 indicates a fault in the TSX ETY 110
module used for inter-PLC links,

� %SW60:X9=1 indicates an inter-PLC communication fault
– it is not possible to recover dual-PLC diagnostics,

� %SW60:X10 is a reserved bit,
� %SW60:X11=1 indicates that the Backup PLC is

unsuitable to be a "Normal" PLC. This information is
generated only in a Normal PLC and has no significance in
a Backup PLC,

� %SW60:X12=0 indicates that the PLC is station A,
� %SW60:X12=1 indicates that the PLC is station B,
� %SW60:X13=1 indicates PLC Run mode,
� %SW60:X14=1 indicates PLC Stop mode,
� %SW60:X15=1 indicates PLC Halt mode.

System
TLX DR PL7 xx 285

System objects
Words Function Description Management

%SW61 Backup PLC
diagnostics

Significance of the different bits for the word %SW61:
� %SW61:X0=1 indicates there is a problem on the Data

Base exchange via the Ethway inter-PLC link. This
information is only generated for a Normal PLC in Run
mode.

� %SW60:X1=1 indicates that the PLC is in "Backup"
� %SW61:X1=1 indicates there is a problem in

communication between a TSX ETY 210 client TCP-IP
module third party device. This information is generated
only for a Normal PLC in Run mode. When this bit changes
to 1, a switch is caused if the Backup PLC can become a
Normal PLC.

� %SW60:X4=0 indicates a rack I/O fault; it is the image of
bit %S119

� %SW60:X5=1 indicates a fault has been detected by the
self-tests in at least one of the TSX ETY 210

� %SW61:X2 is a reserved bit
� %SW61:X3 is a reserved bit
� %SW61:X4=1 indicates the first correct Data Base

exchange
� %SW61:X5=1 indicates that the processor has been

Stopped by the backup function. Diagnostics is given in
the word %MWp.14.2

� %SW61:X6 is a reserved bit
� %SW61:X7=0 indicates a problem in configuration of

operation of the backup function. Diagnostics is given in
the word %MWp.14.2

� %SW61:X7=1 indicates that the backup function has been
correctly configured

� %SW61:X8 to %SW61:X15 are reserved bits
p: designates the processor slot

System
286 TLXDRPL7xx

System objects
%SW62 Display of the arbiter
function for bus and
producer /
consumer of FIPIO
bus.

The least significant byte indicates the state of the producer /
consumer function,
The most significant byte indicates the state of the bus arbiter
function (BA)
Byte value:
� 16#00: the function does not exist (no FIPIO application),
� 16#07: the function currently in STOP BA (STOP BA order

is sent and the command has not finished),
� 16#0F: the function currently in RUN BA (RUN BA order is

sent and the command has not finished),
� 16#70: the function has been initialized but is not

operational (in STOP BA mode),
� 16#F0: the function is currently being executed normally

(in RUN BA mode). BA).

System

Words Function Description Management
TLX DR PL7 xx 287

System objects
Description of system words %SW63 to %SW65

Detailed
description

Description of system words %SW63 to %SW65 specific to Warm Standby Premium
diagnostics.

Words Function Description Management

%SW63
to
%SW65

Exchange of
diagnostics words
between PLCs

Dual-PLC backup diagnostics is available in the words
%SW63 to %SW65.
Normal PLC words %SW63, %SW64 and %SW65 are
respective to Backup PLC words %SW60, %SW61 and
%SW62. Similarly, Backup PLC words %SW63, %SW64 and
%SW65 are respective to Normal PLCwords %SW60,
%SW61 and %SW62.
Illustration

These words are exchanges via the Ethway inter-PLC link
(TSX ETY 110 module)

System

Normal

PLC

Backup

PLC

%SWxx %SWxx

%SW60, %SW61,

Warm Standbyl
Premium global
diagnostic

Dual PLC backup
diagnostic

PLC backup
diagnostic

Standart diagnostic

%SW62

%SW63, %SW64,
%SW65

%SW66

%SW60, %SW61,
%SW62

%SW63, %SW64,
%SW65

%SW66
288 TLXDRPL7xx

System objects
Description of system words %SW66 to %SW69

Detailed
description

Description of system word %SW66 for Warm Standby Premium diagnostics

Words Function Description Management

%SW66 Global diagnostics
for Warm Standby
Premium
architecture

In each of the PLCs, global diagnostics of Warm Standby
Premium are created from the backup diagnostics of the two
PLCs. These global diagnostics are stored in %SW66. Its bits
have the following significance:

