
1

Multiple-Model Adaptive Estimation 

(MMAE)

MICHAEL ATHANS

MIT & ISR/IST

Last Revised: October 17, 2001

Ref. No. KF # 15



2

Theme

• We discuss a very powerful method, the so-called “Multiple-

Model Adaptive Estimation (MMAE)” algorithm, for combined 

state-estimation and system-identification problems, [1]-[4]

• the MMAE combines hypotheses-testing and state-

estimation

• The detailed results will be presented for linear time-varying 

(LTV) discrete-time systems with Gaussian uncertainties

• we shall take full advantage of the classical discrete-time 

Kalman filter theory for linear-gaussian problems

• we shall provide complete proofs, through extensive use of 

Gaussian conditional density functions and repeated 

applications of Bayes rule, following the development in [1]

• The MMAE framework can be used for suboptimal estimation in 

nonlinear nongaussian situations
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Typical MMAE Applications

• Tracking maneuvering vehicles in aerospace, ground, and 

marine applications, taking into account that applied maneuvers 

are not known to the observer a-priori

• Doing accurate state-estimation for plants with wide uncertainty

in the parameters of the dynamic system and sensors

• Doing accurate state-estimation for nonlinear systems with large 

uncertainties, by employing a family of distinct linearized models

• Initial framework for dealing with multi-target multi-sensor

surveillance and tracking systems
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The MMAE Structure

• The (unknown) plant, that 

generates the data, is one 

(or close to one) of the N 

possible models

• The MMAE algorithm uses 

a bank of N parallel 

(Kalman) filters, each 

matched to one of the N 

models

• Each (Kalman) filter 

generates its own state-

estimate and residual

• Posterior probabilities are 

generated on-line and 

weigh local state-estimates
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LTV Discrete-Time Models

             MODEL OF K - TH PLANT

  Time index:   t  0,1,2, ....

  Model index:   k  1,2, ...,N

x(t +1)  Ak (t)x(t) Bk (t)u(t) Lk (t)(t)

z(t 1)  Ck (t 1)x(t 1)  (t 1)

       PROBABILISTIC INFORMATION

  Initial state:   x(0) ~ N x 0k ,0k 

  Plant disturbance:   (t) ~ N 0, k (t)t 

  Sensor noise:  (t) ~ N 0, k (t)t 

 x(0), (t), ( )  independent for all t,

                            NOTES

  For each model,  indexed by k  1, 2,...,N,

    some or all plant and sensor parameter

    matrices can be different

  For each model,  indexed by k  1, 2,...,N,

    the statistics of the initial state and / or plant

    disturbance and / or sensor noise can

    be different
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MMAE: Problem Formulation

  GIVEN:   prior probabilities,  Pk (0) k  1,2,..., N,

    that nature selects the k - th model to generate

    data,  with

Pk (0)  0, Pk (0)  1
k 0

N



  GIVEN:   the set of past controls

u(0), u(1),u(2), ...,u(t  1)

    and the set of past measurements, including the 

    one at the " present"  time t

z(1), z(2), ..., z(t  1), z(t)

  DETERMINE:  (1) the true conditional mean of

    the present state vector, x(t),  i.e.

ˆ x (t | t)  E x(t) | u(0),u(1), u(2), ...,u(t  1); z(1), z(2), ..., z(t 1), z(t)

Z(t )















    and (2) the true conditional covariance matrix of the 

    present state vector, x(t),  i.e.

 (t | t)  E x(t)  ˆ x (t | t)  x(t)  ˆ x (t | t)  | Z(t) 
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MMAE: Problem Visualization

• The MMAE filter is driven by the sequence of past controls and 

noisy sensor measurements

• The MMAE filter generates both a state-estimate vector and a 

corresponding error-covariance matrix

• The MMAE is a recursive algorithm: it updates the state-

estimate and covariance every time a new control is applied and 

a new sensor measurement is obtained
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Review: The Discrete-Time Kalman Filter

        Kth KALMAN FILTER EQUATIONS

  Predict Cycle:

ˆ x k (t 1 | t)  Ak (t) ˆ x k (t | t)  Bk (t)u(t)

ˆ z k (t 1 | t)  Ck (t 1)ˆ x k (t 1 | t)

  Residual:   rk (t 1)  z(t 1)  ˆ z k (t 1 | t)

  Update Cycle:

ˆ x k (t 1 | t 1)  ˆ x k (t 1 | t)  Hk (t 1)rk (t 1)

  KF Gain Matrix:

Hk (t 1)   k (t 1 | t 1) C k (t 1)k
1(t 1)

       Kth KF COVARIANCE EQUATIONS

  Initialization:    k (0 | 0)  0k

  Predict Cycle:

 k (t 1 | t)  Ak (t) k (t | t) A k (t)  Lk (t)k (t) L k (t)

