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Theme

• We examine two related problems for continuous-time optimal 

estimation problems that are characterized by different 

assumptions on the plant and the measurement noises, [1]-[3]

• First, we examine the case that the plant noise x(t) and the 

sensor noise q(t) are continuous-time white noise processes 

which are not independent, i.e. they are “correlated”

• Second, we consider problems for which the plant noise and the 

measurement noise are not pure white noise processes, i.e. 

they are “colored”

• we need the results of the correlated-noise case to derive 

the results for the colored-noise case

• The basic ideas can be extended to discrete-time filtering 

problems, [1]-[3]



Part I: Correlated Plant and Sensor 

White Noise
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Basic Problem

  Previous assumption

(1)  E x(t)  0, E x(t) x( )   (t) (t   )

(2)  E q(t)   0, E q (t) q( )   (t) (t   )

(3)  x(t0 ), x(t),q ( )  independent  t0 , t,

(4)  E x(t) q( )  0  independent t,

  New assumption

(5)  E x(t)  0, E x(t) x( )   (t) (t   )

(6)  E q(t)   0, E q (t) q( )   (t) (t   )

(7)  x(t0 )  independent of 

       x(t), q( )  t0 , t,

(8)  E x(t) q( )  (t) (t   )

           PROBLEM

  We seek the optimal state -

    estimate  ˆ x (t)  and its

    covariance matrix   (t)
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Plant and Sensors Modeling

  Plant and sensor modeling:   x(t) Rn , u(t) Rq, x(t) Rp

(9)  
dx(t)

dt
 A(t)x(t)  B(t)u(t)  L(t)x(t); x(to )  x0

(10)  z(t)  C(t)x(t) q (t); z(t)Rm ,q(t) Rm

  Initial state:   x(t0 ) ~ N x 0,0  independent of  x(t), q( )  t0, t,

  Correlated white noises

(11)  E x(t)  0, E x(t) x( )   (t) (t   );  (t) p  p  matrix

(12)  E q(t)   0, E q(t) q( )   (t) (t   );   (t) m  m  matrix

(13)  E x(t) q ( )  (t) (t   );  (t) p  m  matrix

B(t)
u(t) x(t) x(t)



L(t)

x(t)

q(t)

z(t)
C(t)

A(t)

.

x(to)

white, but correlated
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Structure of Optimal Filter

• The structure of 

the optimal KF for 

the corellated 

noise case is 

identical to that of 

the classical KBF, 

except that the 

filter gain matrix, 

He(t), is computed 

by a different 

formula
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Summary of KBF Equations

  State - estimate dynamics

(14)  
dˆ x (t)

dt
 A(t) ˆ x (t)  B(t)u(t)  He (t) z(t) C(t)ˆ x (t) ; ˆ x (t0 )  x 0

  Optimal filter gain matrix for correlated noise case

(15)  He (t)  e (t) C (t)  L(t) (t) 1(t)

    where   e (t)  e (t)  0   is the optimal state - covariance matrix that

    is the solution of the modified matrix Riccati differential equation

(16)  
d e (t)

dt
 A(t)  L(t) (t) 1(t)C(t)  e (t) 

e (t)  A(t)  L(t) (t)1(t)C(t)   L(t)  (t)  (t) 1(t)  (t)  L (t)

 e (t) C (t) 1(t)C(t)e (t);  e (t0 )  0

  Note that when the noises are uncorrelated,   (t)  0,  eqs. (14) to 

    (16) reduce to those of the standard KBF
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Elements of Proof,  I

 The basic idea is to make a change of variables so that the new 

system can be solved using the standard KBF equations (with 

uncorellated noises)

 Define a n  m matrix  D(t) as follows:

(17)  D(t)  L(t) (t)
1
(t)

 From the measurement equation (10) we have

(18)  0  z(t)C(t)x(t)q(t)  0  D(t) z(t)C(t)x(t) q(t) 

 Add the " special 0" of eq. (18) to the state dynamics (9)

