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Theme

• First, summarize the results of the extended Kalman filter (EKF) 

algorithm for the case of continuous-time nonlinear dynamics

and continuous-time nonlinear sensor measurements

• as in the corresponding discrete-time nonlinear EKF 

algorithm, we must calculate on-line the (pseudo) covariance 

matrix, using the current value of the estimated state-vector, 

and then calculate the EKF gain matrix (also on-line)

• Second, summarize the results of the extended Kalman filter 

(EKF) algorithm for the case of continuous-time nonlinear 

dynamics and discrete-time nonlinear sensor measurements

• equations look “messy”, due to time indexing

• equations split into “predict” and “update” cycles

• we must calculate on-line the (pseudo) covariance matrix, 

using the current value of the estimated state-vector, and 

then calculate the EKF gain matrix (also on-line)



Part I:  Continuous Time Dynamics and

Continuous Time Measurements
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Plant and Sensor Modeling

PLANT- SENSOR DYNAMICS

dx(t)

dt
f x(t), u(t), (t)

z(t) g x(t), (t)

     UNCERTAINTY MODELS

E x(t0 ) x 0 ;cov x(t0 ); x(t0 ) 0

E (t) 0;cov (t); ( ) (t) (t )

E (t) 0;cov (t); ( ) (t) (t )

x(t0 ), (t), ( ) independent

u(t)

(t)

x(t) x(t) z(t)

x(t0) (t)

g(.,.)f(.,.,.)

.
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Structure of the EKF

• The EKF uses a replica of the nonlinear plant and sensor 

dynamics, correcting the state-estimate by a linear gain matrix, 

H(t), multiplying the residual vector, r(t)

u(t)

(t)

x(t) x(t) z(t)

x(t0) (t)

g(.,.)f(.,.,.)

.

u(t) x(t) x(t)

z(t)

x0 (t)=0

g(.,.)f(.,.,.)

.

+

-

(t)=0
- -

^ ^

^

-

Real

EKF

H(t)

EKF gain

r(t)
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EKF State-Estimate Equations

  State - estimate vector  ̂  x (t)  is generated by solving the nonlinear

    differential equations (on- line)

(1)  
dˆ x (t)

dt
f ˆ x (t), u(t),0 H(t) z(t) g ˆ x (t),0

r(t )

; ˆ x (t0 ) x 0

  The EKF gain matrix  H(t) must be determined.  It turns out that

   H(t)  must  be computed on - line

u(t) x(t) x(t)

z(t)

x0 (t)=0

g(.,.)f(.,.,.)

.

+

-

(t)=0
- -

^ ^

^

-H(t)

EKF gain

r(t)

z(t)
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Notation: Jacobian Matrices

  Given the state -nonlinearity,  f x(t), u(t), (t) , and the sensor

    nonlinearity,  g x(t), (t) ,  we compute on - line the following Jacobian 

    matrices, i.e. matrices of first partial derivatives, using the current 

    EKF state -estimate  ˆ x (t),   and the means of  (t), (t)  which are

    zero

(1a) ˆ A (t)
f x,u,

x
x ˆ x (t), u(t ),0

; ˆ L (t)
f x,u,

x ˆ x (t ),u(t),0

ˆ C (t)
g x,

x x ˆ x (t ), 0

; ˆ D (t)
g x,

x ˆ x (t ),0
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EKF Gain Matrix Calculation

  First,  solve on - line the (pseudo) covariance matrix differential equation

(2)  
d (t)

dt
ˆ A (t) (t) (t) ˆ A (t) ˆ L (t) (t) ˆ L (t)

(t) ˆ C (t) ˆ D (t) (t) ˆ D (t)
1 ˆ C (t) (t); (t0 ) 0

  Then calculate on - line the EKF gain matrix  H(t)

(3)  H(t) (t) ˆ C (t) ˆ D (t) (t) ˆ D (t)
1

u(t) x(t) x(t)

z(t)

x0 (t)=0

g(.,.)f(.,.,.)

.

+

-

(t)=0
- -

^ ^

^

-H(t)

EKF gain

r(t)

z(t)
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EKF Residual

  The EKF residual is (approximately) zero -mean 

    continuous - time white noise

r(t) z(t) g ˆ x (t),0

E r(t) 0

cov r(t); r( ) E r(t)r ( ) ˆ D (t) (t) ˆ D (t) (t )

u(t) x(t) x(t)

z(t)

x0 (t)=0

g(.,.)f(.,.,.)

.