System

� %SW66:X0=0 indicates Warm Standby Premium downgraded functioning,
� %SW66:X0=1 indicates Warm Standby Premium nominal functioning,
� %SW66:X1=1 indicates that PLC A is a Normal PLC,
� %SW66:21=1 indicates that PLC B is a Normal PLC,
� %SW66:X3=1 indicates a break-down in inter-PLC communication.
Information on PLC A
� %SW66:X4=1 indicates a serious FIPIO network fault on PLC A,
� %SW66:X5=1 indicates that PLC A is on STOP,
� %SW66:X6=1 indicates that PLC A is on Halt,
� %SW66:X7=1 indicates an Ethernet TCP-IP communication breakdown in PLC A (module TSX

ETY 210 or client function),
� %SW66:X8=1 indicates a breakdown on at least one of the racked modules in PLC A,
� %SW66:X9=1 indicates a breakdown on at least one of FIPIO devices in PLC A.
Information on PLC B
� %SW66:X10=1 indicates a serious FIPIO network fault on PLC B,
� %SW66:X11=1 indicates that PLC B is on STOP,
� %SW66:X12=1 indicates that PLC B is on Halt,
� %SW66:X13=1 indicates an Ethernet TCP-IP communication breakdown in PLC B (module TSX

ETY 210 or client function),
� %SW66:X14=1 indicates a breakdown on at least one of the racked modules in PLC B,
� %SW66:X15=1 indicates a breakdown on at least one of FIPIO devices in PLC B.

Note: %SW66 X4 to %SW66 X15 information is not significant if an inter-PLC communication breakdown
is present (%SW66 X3 = 1)
TLX DR PL7 xx 289

System objects
Description of system words %SW67 to %SW69 for Warm Standby Premium
diagnostics.

Words Function Description Management

%SW67 Network address
and dual-PLC
station address

This word contains the network address and the dual-PLC
station address, which can be used to set up inter-PLC
communication. This word must be displayed in hexadecimal
for interpretation in the following manner :

System

%SW68
%SW69

Time base used by
EF Tempo.

These words contains a time base used by EF Tempo. It is
transferred from the Normal PLC to the Backup PLC for
updating and synchronisation.

System

MSB LSB
network address station address
290 TLXDRPL7xx

System objects
Description of system words %SW80 to %SW89

Detailed
description

Description of system words %SW80 to %SW89

Words Function Description Management

%SW80
%SW81
%SW82
%SW83
%SW84
%SW85
%SW86

Telegram and
message
management

� %SW80: No. of messages sent by the system to the
terminal port,

� %SW81: No. of messages received by the system from
the terminal port,

� %SW82: No. of messages sent by the system to the
PCMCIA module,

� %SW83: No. of messages received by the system from
the PCMCIA module,

� %SW84: No. of telegrams sent by the system,
� %SW85: No. of telegrams received by the system,
� %SW86: No. of messages refused by the system.

System
User

%SW87
%SW88
%SW89

Managing
communication
flows (1)

� %SW87: Number of requests processed by synchronous
server per master (MAST) task cycle,

� %SW88: Number of requests processed by asynchronous
server per master (MAST) task cycle,

� %SW89: Number of requests processed by server
functions (immediately) per master (MAST) task cycle.

System

Note: (1) Only for TSX/PCX/PMX 57 PLC
TLX DR PL7 xx 291

System objects
Description of system words %SW96 to %SW97

Detailed
description

These words only exist in TSX 37
Description of system words %SW96 to %SW97

Words Function Description Management

%SW96 Command and/or
diagnostics for save/
restore function of
application program
and %MW

� bit 0: requests a send to the save zone This bit is enabled
on the rising edge. It is reset to 0 by the system as soon as
the restoration of the rising edge has been taken into
account,

� bit 1: when this bit is on 1, this indicates that the save
function has finished. This bit is reset to 0 as soon the
rising edge on bit 0 has been taken into account,

� bit 2: save report:
� 0 -> save without error,
� 1 -> error while saving.