(19)  
dx(t)

dt
 A(t)x(t)  B(t)u(t)  L(t)x(t)  D(t) z(t) C(t)x(t)q(t) 

0
1 2 4 4 4 4 4 3 4 4 4 4 4 



(20)  
dx(t)

dt
 A(t)  D(t)C(t) x(t)  B(t)u(t)  D(t)z(t) 

 L(t)x(t)  D(t)q (t) 
xe (t )

1 2 4 4 4 3 4 4 4 
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Elements of Proof, II

  Using the new random process  xe (t)  defined by

(21)  xe (t)  L(t)x(t) D(t)q(t)  L(t) x(t)  (t) 1(t)q(t) 
    in the state dynamics (20) and sensor equation (10) we obtain

(22)  
dx(t)

dt
 A(t)  D(t)C(t) x(t)  B(t)u(t) D(t)z(t) xe (t)

(23)  z(t)  C(t)x(t) q (t)

  In eq. (22) the term  B(t)u(t)  D(t)z(t)  represent known

    time - functions.  If we could prove that  xe (t)  is zero - mean

    continuous white noise AND is uncorellated with  q(t)  we can

    then apply the standard KBF theory to the system of eqs. (22) 

    and (23)
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Elements of Proof, III

  From eq. (21)  xe (t)  L(t)x(t) D(t)q(t),   so that

(24)  E xe (t)  L(t)E x(t) 
0

 D(t)E q(t) 

0

 0

(25)  E xe (t) xe ( )  E L(t)x(t) D(t)q(t)  L( )x( )  D( )q( )  
 L(t)E x(t) x( ) 

 (t ) (t )

L ( )  D(t)E q(t) q( ) 
 (t ) (t )

D ( )

 D(t)E q(t) x( ) 
 (t) (t )

L ( )  L(t)E x(t) q( ) 
 (t ) (t )

D ( ) 

(26)  E xe (t) xe ( )  L(t) (t) L (t)  D(t)(t) D (t)  (t   )

 D(t)  (t) L (t)  L(t) (t) D (t)  (t   )

  Clearly,  xe (t)  is zero -mean continuous white noise with covariance

(27)  E xe (t) xe ( )  e (t) (t   )

(28)  e (t)  L(t) (t) L (t) D(t)(t) D (t)  D(t)  (t) L (t)  L(t) (t) D (t)

 L(t)  (t) (t) 1(t)  (t)  L (t)
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Elements of Proof, IV

  Next,  we show that  xe (t)  and  q(t)  are uncorrelated, i.e. that

(29)  E xe (t) q( )  0 t,

  From eq. (21) we have

(30)  E xe (t) q( )  E L(t)x(t)  L(t) (t) 1(t)q (t)  q ( ) 
 L(t)E x(t) q( ) 

 (t ) (t )

 L(t) (t)1(t)E q(t) q( ) 
 (t ) (t )



 L(t) (t) (t   )  L(t) (t) (t   )  0 QED

  Since we have established that  xe(t)  and  q(t)  are uncorrelated,

    we can apply the standard KBF theory to the system of equations

    (22) and (23) and verify that the optimal filter is that described by

     eqs. (14), (15) and (16).     QED
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Remark

  The correlation matrix   (t)  cannot be arbitrary.  From the

    definitions of eqs. (11) to (13) we compute

(31)  E
x(t)

q (t)











x( )

q( )


























E x(t) x( )  E x(t) q( ) 
E q(t) x( )  E q(t) q ( ) 












 (t)  (t)

 (t)  (t)











Q(t)

 (t  )

  Since  Q(t)  is a covariance matrix, it must be symmetric (which

    it is) and positive - semidefinite.  This positive - semidefinite 

    requirement constrains the correlation matrix   (t).  