  Update Cycle:

 k (t 1 | t 1)  k (t 1 | t)   k (t 1 | t) C k (t 1) 

 Ck (t 1)k (t 1 | t) C k (t 1) k (t 1) 
1


Ck (t 1) k (t 1 | t)

    Kth RESIDUAL INFORMATION

  Residual definition:

rk (t 1)  z(t 1)  ˆ z k (t 1 | t)

  Residual covariance matrix:

Sk (t 1)  cov rk (t 1), rk (t 1) 

 Ck (t 1) k (t 1 | t) C k (t 1)  (t 1)

Unknown Plant
u(t) z(t+1)

Bk(t)

xk(t+1|t+1)^

Ak(t)

Ck(t+1)

xk(t+1|t)^

+

-

rk(t+1)
Hk(t+1) D

xk(t|t)^

zk(t+1|t)^
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Basic Idea of the MMAE Method

• Construct a bank of N discrete-time Kalman filters, each KF 

“matched” to each of the N possible models

• Each KF generates (in real-time) a local state-estimate vector 

and a residual vector

• All of the N available KF residual vectors are used to compute 

(on-line) the posterior probability Pk(t) , k=1,2, …, N, that the kth 

model is indeed the true one (I.e. the one that generates the 

data)

• The overall MMAE state-estimate is formed by weighting the 

local state-estimates by the corresponding posterior probability

• The overall MMAE state-covariance matrix is formed by 

weighting the local state-covariance matrices by the 

corresponding posterior probability, including a correction that 

involves the global conditional mean
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The MMAE Filter

KF #1

KF #2

KF #N
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


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
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P1(t)

P2(t)
PN(t)

S1(t)

S2(t)
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covariances  
(off-line)

Posterior hypotheses 
probabilities

x1(t/t)^

x2(t/t)^

xN(t/t)^

x(t/t)^
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Posterior Probability Evaluator

        POSTERIOR PROBABILITIES

  Posterior probability:

Pk (t), t 1, 2,...,; k  1,2, ...,N

Pk (t) Prob kth  model is true |  Z(t) 
  Prior probabilities  Pk (0)  are known

DYNAMIC PROBABILITY EVALUATION

  For t  0,1,2,... and k 1, 2,..., N

Pk (t 1) 
k (t 1)e


1

2
wk ( t1)

 j (t 1)e


1

2
w j ( t1)

Pj (t)
j1

N





















 Pk (t)

    with the initial probabilities Pk (0)  given

                   DEFINITIONS

  k th KF residual:    rk (t); rk (t) Rm

  k th KF residual covariance:  Sk (t); m  m matrix

  Define the scalar quantities

k(t  1) 
1

2 m/2 det Sk (t 1)

wk (t 1)  r k (t 1)S1
k (t  1)rk (t  1)

Posterior 
Probability 
Evaluator

P1(t)

P2(t)

PN(t)

S1(t)

S2(t)

SN(t)

Residual 
covariances  
(off-line)

Posterior  
hypotheses 
probabilities

r1(t) r2(t) rN(t)

•••

On-line residuals 
from bank of KF’s
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Result Summary: Global State Estimate

 CALCULATION OF STATE-ESTIMATE

  Sum individual KF  state - estimates 

    multiplied by the associated posterior

    probabilities

ˆ x (t | t)  Pk (t)ˆ x k (t | t)
k 1

N



CALCULATION OF COVARIANCE MATRIX

 (t | t)  Pk (t)  k (t | t) ˆ x k (t | t) ˆ x (t | t)  ˆ x k (t | t) ˆ x (t | t) 




k 1

N



  Note that the covariance matrix  (t | t) must be computed

    on - line

KF #1

KF #2

KF #N







Posterior 
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Evaluator



u(t-1)
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r1(t)

r2(t)

rN(t)

P1(t)

P2(t)
PN(t)

S1(t)

S2(t)
SN(t)

Residual 
covariances  
(off-line)
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probabilities

x1(t/t)^

x2(t/t)^

xN(t/t)^

x(t/t)^

...
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Important Remark

• Both the MMAE state-estimate and state-covariance matrix 

represent true conditional expectation and conditional covariance

• This fact will be proven in the sequel

              DEFINITIONS AND NOTATION

  Data set at time t:    Z(t)  u(0), u(1), ...,u(t 1); z(1), z(2), ..., z(t) 

  Then,   ˆ x (t | t)  E x(t) | Z(t) ,  and

      (t | t)  cov x(t); x(t) | Z(t) 

  To prove these assertions, we must explicitly calculate

    the conditional probability density function  p x(t) | Z(t) 