� bits 3 to 5: reserved,
� bit 6: validity of application program saves (idem %S96),
� bits 8 to 15: this bit is only significant is the report bit is on

1 (bit 2 = 1 means an error while saving):
� 1 -> number of %MW to be saved is greater than the

number of %MW that are configured,
� 2 -> number of %MW to be saved is greater than 1000

or less than 0,
� 3 -> number of %MW to be restored is greater than the

number of %MW that are configured,
� 4 -> size of application in internal RAM greater than 15

Kwords (remember that saving %MW is always
associated with saving an application program in the
internal Flash EPROM),

� 5 -> facilities are not allowed in RUN,
� 6 -> presence of a Backup cartridge in the PLC,
� 7 -> write fault in the Flash EPROM.

System
User

%SW97 Number of %MW to
be saved

Parameterizes the number of %MW to be saved.
When this word is between 1 and 1000, the first 1 to 1000
%MW are sent to the internal Flash EPROM.
When this word is 0, only the application program in the
internal RAM is sent to the internal Flash EPROM.
Any %MW save is then wiped.
On a cold start, this word is initialized on –1 if the internal
Flash EPROM contains no saved %MW. If the opposite
should happen, it is initialized at the value of the number of
saved words.

User
292 TLXDRPL7xx

System objects
Description of system words %SW98 to %SW109

Detailed
description

Description of system words %SW98 to %SW109

Words Function Description Management

%SW98 Discrete input
module/channel
geographical
address (2)

When the bit %S98 = 1, this word indicates the Discrete input
(module /channel) geographical address, in the replacement
of the TSX SAZ 10 module button:

User

%SW99 Discrete input
address (2)

When the bit %S99 = 1, this word indicates the Discrete input
(module / channel) geographical address, in the replacement
of the centralized display block button:

User

%SW108 Forced channel
counter

Makes channels forced to 0 or 1 compatible within the
application. It is updated by forcing or unforcing channels.

System

%SW109 Forced analog
channel counter

Makes analog channels forced to 0 compatible. System

Module number Channel number

MSB LSB

Module number Channel number

MSB LSB

Note: (2) Only in TSX 37
TLX DR PL7 xx 293

System objects
Description of system word %SW116

Detailed
description

Description of system word %SW116 - FIPIO

Words Function Description Management

%SW116 FIPIO I/O task fault Normally on 0, each bit for this word signifies FIPIO exchange
status within the task in which it is being tested.
This word is to be reset on 0 by the user.
More details on words bits %SW116:
� x0 = 1 explicit exchange error (variable has not been

exchanged on the bus),
� x1 = 1 time-out on an explicit exchange (no reply at the end

of time-out),
� x2 = 1 maximum number of explicit exchanges achieved at

the same time,
� x3 = 1 a frame is invalid,
� x4 = 1 the length of frame received is greater than the

length that was declared,
� x5 = reserved on 0,
� x6 = 1 a frame is invalid, or an agent is initializing,
� x7 = 1 absence of a configured device,
� x8 = 1 channel fault (at least one device channel is

indicating a fault),
� x9 to x14 = reserved on 0,
� x15 = Global fault (OR bits 3, 4, 6, 7, 8).

System
User
294 TLXDRPL7xx

System objects
Description of system words %SW124 to %SW127

Detailed
description

Description of system words %SW124 to %SW127

Words Function Description Management

%SW124 Type of CPU fault The last type of CPU fault encountered is written into this word
by the system (these codes are unchanged on a cold restart):
� 16#30: system code fault,
� 16#60 to 64: stack overrun,
� 16#90: System switch fault: Unforeseen IT,
� 16#53: time-out fault during I/O exchanges.