  Also remember that  (t)  must also be positive definite,  

    so that  1(t)  exists
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The Steady-State Case

         ASSUMPTIONS

  All matrices in the plant

    and sensor equations

    are constant

  The covariance matrices

    are time - invariant

  The pair [A,L] is stabilizable

    (or controllable)

  The pair [A,C] is detectable

    (or observable)

  THEN,  the steady - state KBF

    is a linear,  time - invariant

    system,  and the KF gain

    matrix  He  is constant
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The Steady-State Case:  Summary

  Steady - state KBF equations for the correlated noise case

(32)  
dˆ x (t)

dt
 Aˆ x (t)  Bu(t)  He z(t) Cˆ x (t) ; ˆ x (0)  E x(0) 

  The constant  n m  filter gain matrix  He  is given by

(33)  He   e C  L  1

    where the  n  n  symmetric and positive semidefinite matrix  e

    is the unique solution matrix of the modified Riccati algebraic

    equation

(34)  0  A  L 1C e   e A  L 1C 

 L  1   L   e C  1Ce

  The stabilizability assumption of [A, B] and the detectability

    assumption of [A,C] guarantee the asymptotic stability of the

    filter in eq. (32)



Part II: Colored Plant and Sensor Noise
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The Basic Issue

• In many practical applications, the physical disturbances acting 

on the plant are NOT white

• In general, we expect the plant disturbance vector, d(t), to be a 

colored noise process

• Also, the sensor noise vector, n(t), can often contain colored 

noise elements

• We need to extend the optimal estimation framework to handle 

colored noise inputs 
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Sailboat Example

• For a sailboat the physical 

disturbances correspond to 

the forces and moments 

generated by the wind and 

the waves

• It is completely unrealistic to 

model the wind and wave 

disturbances as white noise

• But, using the concept of 

“prewhitening” we can model 

them as the outputs of 

(fictitious) dynamical 

systems driven by (fictitious) 

white noise
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Helicopter Example

• The physical sensors (gyros 

and accelerometers) that are 

used to measure the attitude 

of a helicopter will contain 

“colored noise” due to the 

vibrations caused by the 

rotation of the main and tail 

rotors, in addition to a white 

noise component

• Also, the wind disturbances 

will be colored noise

• Once more, we can use the 

“prewhitening” concept for 

both disturbance and sensor 

noise
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Plant Dynamics

  Both the plant disturbance

    d(t)  and the sensor noise

    n(t)  are colored noise

    random processes

  The sensor noise  n(t)  

    MUST contain a white noise

    component  ( d(t)  may

    as well)

  Plant dynamics:   xp (t) R
np ; u(t) R

qp ; d(t) R
pp

(35)  
dxp (t)

dt
 Ap (t)xp (t)  Bp(t)u(t)  Lp (t)d(t); xp (t0 ) ~ N xp0, p0 

  Measurement equation:   z(t) R
mp ; n(t) R

m p

(36)  z(t)  Cp (t)xp(t)  M p(t)n(t); M p
1(t) exists
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The Basic Idea

• We have developed the Kalman-Bucy filter (KBF) equations 

under the assumptions that both the plant noise and the 

measurement noise are “pure white” random processes

• In this version of the problem we allow the plant noise d(t) and 

the sensor noise n(t) to also contain some “colored noise” 

elements

• The key idea is to transform the “colored noise” version into the 

standard formulation so that we can apply the KBF equations

• this is done by using the concept of “prewhitening”, extended 

to the time-varying case, so that we represent the colored 

disturbance d(t) and the colored sensor noise n(t) as the 

output of fictitious LTV dynamic systems driven by pure 

white noise

• Caution: the sensor noise n(t) must contain a (possibly small) 

pure white-noise component for the KBF to be applicable
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Disturbance Dynamics

  The disturbance vector  d(t)  that drives the plant dynamics is 

    modeled as the output of an  nd  dimensional dynamic system 

    driven by gaussian zero mean,  unit - intensity pure white noise

(37)  
dxd (t)

dt
 Ad (t)xd (t) Bd (t)xd (t)

(38)  d(t)  Cd (t)xd (t) Dd (t)xd (t)

(39)  E xd (t)  0; cov xd (t);xd ( )  I  (t   )

