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The Bad News

• If the state dynamics and/or the sensor equations are nonlinear, 

it is computationally infeasible to compute an “optimal” state-

estimate, i.e. to calculate in real-time the true conditional mean 

of the state and its associated conditional covariance matrix

• The basic reason is that even if we make gaussian assumptions 

on the plant state, the plant white noise sequence, and the 

sensor white noise sequence, the conditional probability density 

function  p(x(t)|Z(t)) is not gaussian

• therefore, its dynamic evolution cannot be described in terms 

of its mean and covariance

• Therefore, for nonlinear estimation and filtering problems we are 

forced to use suboptimal algorithms

• The sophistication of the nonlinear filtering algorithm used will 

depend on the amount of real-time computational resources 

available
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Theme

• We concentrate on general discrete-time nonlinear dynamical 

systems and nonlinear noisy sensors

• we shall examine later systems with continuous-time 

dynamics

• We present, discuss and summarize the two most popular 

suboptimal nonlinear filtering algorithms, [1]-[6]

• the “Extended Kalman Filter (EKF)”

• the “Second-Order Filter (SOF)”, or Gaussian filter

• The SOF requires a modest increase in the real-time 

computational requirements as compared with the EKF

• Unlike the linear Kalman filter case, both the EKF and the SOF 

require the on-line calculation of both the (pseudo) covariance 

matrix equations and of the nonlinear filter gain-matrix

• There is no a-priori guarantee that either the EKF or the SOF 

will “work well” in a particular application 
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Plant and Sensor Model

  Discrete- time index:   t 0,1,2,...

  Nonlinear state - dynamics:   x(t 1) f x(t),u(t), (t), t

  Nonlinear sensor measurements:  z(t 1) h x(t 1), (t 1), t 1
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Aircraft Tracking

          PROBLEM

 Estimate aircraft positions and

  velocities in inertial coordinates

  based on noisy radar measurements

 Aircraft dynamics are nonlinear

  (exponential atmosphere,

  quadratic - in - speed drag forces)

RADAR MEASUREMENTS

Range:   R x2 y2 z2

Azimuth:   tan 1 y

x

Elevation:   tan 1 z

x2 y2

  Measurement noise intensity 

    may depend on the state

    (state - dependent noise)

  Typically noise variance

    increases with range
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Submarine Tracking

  Passive sonar tracking:

    measure only azimuth

         tan 1 y

x

  Active sonar tracking:

    measure range

         R x2 y2

    and azimuth

  Variance of sensor noise

     may depend on range

• • • • • •

Enemy Sub

Our Sub Towed-array

R

y

x
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Satellite Tracking

  Satellite dynamics are nonlinear,  due to inverse - square law

  One or more radars measure the range to the satellite,  and 

    associated azimuth and elevations angles

  All measurements are nonlinear functions of the satellite

    inertial coordinates

o

Earth

Orbit

satellite
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On-Line Parameter Estimation

  Given a linear discrete - time system with one or more uncertain

    parameters

  If we are interested in estimating the parameters,   in addition to the

    state variables, we have a nonlinear estimation problem

  Example:   a is a scalar uncertain parameter in 1st- order LTI system

    x(t 1) ax(t) (t); z(t 1) x(t 1) (t 1)

    define:   x1(t) x(t); x2 (t) a.  It follows that:

    
x1(t 1) x1(t) x2 (t) (t)

x2 (t 1) x2 (t)

z(t 1) x1(t 1) (t 1)

    which represents a nonlinear filtering problem
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Historical Perspective

• P. Swerling in 1959 published the first paper that uses an EKF 

algorithm for satellite orbit estimation, Ref. [5]

• Swerling’s paper preceded the publication of the Kalman 

filter papers by more than a year

• R.E. Kalman had nothing to do with the EKF nonlinear filter

• The navigation system of the manned Apollo mission to the 

moon was based upon the EKF algorithm

• Space navigation, satellite orbit determination, inertial navigation 

systems and surveillance systems for aircraft, ships, submarines 

and missiles provided a very fertile ground for the explosive 

development, during the 1960’s, in the theory, algorithms and 

applications of nonlinear filtering
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Mathematical Modeling

  Time - index:   t 0,1,2, ..