System

%SW125 Type of blocking
fault

The last type of blocking fault encountered is written into this
word:
� 16#DEB0: watchdog overrun,
� 16#2258: execution of HALT instruction,
� 16#DEF8: execution of JMP instruction to an undefined

label,
� 16#2XXX: execution of CALL instruction to an undefined

sub-program,
� 16#0XXX: execution of an unknown function,
� 16#DEFE: the grafcet program consists of sendings to

undefined steps,
� 16#DEFF: floating point has not been not implemented
� 16#DEF0: division by 0 (1-->%S18),
� 16#DEF1: character string transfer error (1-->%S15),
� 16#DEF2: capacity overflow (1-->%S18),
� 16#DEF3: index overflow (1-->%S20).

System

%SW126
%SW127

Blocking fault
instruction address

Instruction address that generated the application blocking
fault.
� %SW126 contains the offset for this address,
� %SW127 contains the base for this address.

System
TLX DR PL7 xx 295

System objects
Description of system words %SW128 to %SW143

Detailed
description

Description of system words %SW128 to %SW143 - FIPIO

Words Function Description Management

%SW128
to
%SW143

Faulty FIPIO
connection point

Each bit in this group of words indicates the state of a device
connected to the FIPIO bus.
Normally on 1, the presence of a 0 in one of these bits
indicates the appearance of a fault in this connection point.
For a non-configured connection point, the corresponding bit
is always 1.

System

Table showing correspondence between word bits and connection point address.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

%SW128 :

%SW129 :

%SW130 :

%SW131 :

%SW132 :

%SW133 :

%SW134 :

%SW135 :

%SW136 :

%SW137 :

%SW138 :

%SW139 :

%SW140 :

%SW141 :

%SW142 :

%SW143 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

241 242240 243 244 245 246 247 248 249 250 251 252 253 254 255
296 TLXDRPL7xx

System objects
Description of system words %SW144 to %SW146

Detailed
description

Description of system words %SW144 to %SW146 - FIPIO

Words Function Description Management

%SW144 FIPIO bus arbiter
function operating
mode

This system word is used to start and stop the bus arbiter
function and the producer / consumer function. It can modify
the starting, automatic and manual modes of the bus in the
event of a stop.
� x0 = 1 producer / consumer function in RUN mode,
� x0 = 0 producer / consumer function in STOP mode (no

variables are exchanged in the bus),
� x1 = 1 bus arbiter is in RUN 0 mode,
� x1 = 0 bus arbiter is in STOP mode (no variables or

message scanning is carried out in the bus),
� x2 = 1 automatic start in the event of an automatic bus

stop,
� x2 = 0 manual start in the event of an automatic bus stop,
� x3 = reserved on 1,
� x4 to x15 reserved on 0.

User

%SW145 Modification of
FIPIO bus arbiter
parameters

The bits are set on 1 by the user, and reset to 0 by the system
when initialization has been carried out.
� x0 = 1 modification of bus arbiter priority: the most

significant system word byte contains the priority value of
the bus arbiter which will applied to the bus,

� x1 = 1 modification of the return time value (Rt): the most
significant system word byte contains the Rt value (in ms)
which will be applied to the bus. The system word is
zeroed when initialization is complete,

� x2 = 1 modification of the pause time value (T0): the most
significant system word byte contains the T0 value (in ms)
which will be applied to the bus. The system word is
zeroed when initialization is complete,

� x3 to x7 are reserved on 0,
� x8 = 1 value of bus arbiter priority,
� x9 = 1 Rt value,
� x10 = 1 T0 value.
These parameters can be modified when the bus arbiter is in
RUN mode, but for them to be taken into account by the
application, the BA must be stopped then restarted.

User
System
TLX DR PL7 xx 297

System objects
%SW146 FIPIO bus arbiter
function display

The least significant byte indicates the state of the producer /
consumer function
The most significant byte indicates the state of the bus arbiter
function.
Byte value
� 16#00: the function does not exist (no FIPIO application),
� 16#07: the function currently in STOP (ie STOP order has

been sent and the command has not finished),
� 16#0F: the function currently in RUN (ie RUN order has

been sent and the command has not finished),
� 16#70: the function has been initialized but is not

operational (in STOP mode),
� 16#F0: the function is currently being executed normally

(in RUN mode).

System

Words Function Description Management

CAUTION

Matters affecting the words %SW144 and %SW145

modifying these system words can lead the PLC station to stop.