(40)  xd (t0 ) ~ N x d0,d0 
  The vector dimensions are

(41)  xd (t) Rnd ; xd (t) Rpd ; d(t) R
pp

  If  Dd (t)  0,   then the plant

    disturbance vector  d(t)  has no

    white noise component

Bd
xd
.

xd

Ad

Cd

Dd

dxd
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Sensor Noise Dynamics

  The sensor noise  n(t)  is modeled as the output of an  ns  dimensional

     LTV dynamic system driven by a gaussian zero -mean,  unit - intensity 

     white noise  qs (t)

(42)  
dxs (t)

dt
 As (t)xs (t)  Bs (t)qs (t)

(43)  n(t)  Cs (t)xs (t)  Ds (t)qs (t)

(44)  E qs (t)  0, cov qs (t);qs ( )  I  (t  )

(45)  xs (t) ~ N x s0, s0 

  The vector dimensions are

(46)  xs (t) R
ns ,qs (t) R

mp , n(t) R
m p

  We MUST assume that

(47)  Ds
1(t)  exists

    otherwise,  we cannot use the standard KBF theory

  Eq. (47) implies that the sensor noise always 

    contains a white noise component
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Visualization of Augmented System
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Augmented System Equations

  Combine the plant,  disturbance and sensor dynamics in an augmented

    state - space system

(48)  
d

dt

xp (t)

xd (t)

xs (t)

















x(t )



Ap (t) Lp(t)Cd (t) 0

0 Ad (t) 0

0 0 As (t)

















A(t)



xp (t)

xd (t)

xs (t)

















x(t)



Bp (t)

0

0

















B(t )

u(t) 



Lp (t)Dd (t) 0

Bd (t) 0

0 Bs (t)

















L(t )


xd (t)

qs (t)











x (t )

(49)  z(t)  Cp (t) 0 Mp (t)Cs (t) 
C(t )



xp (t)

xd (t)

xs (t)

















x(t )

 M p (t)Ds (t)qs (t)

q (t)

  The system (48) and (49) is in the standard KBF form, except that

    the white noises  x(t)  and  q (t)  are correlated (as in Part I)
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Correlation Matrix

  Assume that the disturbance - dynamics white noise  xd (t)  and the

    sensor - noise - dynamics white noise  qs ( )  are mutually independent

    and are also independent of all initial state vectors

   From eqs. (48) and (49) we have

(50)  x(t) 
xd (t)

qs (t)









; q(t)  M p(t)Ds (t)qs (t)

    therefore, we can calculate the correlation matrix   (t)  by

(51)   (t) (t   )  E x(t) q ( )  E
xd (t)

qs (t)









 qs ( ) D s ( ) M p ( )












E xd (t) qs ( ) 
0

D s ( ) M p ( )

E qs (t) qs ( ) 
I (t )

D s ( ) M p( )


















0

D s (t) M p (t)











 (t )

 (t   )
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Covariance Matrices

  It remains to calculate the covariance matrices of the augmented white

    noises  x(t)  and  q(t).  From eqs. (48) and (49) we have

(52)  x(t) 
xd (t)

qs (t)









; q(t)  Mp (t)Ds (t)qs (t) 

(53)   (t) (t   )  E x(t) x( )  E
xd (t)

qs (t)









 xd ( ) qs ( ) 












E xd (t) xd ( ) 
I. (t )

E xd (t) qs ( ) 
0

E qs (t) xd ( ) 
0

E qs (t) qs ( ) 
I. (t )




















I 0

0 I








 (t )

. (t   )

(54)  (t) (t   )  E q(t) q ( )  Mp (t)Ds (t)E qs (t) qs ( ) 
I. (t )

D s ( ) M p( ) 

 M p (t)Ds (t) D s (t) M p (t)

 (t )

. (t   )
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The Augmented System Equations

  The augmented equations (48) and (49) have the standard form

(55)  
dx(t)

dt
 A(t)x(t)  B(t)u(t)  L(t)x(t)