  State dynamics

(1)  x(t 1) f x(t),u(t), (t), t

x(t) Rn ,u(t) Rq , (t) Rp

  Measurements

(2)  z(t 1) h x(t 1), (t 1), t 1

z(t) Rm , (t) Rm

  Initial state  x(0) ~ N x 0 , 0

  Plant white noise is gaussian

(3)  E (t) 0, E (t) ( ) (t) t

  Sensor white noise is gaussian

(4)  E (t) 0, E (t) ( ) (t) t

  x(0), (t), ( )  independent  t,

    FURTHER ASSUMPTIONS

  The functions  f x,u, , t   and

h x, , t   are continuous and

    continuously differentiable

  The inverse function

h 1 x, z, t

    must exist for all  x, t
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The Conditional Density Function

  Let the set of past controls and measurements be denoted by    Z(t)

(5) Z(t) z(1), z(2), ..., z(t); u(0), u(1), ...,u(t 1)

  Ideally (as in the linear case) we would like to calculate the true

    conditional pdf of the state   p x(t) | Z(t)   so that we can use as

    state - estimate the conditional mean,   E x(t) | Z(t) ,   and compute

    the conditional covariance,  cov x(t); x(t) | Z(t)

  Even though the initial state,  plant noise and sensor noise were 

    assumed gaussian, the state nonlinearity  f .,.,., .   and / or the

    sensor nonlinearity  h ., .,.   "destroy"  the gaussian characteristics

  In general,   p x(t) | Z(t)   is not gaussian,  and its dynamic evolution

    requires the on- line solution of complex partial differential equations 

  Therefore, we cannot compute on - line the desired conditional mean

    E x(t) | Z(t)  and conditional covariance  cov x(t); x(t) | Z(t)

  We must be satisfied with sub - optimal algorithms to obtain a state -

    estimate,  denoted by  ˆ x (t | t),   and associated covariance  (t | t)
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The Basic Problem

  Suppose that  x  is a scalar - valued random variable with pdf  p x

  Then the expected value (mean) is given by

(6)  x E x xp x dx

  Let  f ( x)  be a nonlinear function of the random variable  x.  Then

(7)  E f (x) f (x)p(x)dx

  However,  

(8)  E f (x) f E x f (x )
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Taylor Series Approximations

  Assuming that the function  f (x)  is smooth and continuously

    differentiable,  we can use a Taylor series expansion of    f (x)  about

    x x ,   i.e.

(9)  f (x) f (x )
f (x)

x x x 

x x 
1

2!

f 2 (x)

x2
x x 

x x 2 h.o.t

(10)  E f (x) f (x )
f (x)

x x x 

E x x 
1

2!

f 2 (x)

x2
x x 

E x x 2

  But  E x x 0,   and letting    denote the variance,  E x x 2

(11)  E f (x) f (x )
1

2!

f 2 (x)

x2
x x 

  We note that the approximation is valid if indeed the third and higher -

    order terms in the Taylor series expansion can be neglected.  Indeed,

    if we also neglect the quadratic terms we obtain the simple relation

(12)  E f (x) f (x )
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Discussion

  In the sequel,  we shall discuss two different (but related) nonlinear 

    filtering algorithms

     the simplest is the " Extended Kalman Filter"  or EKF

     the more complicated is the " Second- Order Filter" or SOF

  Because we deal with vector - valued random variables the notation

    will get more complicated.  However,  roughly speaking,  the EKF 

    will use the simpler approximation given by eq. (12),  i.e.

(13)  E f (x) f (x )

    while the SOF will use the approximation given by eq. (11),   i.e.