Failure to observe this precaution can result in injury or equipment damage.
298 TLXDRPL7xx

System objects
Description of system words %SW147 to %SW152

Detailed
description

Description of system words %SW147 to %SW152

Words Function Description Management

%SW147 MAST network cycle
time

A value which is not zero indicates, in ms, the MAST task
network cycle (TCR-MAST) time value.

System

%SW148 FAST task network
cycle time value

A value which is not zero indicates, in ms, the MAST task
network cycle (TCR-FAST) time value.

System

%SW149 Reserved on 0. System

%SW150 Number of frames
sent

This word indicates the number of frames sent by the FIPIO
channel manager

System

%SW151 Number of frames
received

This word indicates the number of frames received by the
FIPIO channel manager.

System

%SW152 Number of
messages resumed

This word indicates the number of messages resumed by the
FIPIO channel manager.

System
TLX DR PL7 xx 299

System objects
Description of system word %SW153

Detailed
description

Description of system word %SW153 - FIPIO

Bits description � X0 = overrun station fault: corresponds to losing an MAC symbol while receiving
– this is linked to the receiver reacting too slowly.

� X1 = message refusal fault: indicates an acknowledged message was refused, or
it was not acknowledged in the first place. receiving MAC.

� X3 = underrun station fault: corresponds to the station being unable to respect
transfer speed on the network.

� X4 = physical layer fault: corresponds to a prolonged transmission absence in the
physical layer.

� X5 = non-echo fault: corresponds to a fault for which the transmitter is currently
sending out, with an emission current in the operating format, and at the same
time detection that a signal is absent on the same channel.

� X6 = excessive communication fault: corresponds to a fault whereby the
transmitter is controlling the line for longer than the maximum set operating limit.
This fault is caused, for example, by deterioration of the modulator, or by a faulty
layer data link.

� X7 = undercurrent fault: corresponds to a fault whereby the transmitter
generates, when sollicited, a current weaker than the minimum set operating
limit. This fault is caused by, for example, by increased line impedance (eg. open
line etc.).

� X8 = breached frame fault indicates that a pause has been received in the frame
body, after identifying a delimiter at the start of the frame, and before identifying
a delimiter at the end of the frame. The appearance of a pause in normal
operating conditions takes place after a delimiter has been identified at the end
of a frame.

� X9 = CRC frame receiving fault: indicates that the CRC calculated on a frame
usually received and the CRC contained within this frame have different values.

� X10 = receiving frame code fault: indicates that certain symbols, exclusive to
delimitation sequences at the beginning and end of frames, have been received
within the body of the frame.

� X11 = length fault within the frame received: more than 256 bytes have been
received for the frame body.

Words Function Description Management

%SW153 list of FIPIO channel
manager faults.

Each bit is set on 1 by the system, and reset to 0 by the user.
See the list below.

User
System
300 TLXDRPL7xx

System objects
� X12 = unknown frame type received: within the frame body, the fist byte identifies
the type of frame link. A set number of frame types are defined in the WORLDFIP
norm link protocol. Any other code found within a frame is therefore an unknown
frame type.

� X13 = a truncated frame has been received: a frame section is recognized by
sequence of symbols delimiting the end of the frame, while the destination station
awaits the arrival of a delimiter sequence for the beginning of the frame.

� X14 = unused, non-significant value.
� X15 = unused, non-significant value.
TLX DR PL7 xx 301

System objects
Description of system word %SW154

Detailed
description

Description of system word %SW154 - FIPIO

Bits description � X0 = aperiodic time-out sequence: indicates that the messages or aperiodic
variables window has overflowed its limit within an elementary cycle of the macro-
cycle.

� X1 = refusal of messaging request: indicates that the message queue is saturated
- for the time being the bus arbiter is in no position to latch onto nor comply with
a request.

� X2 = urgent update command refused: indicates that the queue for urgent
aperiodic variables exchange requests is saturated - for the time being the bus
arbiter is in no position to latch onto nor comply with a request.

� X2 = non-urgent update command refused: indicates that the queue for non-
urgent aperiodic variables exchange requests is saturated - for the time being the
bus arbiter is in no position to latch onto nor comply with a request.