(56)  z(t)  C(t)x(t) q (t)

    with the following definitions

(57)    x(t) 

xp(t)

xd (t)

xs (t)

















; A(t) 

Ap (t) Lp (t)Cd (t) 0

0 Ad (t) 0

0 0 As (t)

















; B(t) 

Bp (t)

0

0

















     C(t)  Cp (t) 0 Mp (t)Cs (t) ; x(t) 
xd (t)

qs (t)









; q(t)  Mp (t)Ds (t)qs (t)

      (t) 
I 0

0 I







; (t) 

0

D s (t) M p (t)









; (t)  M p(t)Ds (t) D s (t) M p (t)

  We can now apply the equations (14) to (16) to the above system

    (55) to (57) to obtain the filter equations
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The Augmented Covariance 

and Filter Gain Matrices

  The augmented state vector  x(t)  in eq. (57) has dimension  np  nd  ns

  Thus,  the covariance matrix  e (t)  defined by the Riccati equation (16)

    is an  np  nd  ns  np  nd  ns   matrix,  decomposable into

(58)  e (t) 

 pp(t)  pd (t)  ps(t)

pd (t) dd (t) ds (t)

ps (t) ds (t)  ss (t)

















    and the filter gain matrix  He (t)  defined by eq. (15) can be decomposed

(59)  He (t) 

Hp (t)

Hd (t)

Hs (t)

















np  mp matrix

nd  mp matrix

ns  mp matrix

  Given the augmented variable definitions of eq. (57) we can solve the

    Riccati equation (16) to calculate   e(t)  and substitute into eq. (15)

     to calculate the gain matrix  He (t)  and its decomposition (59)
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The Filter Equations

  Once we have calculated the filter gain matrix (59) we can state the

    state - estimate equations of eq. (14), using the decomposition

(60)  ˆ x (t) 

ˆ x p (t)

ˆ x d (t)

ˆ x s (t)

















 plant stateestimate

 disturbance stateestimate

 sensor stateestimate

  Define the mp - dimensional residual vector  r(t)

(61)  r(t)  z(t)  Cp (t) ˆ x p (t)  M p (t)Cs (t)ˆ x s (t)

ˆ n (t)

  Then,  the different state-estimates are generated by

(62)  
dˆ x p (t)

dt
 Ap (t)ˆ x p (t)  Bp(t)u(t)  Lp (t)Cd (t) ˆ x d (t)

ˆ d (t)

 Hp (t)r(t)

(63)  
dˆ x d (t)

dt
 Ad (t)ˆ x d (t)  Hd (t)r(t)

(64)  
dˆ x s (t)

dt
 As (t) ˆ x s (t)  Hs (t)r(t)
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The Filter Equations:  Visualization
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Discussion

  It is important to realize that

the optimal filter generates an

estimate  ˆ d (t)  of the colored-

part of the plant disturbance  d(t)

using the disturbance state -

estimate  ˆ x d (t)

  Similarly,  the optimal filter

generates an estimate  ˆ n (t)

of the colored-part of the

sensor noise  n(t)  using the

sensor dynamics state- estimate

ˆ x s (t)
The residual  r(t)  simultaneously

updates the three state -estimates

ˆ x p (t), ˆ x d (t), ˆ x s (t).

xp

.
xp

Ap

Cp

u

z

xd

.
xd

Ad

Cd

xs

.

xs

As

Cs
n

d

d

n

Lp MpBp

r
-

z

u

Hp

Hd

Hs

Filter
^^

^

^

^

^

^

^

^^

^
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The Steady-State KBF for Colored Noise

  Assume that all matrices in the state dynamics and sensor equation

    are constant, i.e.