(14)  E f (x) f (x )
1

2

2 f ( x)

x2
x x 

     where  x   is the mean and    is the variance of  x,   i.e.

(16)  x E x , E x x 2
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Notation: State-Estimates and Covariances

  For both the EKF and the SOF we use the notation (as in linear case)

ˆ x (t | t)  updated estimate of  x(t)  given data set  Z(t)  -   see eq. (5)

ˆ x (t 1 | t)  predicted estimate of  x(t 1)  given data set  u(t), Z(t) ,

    i.e. before the measurement   z(t 1)  is obtained

  We hope that these approximate the true conditional means,   i.e.

(17)  ˆ x (t | t) E x(t) | Z(t)

(18)  ˆ x (t 1 | t) E x(t 1) | u(t), Z(t)

  Similar notation is used for the state (pseudo) covariances

(t | t) =  updated covariance of  x(t)  given data set  Z(t)  

(t 1 | t) =  predicted covariance of  x(t 1)  given data set  u(t), Z(t)

    and we hope that

(19)  (t | t) cov x(t); x(t) | Z(t)

(20)  (t 1 | t) cov x(t 1); x(t 1) | u(t), Z(t)
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Predict Cycle Comparisons

  REAL SYSTEM

(21)  x(t 1) f x(t), u(t), (t), t

  EXTENDED KALMAN FILTER

(22)  ˆ x (t 1 | t) f ˆ x (t | t), u(t), 0, t

  SECOND- ORDER FILTER

(23) ˆ x (t 1 | t) f ˆ x (t | t),u(t), 0, t v(t)

v(t) = predict - bias (to be found)

  Both the EKF and the SOF use the

    nonlinear state dynamics to generate

    the predict estimate from the updated

    estimate
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Update Cycle Comparisons

  REAL SYSTEM

(24)  z(t 1) h x(t 1), (t 1), t 1

  RESIDUAL (both EKF and SOF)

(25)  r(t 1) z(t 1) ˆ z (t 1)

z(t 1) h x(t 1),0, t 1

  EKF update

(26)  ̂  x (t 1 | t 1) ˆ x (t 1 | t)

H(t 1)r(t 1)

  SOF update:  w(t 1) update -bias

(27)  ̂  x (t 1 | t 1) ˆ x (t 1 | t)

H(t 1)r(t 1) w(t 1)
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Vector Taylor Series Expansions, I

  We deal with vector - valued functions of a vector

(28) x Rm; g(x): Rm Rn

(29) g(x)

g1(x)

g2 (x)

...

gn (x)

g1(x1, x2, ...,xm )

g2 (x1, x2, ...,xm )

...

gn (x1, x2, ...,xm )

  Jacobian matrix (matrix of first partial derivatives)

(30)
g(x)

x

g1(x)

x1

g1(x)

x2
...

g1(x)

xm

g2 (x)

x1

g2 (x)

x2
...

g2 (x)

xm
... ... ... ...

gn (x)

x1

gn(x)

x2
...

gn (x)

xm

  an n m  matrix
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Vector Taylor Series Expansions, II

  Hessian matrix (matrix of second partial derivatives).  Consider the

    k - th scalar element of the vector  g(x), gk ( x) gk (x1, x2, ...,xm )

(31)
2gk (x)

x2
 

2gk (x)

x1
2

2gk (x)

x1 x2
...

2gk ( x)

x1 xm
2gk (x)

x2 x1

2gk (x)

x2
2

...
2gk ( x)

x2 xm
... ... ... ...

2gk (x)

xm x1

2gk (x)

xm x2
...