� X4 = pause fault: the bus arbiter has not detected any bus activity during a time
period larger than the standardized WorldFip time period.

� X5 = a network collision has occurred on identifier transmission: indicates activity
on the network during theoretical pause periods. Between a transmission and
awaiting a reply from the bus arbiter, there should be nothing circulating on the
bus. If the bus arbiter detects activity, it will generate a collision fault (for example,
when several arbiters are active at the same time on the bus).

� X6 = bus arbiter overrun fault: indicates a conflict on accessing the bus arbiter
station memory.

� X7 = unused, non-significant value.
� X8 to X15 = reserved on 0.

Words Function Description Management

%SW154 list of FIPIO channel
manager faults.

Each bit is set on 1 by the system, and reset to 0 by the user.
See the list below.

User
System
302 TLXDRPL7xx

System objects
Description of system words %SW155 to %SW162

Detailed
description

Description of system words %SW155 to %SW162

Words Function Description Management

%SW155 Number of explicit
exchanges

Number of explicit exchanges currently being processed System

%SW160 Result of the last recording (diagnostics function). System

%SW161 Result of the last non-recording (diagnostics function). System

%SW162 Number of errors currently in the diagnostics buffer. System
TLX DR PL7 xx 303

System objects
304 TLXDRPL7xx

CBAIndex
Symbols
, 110
-, 114, 137
%Ci, 42, 44, 46
%DRi, 90, 92, 94
%MNi, 81, 82, 83
%Ri, 85, 86, 87, 88
%S0, 269
%S1, 269
%S10, 270
%S100, 277
%S101, 277
%S102, 277
%S11, 270
%S118, 277
%S119, 277
%S13, 270
%S15, 270
%S16, 270
%S17, 271
%S18, 271
%S19, 271
%S20, 271
%S21, 272
%S22, 272
%S23, 272
%S24, 272
%S26, 272
%S30, 273
%S31, 273
%S38, 273
%S39, 273
TLX DR PL7 xx
%S4, 269
%S40, 273
%S49, 273
%S5, 269
%S50, 273
%S51, 273
%S59, 273
%S6, 269
%S60, 274
%S66, 274
%S67, 274
%S68, 274
%S69, 274
%S7, 269
%S70, 275
%S73, 275
%S74, 275
%S8, 270
%S80, 275
%S9, 270
%S90, 275
%S92, 275
%S94, 276
%S95, 276
%S96, 276
%S97, 276
%S98, 276
%S99, 276
%SD18, 280
%SW0, 279
%SW1, 279
%SW10, 279
305

Index
%SW108, 293
%SW109, 293
%SW11, 279
%SW116, 294
%SW12, 280
%SW124, 295
%SW125, 295
%SW126, 295
%SW128, 296
%SW13, 280
%SW144, 297
%SW145, 297
%SW146, 298
%SW147, 299
%SW148, 299
%SW149, 299
%SW150, 299
%SW151, 299
%SW152, 299
%SW153, 300
%SW154, 302
%SW155, 303
%SW160, 303
%SW161, 303
%SW162, 303
%SW17, 280
%SW20, 281
%SW21, 281
%SW22, 281
%SW30, 282
%SW31, 282
%SW32, 282
%SW33, 282
%SW34, 282
%SW35, 282
%SW48, 283
%SW49, 283
%SW54, 283
%SW58, 283
%SW59, 284
%SW60, 285
%SW61, 286
%SW62, 287
%SW63, 288
%SW66, 289
%SW67, 290
306
%SW68, 290
%SW8, 279
%SW80, 291
%SW87, 291
%SW9, 279
%SW96, 292
%SW97, 292
%SW98, 293
%SW99, 293
%Ti, 41, 96, 97, 98, 99, 100, 101
*, 114, 137
+, 114, 137
/, 114, 137
=, 110
>, 110
>=, 110