  We shall show that the desired pdf,  p x(t) | Z(t) ,   turns out

    to be a weighted sum of gaussian densities,  where the

    weights are found from the posterior probability evaluator
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Elements of Proof

• The problem is a combination of a hypothesis-testing problem 

and a state-estimation problem

• The fact that one of the N models is the true one is modeled by 

hypothesis random variable that must belong to a discrete set of 

hypotheses H1, H2, …, HN

• The focal point is to calculate the conditional probability density

function, p(x(t)|Z(t)), of the state at time t, given measurements 

up to time t.  Then,

• the conditional expectation of the state, E{x(t)|Z(t)}, provides 

the global state estimate

• the conditional covariance of the state, cov[x(t);x(t)|Z(t)],

provides the measure of uncertainty

• It also turns out that on-line generation of the posterior 

conditional probabilities determines which hypothesis is true                                  
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Proof: Hypotheses

  Hypothesis random variable (scalar) is  H

  H can attain only one of N possible values,  

   (1) H  H1, H2 ,..., HN 

  The event H  Hk  means that the k - th system is the true one,  i.e. the 

    one that is generating the data inside the black box

  Prior probability:   Pk (0)  Pr ob H  Hk  at initial time t  0

(2) Pk (0)  0, Pk (0)  1
k 1

N

                                                            

  Data set at time t, t  0,1,2,...,

(3) Z(t)  u(0),u(1), ...,u(t  1); z(1), z(2), ..., z(t)                        

    consists of the set of past applied controls and observed sensor

    measurements,  including the latest one at time t, z(t)

  Posterior probability:  Pk (t)  Pr ob H  Hk | Z(t)                     

(4) Pk (t)  0, Pk (t)  1
k 1

N

                                                           
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Digression: Discrete Random Variables, I

                OUTCOME OF PERFECT DIE

  Let D be the number;   D 1,2,3, 4,5,6 

  The probability of each outcome is  
1

6

  The probability density function is

p(D) 
1

6
 (D 1)

1

6
 (D  2)

1

6
 (D  3)


1

6
 (D  4) 

1

6
 (D  5) 

1

6
 (D  6) 

1

6k 1

6

  (D  k)

         3 - VALUED RANDOM VARIABLE

  Suppose that a discrete random variable  A 

    can only attain three values,  1,4, and 5,   A  1, 4,5 

  Assume that the probabilities of each outcome are

Pr ob A 1  
1

6
, Pr ob A  4  

3

6
, Pr ob A  5  

2

6

  Then,  the PDF of A is given by

p(A) 
1

6
 (A 1) 

3

6
 (A  4)

2

6
 (A  5)
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Digression: Discrete Random Variables, II

     GENERAL CASE OF DISCRETE RANDOM VARIABLES

  Let x be a discrete - valued scalar random variable

x  X1, X2 , ...XM 

  Suppose that the probability that  x attains a particular

    value is given by

Pr ob x  Xk  Pk ; k  1,2, ...,M

Pk  0 ; Pk  1
k1

M



  Then the probability density function,   p(x),  of the RV  x  is

p(x)  Pk ( x  Xk
k1

M

 ) ;  ( x  Xk )  unit impulse at x  Xk

  Note that the area under the pdf is unity,  since the area of 

    each unit impulse is unity,  i.e.

p(x)dx  Pk (x  Xk
k1

M

 )dx  Pk  (x  Xk )dx
1

k1

M

  1
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Proof: Density Relations

  Key quantity of interest is the conditional density function,  p x(t) | Z(t) 

  Consider the joint density function,  p x(t), H | Z(t) 

  Using the marginal density function we have

(5) p x(t) | Z(t)  p x(t), H | Z(t) dH

  From Bayes rule we have

(6) p x(t), H | Z(t)   p x(t) | H, Z(t) p H | Z(t) 

  Substitute (6) into (5) and use (4) to obtain

(7) p x(t) | Z(t)  p x(t) | H, Z(t) p H | Z(t) dH 

 p x(t) | H, Z(t)  Pk (t) H  Hk 
k1

N

 dH 

 Pk (t) p x(t) | H, Z(t)  H  Hk 
k1

N

 dH 

 Pk (t)p x(t) | Hk , Z(t) 
k1

N


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Proof: Conditional Density Relations

  Key equation (7) repeated:  p x(t) | Z(t)   Pk (t)p x(t) | Hk , Z(t) 
k1

N



  But the conditional density  p x(t) | Hk , Z(t)  is precisely the

    conditional density of the k - th Kalman filter which assumes that

H  Hk ,  i.e. that the true system is the k - th model

  Thus,  we know that 

(8) p x(t) | Hk , Z(t) ~ N ˆ x k t | t ,k (t | t) 