2gk ( x)

xm
2

 ; k 1,2,...,n

  The Hessian matrix 
2gk (x)

x2
   is a symmetric  m m  matrix,  

    because

(32)  
2gk (x)

xi x j

2gk ( x)

x j xi

i, j 1,2,...,m; k 1,2, ...,n
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Vector Taylor Series Expansions, III

  Multivariable Taylor series expansion of   g(x)  about  x x0  

(33)  g(x) g(x0 )
g(x)

x x x0

(x x0 )

1

2
ek

k 1

n

(x x0 ) 
2g(x)

x2
x x0

(x x0 ) h.o.t.

    where  h.o.t.  means "higher - order terms"  and  ek Rn   is a "unit"  

    column vector,  with 0 in each element,  except in the k - th row,  i.e.

(34)  ek

0

0

...

1

...

0

k th row
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Jacobian Matrices for EKF and SOF

  State - dynamics nonlinearity:    f ( x,u, , t).  The Jacobian matrices

    ˆ A (t)  and  ˆ L (t) are evaluated at the updated state - estimate  ˆ x (t | t)

(35)  ˆ A (t)
f ( x,u, , t)

x x ˆ x (t |t ), 0

; ˆ A (t): n n

(36)  ˆ L (t)
f ( x,u, , t)

x ˆ x (t | t), 0

; ˆ L (t): n p

  Sensor nonlinearity:    h(x, , t). The Jacobian matrices  ˆ C (t 1)

    and  ˆ D (t 1)  are evaluated at the predicted state - estimate  ˆ x (t 1 | t)

(37)  ˆ C (t 1)
h(x, , t)

x x ˆ x (t 1|t ), 0

; ˆ C (t 1): m n

(38)  ˆ D (t 1)
h(x, , t)

x ˆ x (t 1| t), 0

; ˆ D (t 1): m m

(39)        ˆ D 1(t 1)  exists
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Hessian Matrices for the SOF, I

  State nonlinearity:   f x,u, , t   with k - th row  fk x,u, , t ; k 1,2,...,n

(40)  f x,u, , t

f1 x,u, , t

f2 x,u, , t

...

fn x, u, , t

(41)  ˆ F k (t)

2 fk x, u, , t

x2
x ˆ x (t |t ),u(t ), 0

; n n matrix

(42)  ˆ G k (t)
2 fk x,u, , t

2

x ˆ x (t |t ),u(t), 0

; p p matrix

(43)  ˆ N k (t)
2 fk x, u, , t

x
x ˆ x (t |t ),u(t ), 0

; n p matrix
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Hessian Matrices for the SOF, II

  Sensor nonlinearity:   h x, , t   with j - th row  hj x, , t ; j 1,2,...,m

(44)  h x, , t

h1 x, , t

h2 x, , t

...

hm x, , t

(45)  ˆ M j (t 1)

2h j x, , t

x2
x ˆ x (t 1|t ), 0

; n n matrix

(46)  ˆ Q j (t 1)

2hj x, , t

2

x ˆ x (t 1|t ), 0

; m m matrix

(47)  ˆ R j (t 1)

2hj x, , t

x
x ˆ x (t 1| t), 0

; n m matrix
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The EKF Equations:  Summary

                                  PREDICT CYCLE

  State predict estimate:

(48)  ˆ x (t 1 | t) f ˆ x (t | t), u(t),0, t ; ˆ x (0 | 0) E x(0) x 0

  Covariance propagation:  ˆ A (t), ˆ L (t)  evaluated at  ˆ x (t | t),  eqs. (35),(36)

(49)  (t 1 | t) ˆ A (t) (t | t) ˆ A (t) ˆ L (t) (t) ˆ L (t); (0 | 0) 0

                                  UPDATE CYCLE

  Updated covariance: ˆ C (t 1), ˆ D (t 1)   evaluated at  ˆ x (t 1 | t),  eqs. (37),(38)

(50)  (t 1 | t 1) (t 1 | t) (t 1 | t) ˆ C (t 1)

ˆ C (t 1) (t 1 | t) ˆ C (t 1) ˆ D (t 1) (t 1) ˆ D (t 1)
1 ˆ C (t 1) (t 1 | t)

  EKF gain matrix:

