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First, summarize the results of the extended Kalman filter (EKF)
algorithm for the case of continuous-time nonlinear dynamics
and continuous-time nonlinear sensor measurements

 as in the corresponding discrete-time nonlinear EKF
algorithm, we must calculate on-line the (pseudo) covariance
maitrix, using the current value of the estimated state-vector,
and then calculate the EKF gain matrix (also on-line)

Second, summarize the results of the extended Kalman filter
(EKF) algorithm for the case of continuous-time nonlinear
dynamics and discrete-time nonlinear sensor measurements

« equations look “messy”, due to time indexing
» equations split into “predict” and “update” cycles

« we must calculate on-line the (pseudo) covariance matrix,
using the current value of the estimated state-vector, and
then calculate the EKF gain matrix (also on-line)
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PLANT-SENSOR DYNAMICS

di;f) = f(x(2), u(t), &(1))

2(1) = g(x(1), 0(1))

UNCERTAINTY MODELS
E{x(to)} = Xg, cov[x(to); x(to)] =2
E{f(t)} =0, cov[f(t); (f(r)] = Z(t)o(t—1)
E{6(t)} =0;cov[f(t), 8(T)|=O(t)d(t — 1)
X(ty), &(t), 6(t) independent




 The EKF uses a replica of the nonlinear plant and sensor
dynamics, correcting the state-estimate by a linear gain matrix,
H(t), multiplying the residual vector, r(t)
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e State - estimate vector x(z) is generated by solving the nonlinear
differential equations (on-line)
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e The EKF gain matrix H(t) must be determined. It turns out that

H(t) must be computed on -line



e Given the state -nonlinearity, f(x(2), u(z), &t)), and the sensor
nonlinearity, g(x(z), 6(t)), we compute on - line the following Jacobian
matrices, i.e. matrices of first partial derivatives, using the current
EKF state -estimate x(z), and the means of &(t), 6(t) which are
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e First, solve on-line the (pseudo) covariance matrix differential equation

(2) dit(t) A(t)Z(t) + Z(t)A () +L(t):(t)L ()
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e Then calculate on -line the EKF gain matrix H(t)
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e The EKF residual is (approximately) zero-mean
continuous - time white noise

r(t) = z(t) — g(x(1), 0)
E{r(t)} =0
cofr(1); r(7)]= Efr()r' ()} = DOOWD' ()51~ )



Concluding Remarks

The extended Kalman filter (EKF) is a suboptimal estimator

 the optimal state estimator cannot be implemented, because
it requires on-line solution of nonlinear partial differential
equations, for the nongaussian conditional pdf of the state

Unlike the linear Kalman-Bucy filter, the EKF requires the on-
line calculation of the solution matrix, 2{t), of the (pseudo)
covariance matrix differential equation so as to calculate, also
on-line, the required EKF gain matrix, H(t)

It is possible to also derive the 2nd order filter equations

Thus, for an n-dimensional state equation, we need to solve a
total of n+[n(n+1)/2] nonlinear, time-varying, scalar differential
equations

* n to generate the state-estimate vector

* n(n+1)/2 to generate the symmetric positive-semidefinite
(pseudo) covariance matrix, 2{t)
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Given previous development, it is easy to establish the EKF
equations when

 the plant is described by continuous-time nonlinear
stochastic differential equations

» the noisy measurements occur only at discrete instants of
time and sensors are nonlinear

The notation gets a bit messy, but the concepts follow straight-
forward extensions of previous material

It is convenient to separate the calculations into an “one-step
predict cycle” and an “update cycle”, as in the discrete-time
linear Kalman filter
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e Continuous -time nonlinear plant

(4) dx(

t
)= et u0, &)
e Nonlinear measurements at discrete times: ¢,¢,,...,4,..

dt
(5) 2(ty ) =g(x(ty 1), Oty)) k=0,1,2,..
e Uncertainty models:

(6) E{x(ty)§=Xo; cov[x(ty); x(tg)]= 2

(7) E{5()}=0; coV[&(t); &(r)]=Z()o(t~-1)
(8) E{0(t,)}=0; cov[@(tk ); 0t )]: O(t)5,,;,
(9) x(ty), &(t), O(t,.) independent
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o State-estimate ats=1¢,,,, xX(%.; | t;), before measurement
z(t,.1), 1S solution at ¢ =¢, ., of the nonlinear differential equation

d);if) = f(£(1), u(t),0); X(t,) =Xt | t,); X(ty)=%(ty | 1) = X,

e Covariance matrixat ¢t =1, 2(t;. | ), before measurement

(10)

z(t;,1), Is solution at ¢ = ¢, , of the nonlinear matrix differential
eguation

(11) d%t) = A()2(t)+ Z(t)A'(t) + L(t)=E1)L' (1),

) =20t | 1), 2(tp) = 2(ty | 1p) = 2
e Ineg. (11) the Jacobian matrices A(z), L(z), are as defined before
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e After the measurementz(y,)) Is obtained,the state estimate

and covariance are updated from their onestep predicted values
e Updated covariance matrix: X't .1 | tx41)

(12) Stpar | tirt) = Ztesr | 8) = 2t | 11)C (trs) -
) ) ) ) 1
'[C(fk+1)2(fk+1 |fk)C’(fk+1)+D(fk+1)@(fk+1)D'(fk+1)] Cltr )21 1 1)

where the Jacobian matrices,é(tk+1), ﬁ(tk+1), are as defined
before and evaluated at the predicted estimateyz, )= x(t,41 | &)
e The EKF gain matrix, H(#,,1), is calculated by

(A3)  Hltpy) = S | hs)C ) [Pl O 0D 1) |

e The updated state estimatex(#,; | 41) IS given by
(14) x(fp1 | i) =X (tgy1 | ) +H(fk+1)[2(fk+1)) —&(* (%11 | fk),O)]
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Most physical applications require the implementation of EKFs
with continuous-time nonlinear plant dynamics and (linear or
nonlinear) discrete-time measurements

- example: radar tracking of orbiting satellites
- example: radar or ladar tracking of aircraft or missiles
« example: sonar tracking of ships or submarines

« example: viral-infection population estimates using
infrequent blood tests

« example: ecological system sampling of competing species
So, results presented are very useful in practice
Once more, it is possible to derive the 2nd-order filter equations
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