(65)  
dxp (t)

dt
 Apxp (t)  Bpu(t)  Lpd(t)

(66)  z(t)  Cp xp (t)  Mpn(t)

  We must assume that the plant disturbance  d(t)  is stationary and

    is generated by the stable LTI dynamic system ( xd (t)  stationary WN)

(67)  
dxd (t)

dt
 Ad xd (t)  Bdxd (t)

(68)  d(t)  Cd xd (t)  Ddxd (t)

  We must also assume that the sensor noise  n(t)  is stationary and

    is generated by the stable LTI dynamic system ( qs (t)  stationary WN)

(69)  
dxs (t)

dt
 Asxs (t)  Bsqs (t)

(70)  n(t)  Csxs (t)  Dsqs (t)
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Additional Assumptions

• The assumed stability of the dynamic systems that generate the 

disturbance and the sensor noise satisfy the required 

stabilizability and detectability assumptions for a well-posed 

steady-state KBF

• Since the plant may be unstable, we need to be sure that all 

unstable modes of the plant are observable, so the pair [Ap,Cp]

must be detectable (the modes of the disturbance dynamics are 

assumed to be all stable so that they are automatically 

detectable)

• We also must ensure that all plant unstable modes are 

controllable from the plant white noise.  In this case the plant 

white noise comes from xd(t) in the disturbance dynamics, so the 

pair [Ap, Lp] must be stabilizable

• Both matrices  Ds and Mp must be invertible, so that there 

always exists some white noise corrupting the measurements
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Visualization

xp

.
xp

Ap

Cp

u

z

xd

.
xd

Ad

Cd

xs

.

xs

As

Cs
n

d

d

n

Lp MpBp

r
-

z

u

Hp

Hd

Hs

Filter
^^

^

^

^

^

^

^

^^

^
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Steady-State KBF Equations

  The plant - state estimates  ̂  x p (t) are generated by

(71)  
dˆ x p (t)

dt
 Ap ˆ x p (t)  Bpu(t) Lp Cd ˆ x d (t)

ˆ d (t )

 Hpr(t)

  The disturbance - state estimates  ̂  x d (t) are generated by

(72)  
dˆ x d (t)

dt
 Ad ˆ x d (t)  Hd r(t); ˆ d (t)  Cd ˆ x d (t)

  The sensor noise state estimates  ̂  x s (t) are generated by

(73)  
dˆ x s (t)

dt
 As ˆ x s (t)  Hsr(t); ˆ n (t)  Cs ˆ x s (t)

  The residual vector  r(t) is defined by

(74)  r(t)  z(t) Cp ˆ x p (t)  M p Cs ˆ x s (t)

ˆ n (t )

  The constant KBF gain -matrices are  Hp np mp , Hd nd mp ,

Hs ns mp   in eqs. (71), (72), (73), respectively
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Steady-State Covariances

  For the constant matrix case we use the obvious definitions

(75)    A 

Ap LpCd 0

0 Ad 0

0 0 As

















;  C  Cp 0 M pCs ; x(t) 
xd (t)

qs (t)









;

     q(t)  M pDsqs (t);  
I 0

0 I







; 

0

D s M p









;  Mp Ds D s M p

  We use the above augmented matrices to solve the modified

    algebraic Riccati equation (34), where   e decomposes to

(76)  e 

 pp  pd  ps

pd dd ds

ps ds  ss

















  Note that the diagonal - blocks matrices   pp, dd ,  ss,  are the 

    covariance matrices of the plant- state, disturbance - state, and 

    sensor - noise - state, respectively
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Steady-State KBF Gains

  We use eq. (33) and the augmented matrices to calculate the 

    constant  filter - gain matrix  He

(77)  He 

Hp

Hd

Hs

















np  mp matrix

nd  mp matrix

ns mp matrix

    which are required to implement the state - estimators of eqs. 

    (71) to (73)



38

Concluding Remarks

• Accurate modeling of colored disturbance and sensor-noise 

random processes greatly improves the performance of the KBF

• It turns out that disturbance and/or sensor-noise modeling is 

particularly useful when one designs optimal feedback control 

systems that must have superior performance in disturbance-

rejection and insensitivity to sensor noise

• Even though the complexity of the KBF increases, due to the 

augmented dynamics, this is typically justified because of 

performance gains
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