(51)  H(t 1) (t 1 | t 1) ˆ C (t 1) ˆ D (t 1) (t 1) ˆ D (t 1)
1

  State update estimate:

(52)  ˆ x (t 1 | t 1)  ˆ x (t 1 | t) H(t 1) z(t 1) h ˆ x (t 1 | t),0, t 1
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The SOF:  Predict Cycle Summary

  State predict estimate:   ˆ F k (t), ˆ G k (t) evaluated at  ˆ x (t | t),  see (41),(42)

(53)  ̂  x (t 1 | t) f ˆ x (t | t),u(t),0, t v(t); ˆ x (0 | 0) x 0; (0 | 0) 0

(54)  v(t)
1

2
ek tr ˆ F k (t) (t | t) tr ˆ G k (t) (t)

k 1

n

  Covariance prediction: ˆ A (t), ˆ L (t) evaluated at  ˆ x (t | t),   see (35),(36)

(55)  (t 1 | t) ˆ A (t) (t | t) ˆ A (t) ˆ L (t) (t) ˆ L (t); (0 | 0) 0

  Note that the predict -bias term  v(t)  is significant if at  ˆ x (t | t)

    (a)  the state nonlinearity   f (.) has significant x - direction 

    curvature,  ˆ F k (t),  and state covariance  (t | t)  is large,  and / or

    (b)  the state nonlinearity   f (.) has significant - direction 

    curvature,  ˆ G k (t), and plant - noise covariance  (t)  is large
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The SOF:  Update Cycle Summary

  Covariance update:  ˆ C (t 1), ˆ D (t 1)  evaluated at  ˆ x (t 1 | t),  see (37),(38)

(56)  (t 1 | t 1) (t 1 | t) (t 1 | t) ˆ C (t 1)

ˆ C (t 1) (t 1 | t) ˆ C (t 1) ˆ D (t 1) (t 1) ˆ D (t 1)
1 ˆ C (t 1) (t 1 | t)

  SOF gain matrix:

(57)  H(t 1) (t 1 | t 1) ˆ C (t 1) ˆ D (t 1) (t 1) ˆ D (t 1)
1

  Update - bias term:  ˆ M j (t 1), ˆ Q j (t 1) evaluated at  ˆ x (t 1 | t),  see (45),(46)

    with  e j Rm   being the " unit"  vector

(58)  w(t 1)
1

2
H(t 1)

e j tr ˆ M j (t 1) (t 1 | t) tr ˆ Q j (t 1) (t 1)

j 1

m

  State update estimate:

(59)  ˆ x (t 1 | t 1) ˆ x (t 1 | t)

H(t 1) z(t 1) h ˆ x (t 1 | t),0, t 1 w(t 1)
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The SOF Update-Bias Term

  In the SOF the state -update (59) includes the bias correction term

(60)  w(t 1)
1

2
H(t 1)

e j tr ˆ M j (t 1) (t 1 | t) tr ˆ Q j (t 1) (t 1)

j 1

m

  This term is significant if at the predicted estimate   ˆ x (t 1 | t)

   (a). the sensor nonlinearity  h(x, , t)  has significant curvature in the

       x direction, ˆ M j (t 1),  and large covariance  (t 1 | t),   and / or

   (b). the sensor nonlinearity  h(x, , t)  has significant curvature in the

      direction, ˆ Q j (t 1),  and large sensor - noise covariance  (t 1)  

  For the SOF,  some authors [1], [4],  [6] also include another correction 

    term in the updated covariance of eq. (56) and the SOF gain of 

    eq. (57),  which involve double - sum terms of the type  tr ˆ M i
ˆ M j
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Equation Flow-Chart for SOF
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Elements of Proof: SOF Predict Cycle, I

  Update estimation error:  ˜ x (t | t) x(t) ˆ x (t | t)

  Predict estimation error:  ˜ x (t 1 | t) x(t 1) ˆ x (t 1 | t)