+

-

(t)=0
- -

^ ^

^

-H(t)

EKF gain

r(t)

z(t)
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Concluding Remarks

• The extended Kalman filter (EKF) is a suboptimal estimator

• the optimal state estimator cannot be implemented, because 

it requires on-line solution of nonlinear partial differential 

equations, for the nongaussian conditional pdf of the state

• Unlike the linear Kalman-Bucy filter, the EKF requires the on-

line calculation of the solution matrix, (t), of the (pseudo) 

covariance matrix differential equation so as to calculate, also 

on-line, the required EKF gain matrix, H(t)

• It is possible to also derive the 2nd order filter equations 

• Thus, for an n-dimensional state equation, we need to solve a 

total of n+[n(n+1)/2] nonlinear, time-varying, scalar differential 

equations

• n to generate the state-estimate vector

• n(n+1)/2 to generate the symmetric positive-semidefinite 

(pseudo) covariance matrix, (t)



Part II: Continuous Time Dynamics and 

Discrete Time Measurements
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Continuous-Time Dynamics, 

Discrete-Time Measurements

• Given previous development, it is easy to establish the EKF 

equations when

• the plant is described by continuous-time nonlinear 

stochastic differential equations

• the noisy measurements occur only at discrete instants of 

time and sensors are nonlinear

• The notation gets a bit messy, but the concepts follow straight-

forward extensions of previous material

• It is convenient to separate the calculations into an “one-step 

predict cycle” and an “update cycle”, as in the discrete-time 

linear Kalman filter
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Mathematical Modeling

  Continuous - time nonlinear plant

(4)  
dx(t)

dt
f x(t), u(t), (t)

  Nonlinear measurements at discrete times:  t1, t2, ...,tk ,..

(5)  z(tk 1) g x(tk 1), (tk 1) ; k 0,1,2,...

  Uncertainty models:

(6)  E x(t0 ) x 0 ; cov x(t0 ); x(t0 ) 0

(7)  E (t) 0; cov (t); ( ) (t) (t )

(8)  E (tk ) 0; cov (tk ); (t j ) (tk ) tk t j

(9)  x(t0 ), (t), (tk )  independent
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One-Step Predict Cycle

  State - estimate at t tk 1,  ˆ x (tk 1 | tk ), before measurement

    z(tk 1),  is solution at  t tk 1 of the nonlinear differential equation 

(10)  
dˆ x (t)

dt
f ˆ x (t), u(t),0 ; ˆ x (tk ) ˆ x (tk | tk ); ˆ x (t0 ) ˆ x (t0 | t0 ) x 0

  Covariance matrix at  t tk 1,  (tk 1 | tk ), before measurement

    z(tk 1),   is solution at  t tk 1 of the nonlinear matrix differential 

    equation

(11)  
d (t)

dt
ˆ A (t) (t) (t) ˆ A (t) ˆ L (t) (t) ˆ L (t),

(tk ) (tk | tk ); (t0 ) (t0 | t0 ) 0

  In eq. (11) the Jacobian matrices  ˆ A (t), ˆ L (t),   are as defined before
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Update Cycle

  After the measurement  z(tk 1))  is obtained, the state estimate

    and covariance are updated from their one - step predicted values

  Updated covariance matrix:  (tk 1 | tk 1)

(12)  (tk 1 | tk 1) (tk 1 | tk ) (tk 1 | tk ) ˆ C (tk 1)

ˆ C (tk 1) (tk 1 | tk ) ˆ C (tk 1) ˆ D (tk 1) (tk 1) ˆ D (tk 1)
1
. ˆ C (tk 1) (tk 1 | tk )

    where the Jacobian matrices,  ˆ C (tk 1),
ˆ D (tk 1),  are as defined

     before and evaluated at the predicted estimate,  x(tk 1) ˆ x (tk 1 | tk )

  The EKF gain matrix,  H(tk 1),  is calculated by

(13)  H(tk 1) (tk 1 | tk 1) ˆ C (tk 1)
ˆ D (tk 1) (tk 1) ˆ D (tk 1)

1

  The updated state estimate, ˆ x (tk 1 | tk 1)  is g iven by

(14)  ̂  x (tk 1 | tk 1) ˆ x (tk 1 | tk ) H(tk 1) z(tk 1)) g ˆ x (tk 1 | tk ),0
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Visualization
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Concluding Remarks

• Most physical applications require the implementation of EKFs 

with continuous-time nonlinear plant dynamics and (linear or 

nonlinear) discrete-time measurements

• example: radar tracking of orbiting satellites

• example: radar or ladar tracking of aircraft or missiles

• example: sonar tracking of ships or submarines

• example: viral-infection population estimates using 

infrequent blood tests

• example: ecological system sampling of competing species

• So, results presented are very useful in practice

• Once more, it is possible to derive the 2nd-order filter equations
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