A
ABS, 114
ACOS, 118
ADD_DT, 203, 205
AND, 23, 139
AND_ARX, 224
ANDF, 23
ANDN, 23
ANDR, 23
ASIN, 118
ATAN, 118

B
BCD_TO_INT, 125
BIT_D, 226
BIT_W, 226

C
COMPARE, 103
Compare, 102
CONCAT, 173
CONCATW, 132
COPY_BIT, 223
COS, 118
TLXDRPL7xx

Index
D
D_BIT, 228
D_TO_INT, 125
DATE_TO_STRING, 212, 214
DAY_OF_WEEK, 202
DBCD_TO_DINT, 125
DEG_TO_RAD, 120
DELETE, 175
DELTA_D, 207
DELTA_DT, 209
DELTA_TOD, 211
DINT_TO_DBCD, 125
DINT_TO_REAL, 128
DINT_TO_STRING, 165, 167
DSHL_RBIT, 231
DSHR_RBIT, 231
DSHRZ_C, 231

E
END, 73
ENDC, 73
ENDCN, 73
EQUAL, 143
EQUAL_ARR, 143
EQUAL_STR, 185
EXP, 116
EXPT, 116

F
FIND, 187
FIND_, 145
FPULSOR, 247
FTOF, 243
FTON, 241
FTP, 245

G
GRAY_TO_INT, 131

H
HALT, 74
TLX DR PL7 xx
HW, 132

I
INSERT, 177
Instruction

bit objects, 17
INT_TO_BCD, 125
INT_TO_DBCD, 125
INT_TO_REAL, 128
INT_TO_STRING, 165, 167

L
LD, 19
LDF, 19
LDN, 19
LDR, 19
LEFT, 183
LEN, 189
LENGTH_, 157
LN, 116
LOG, 116
LW, 132

M
MASKEVT, 75
MAX_, 148
MID, 181
MIN_, 148

N
NOP, 76
NOT, 139
NOT_ARX, 224

O
Object

Boolean, 18
OCCUR_, 150
OR, 26, 139
OR_ARX, 224
307

Index
ORF, 26
ORN, 26
ORR, 26

P
PL7 Instruction, 15
PTC, 201

R
R, 21
RAD_TO_DEG, 120
READ_PCM_EXT, 259
READ_PCMCIA, 261
REAL_TO_DINT, 128
REAL_TO_INT, 128
REAL_TO_STRING, 169
REM, 137
REPLACE, 179
RESET, 21
RESET_XIT, 263
RET, 68
RETCN, 68
RETURN, 68
RIGHT, 183
ROL, 104
ROL_, 152
ROLD, 237
ROLW, 237
ROR, 104
ROR_, 152
RORD, 237
RORW, 237
ROUND, 122
RRTC, 198

S
S, 21
SCHEDULE, 195
SCOUNT, 234
SET, 21
SET_PCM_EXT, 251
SET_PCMCIA, 253
SHL, 104
308
SHR, 104
SIN, 118
SORT_, 155
SQRT, 114
SR, 67
ST, 21
STN, 21
STRING_TO_REAL, 171
SUB_DT, 203, 205
SUM, 141
SUM_ARR, 141
System Bits, 267
System words, 278

T
TAN, 118
TIME_TO_STRING, 216
TOD_TO_STRING, 218
TRANS_TIME, 220
TRUNC, 114

U
UNMASKEVT, 75

W
W_BIT, 228
WRITE_PCM_EXT, 255
WRITE_PCMCIA, 257
WRTC, 199
WSHL_RBIT, 231
WSHR_RBIT, 231
WSHRZ_C, 231

X
XOR, 29, 139
XOR_ARX, 224
XORF, 29
XORN, 29
XORR, 29
TLXDRPL7xx

	Reference Manual
	Table of Contents
	Standard instructions
	Introduction to the PL7 instructions
	Boolean instructions
	Predefined function blocks
	Numerical processing on integers
	Program instructions

	Advanced instructions
	Introduction to advanced instructions
	Advanced predefined function blocks
	Shift instructions
	Floating point instructions
	Numerical conversion instructions
	Word table instructions
	Character string instructions
	Time management instructions: Dates, Times, Duration
	Bit table instructions
	"Orpheus" functions: Shift registers, counter
	Timing functions
	Data storage functions
	Grafcet functions

	System objects
	System Bits
	System words

	Index