(61)  x(t 1) f x(t), u(t), (t), t

(62)  ˆ x (t 1 | t) f ˆ x (t | t), u(t),0, t v(t)   ;    for EKF  v(t) 0

(63)  ˜ x (t 1 | t) f x(t),u(t), (t), t f ˆ x (t | t),u(t),0, t v(t)

  Expand eq. (63) in a Taylor series up to quadratic terms

(64)  ˜ x (t 1 | t) ˆ A (t) ˜ x (t | t) ˆ L (t) (t)

1

2
ek

k 1

n

˜ x (t | t) ˆ F k (t) ˜ x (t | t)
1

2
ek

k 1

n

(t) ˆ G k (t) (t)

ek

k 1

n

˜ x (t | t) ˆ N k (t) (t) v(t)

    where the Jacobian matrices  ˆ A (t), ˆ L (t)   are given by eqs. (35) and (36) 

     and the Hessian matrices  ˆ F k (t), ˆ G k (t), ˆ N k (t)  are given by eqs. (41) to (43)
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Elements of Proof: SOF Predict Cycle, II

  Take expectations of both sides of eq. (64)

(65)  E{ ˜ x (t 1 | t)} ˆ A (t)E{ ˜ x (t | t)} ˆ L (t)E{ (t)}

1

2
ek

k 1

n

E{ ˜ x (t | t) ˆ F k (t) ˜ x (t | t)}
1

2
ek

k 1

n

E{ (t) ˆ G k (t) (t)}

ek E{

k 1

n

˜ x (t | t) ˆ N k (t) (t)} v(t)

  Assume  E ˜ x (t | t) 0,   and require  E ˜ x (t 1 | t) 0 to obtain,

    noting that  ˜ x (t | t)  and (t)  are independent,  and

(66)   E{ ˜ x (t | t) ˆ F k (t) ˜ x (t | t)} tr ˆ F k (t) E{ ˜ x (t | t) ˜ x (t | t)}

(67)   E{ (t) ˆ G k (t) (t)} tr ˆ G k (t) E{ (t) (t)}

(68)  v(t)
1

2
ektr ˆ F k (t) (t | t)

k 1

n
1

2
ektr ˆ G k (t) (t)

k 1

n

  (for EKF v(t) 0)
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Elements of Proof:  SOF Update Cycle, I

  Examine the state - update equation for SOF  (for EKF  w(t 1) 0)

(69)  z(t 1) h x(t 1), (t 1), t 1

(70)  ̂  x (t 1 | t 1) ˆ x (t 1 | t) H(t 1) z(t 1) h ˆ x (t 1 | t),0, t 1 w(t 1)

= ˆ x (t 1 | t) H(t 1) h x(t 1), (t 1), t 1 h ˆ x (t 1 | t),0, t 1 w(t 1)

  Let:     ˜ x (t 1 | t 1) x(t 1) ˆ x (t 1 | t 1); ˜ x (t 1 | t) x(t 1) ˆ x (t 1 | t)

  Expand  h x(t 1), (t 1), t 1   in a Taylor series through quadratic terms

(71)  h x(t 1), (t 1), t 1 h ˆ x (t 1 | t), 0, t 1

ˆ C (t 1) ˜ x (t 1 | t) ˆ D (t 1) (t 1)
1

2
e j ˜ x (t 1 | t) ˆ M j (t 1) ˜ x (t 1 | t)

j 1

m

1

2
e j (t 1) ˆ Q j (t 1) (t 1) ej

j 1

m

j 1

m

˜ x (t 1 | t) ˆ R j (t 1) (t 1)

    where  ˆ C (t 1), ˆ D (t 1)  are given by eqs. (37) and (38), and  ˆ M j (t 1),

ˆ Q j (t 1), ˆ R j (t 1)  are given by eqs. (45) to (47)
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Elements of Proof:  SOF Update Cycle, II

  Subtract  x(t 1)  from both sides of eq. (70), change sign,  and substitute

    the Taylor series expansion (71) into eq. (70)

(72)  ˜ x (t 1 | t 1) ˜ x (t 1 | t) H(t 1) ˆ C (t 1) ˜ x (t 1 | t) ˆ D (t 1) (t 1)

H(t 1)
1

2
e j ˜ x (t 1 | t) ˆ M j (t 1) ˜ x (t 1 | t)

j 1

m
1

2
e j (t 1) ˆ Q j (t 1) (t 1)

j 1

m

H(t 1) ej

j 1

m

˜ x (t 1 | t) ˆ R j (t 1) (t 1) w(t 1)    ( w(t 1) 0  for the EKF)

  Take expectations of both sides of eq. (72), assume that  E ˜ x (t 1 | t) 0,

    and require that  E ˜ x (t 1 | t 1) 0,   to obtain the update - bias term

(73)  w(t 1)
1

2
H(t 1) ej tr ˆ M j (t 1) (t 1 | t) tr ˆ Q j (t 1) (t 1)

j 1

m
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Elements of Proof: Covariances, I

  In the EKF we only include linear terms in the Taylor series 

    expansions. Then the covariance equation includes only 

    expected values of quadratic terms in the estimation error   ˜ x (.) .  

  Optimizing the gain matrix  H(t 1)  to minimize the trace

    of the error covariance matrix yields the standard formula

    (51) for  the gain matrix and for the covariance propagation 

    equations  (49) and (50)
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Elements of Proof: Covariances, II

  In the SOF we retain quadratic terms in the Taylor series expansions

  When we calculate the error covariances  (.) E ˜ x (.) ˜ x (.)   using

    either the predict error equation (64) or the update error equation (72)

    we obtain cubic terms that involve expected values of triple   ˜ x (.)

    products and quartic terms that involve expected values of

    quadruple  ˜ x (.)  products

  Some authors, [1],  [4],  [6],  [7],  estimate these "extra" expected

    values,  by making the assumption that the estimation error  ˜ x (.)

    satisfies an approximate gaussian distribution, because one can

    calculate its third and fourth moments from the mean and covariance

  Using the above gaussian assumption one obtains additional correction 

    terms (very very complex)  in the SOF covariance propagation 

    equations and the SOF gain matrix

  The version of the SOF presented does not include these extra

    correction terms
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Other Nonlinear Filters

• More complicated SOF filters include covariance correction 

terms in the covariance propagation and filter gain based on 

approximations to the 3rd and 4th moments of the state-

estimation errors in eqs. (64) and (72) ; see [1], [6], [7]

• For very low-order systems one can include the cubic, quartic 

etc. terms in the Taylor series expansion; see Example 6.2-1 in 

[1]  pp. 209-210

• The “Iterated EKF” algorithm uses iterative methods at each 

predict and update cycle to improve the linearization accuracy; 

see [1] pp. 190-192, and [7]

• The “Statistical Linearization” method uses describing function 

methods to approximate nonlinearities; [1] pp. 204-207
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Problems with Taylor Expansions

  For these type of sensors both the EKF and the SOF will have

    problems,  since the local slopes and curvatures are misleading

  It would be better to approximate the sensor nonlinearity  h(x)  by

    a straight line,  and increase slightly the covariance of the 

    sensor noise



37

Concluding Remarks

• The EKF and SOF algorithms have been extensively used in 

numerous applications

• there is no a-priori guarantee that their performance will be 

satisfactory

• They may even diverge, when the state uncertainty is 

sufficiently large so that the local linearizations (Jacobian 

matrices) and curvature estimates (Hessian matrices) are 

evaluated at state-estimates very far from the true state

• The so-called “Gaussian Sum” nonlinear filter can be used 

whenever the standard EKF and SOF may diverge

• the Gaussian Sum (GS) method employs parallel banks of 

EKFs (or SOFs)

• the GS filter computational requirements are high

• we shall discuss the GS filter in the sequel
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