  Therefore, we see that the desired conditional density

p x(t) | Z(t)  is a probabilistically weighted sum of N gaussian 

densities, p x(t) | Hk , Z(t) ,  each of which is generated by the bank 

    of the N Kalman filters

  All that remains is to calculate the posterior probabilities

(9) Pk (t)  Pr ob H  Hk | Z(t) 
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Proof: The Conditional Mean

  k- th Kalman filter assumes H  Hk

  Then it generates

(10) ˆ x k t | t   E x(t) | Hk ,Z(t) 

 x(t)p x(t) | Hk, Z(t)  dx(t)

(11) k t | t   cov x(t); x(t) | Hk, Z(t ) 

 x(t)  ˆ x k t | t   x(t)  ˆ x k t | t   p x(t) | Hk, Z(t ) dx(t)

  Key equation (7) repeated:  p x(t) | Z(t)   Pk (t)p x(t) | Hk, Z(t ) 
k1

N



  Global c onditional mean:  ̂  x (t | t)

(13) ˆ x (t | t)  E x(t) | Z(t)  

 x(t) p x(t) | Z(t) dx(t)  Pk(t )x(t )
k 1

N

 p x(t) | Hk , Z(t) dx(t ) 

 Pk (t) x(t)p x(t) | Hk ,Z(t) dx(t)
ˆ  x  k ( t | t )

k1

N

  Pk(t)ˆ x k t | t 
k1

N



k-th Kalman 
Filter

u(t-1)

z(t)

x̂k(t|t)

k(t|t)
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Proof: The Conditional Covariance, I
  k- th Kalman filter assumes  H  Hk

  Then it generates

(10) ˆ x k t | t   E x(t) | Hk ,Z (t) 

 x(t)p x(t) | Hk, Z(t)  dx(t)

(11) k t | t   cov x(t); x(t) | Hk , Z(t ) 

 x(t)  ˆ x k t | t   x(t)  ˆ x k t | t   p x(t) | Hk, Z(t ) dx(t)

  Key equation (7) repeated:  p x(t) | Z(t)   Pk (t)p x(t) | Hk , Z(t) 
k1

N



  Global conditional covariance:    t | t 

(14)   t | t   E x(t)  ˆ x (t | t  x(t)  ˆ x (t | t  | Z(t) 
 x(t)  ˆ x (t | t)  x(t)  ˆ x (t | t)  p x(t) | Z(t) dx(t) 

 Pk (t)
k1

N

 x(t)  ˆ x (t | t)  x(t)  ˆ x (t | t)  p x(t) | Hk , Z(t) dx(t)

k-th Kalman 
Filter

u(t-1)

z(t)

x̂k(t|t)

k(t|t)
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Proof: The Conditional Covariance, II
  Eq. (14) repeated

(14)  (t | t)  Pk(t ) x(t )  ˆ x (t | t) 
k 1

N

 x(t)  ˆ x (t | t)  p x(t) | Hk, Z(t) dx(t)

  Add and subtract  ̂ x k (t | t ) in x(t )  ˆ x (t | t) 

x(t)  ˆ x k(t | t)  ˆ x k(t | t)  ˆ x (t | t)  x(t) ˆ x k(t | t)  ˆ x k(t | t)  ˆ x (t | t )  =

=   x(t)  ˆ x k (t | t)  x(t)  ˆ x k(t | t)   ˆ x k (t | t)  ˆ x (t | t)  ˆ x k (t | t)  ˆ x (t | t)  

 x(t)  ˆ x k (t | t)  ˆ x k (t | t)  ˆ x (t | t)   ˆ x k (t | t)  ˆ x (t | t)  x(t )  ˆ x k (t | t ) 

 (15)     x(t)  ˆ x (t | t )  x(t)  ˆ x (t | t)  p x(t) | Hk, Z(t) dx(t) 

 x(t)  ˆ x k(t | t)  x(t )  ˆ x k (t | t )  p x(t) | Hk, Z(t ) dx(t)
 k ( t | t )



 ˆ x k(t | t)  ˆ x (t | t )  ˆ x k(t | t)  ˆ x (t | t)  p x(t) | Hk, Z(t ) dx(t)
1



 x(t)  ˆ x 
k
(t | t) p x(t) | H

k
,Z(t) dx(t)

0

 ˆ x 
k
(t | t) ˆ x (t | t )  

 ˆ x k(t | t)  ˆ x (t | t )  x(t)  ˆ x k (t | t )  p x(t) | Hk , Z(t ) dx(t)
0 
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Proof: The Conditional Covariance, III

  From eqs. (14) and (15) we deduce that:

(16)   (t | t)  Pk (t) k (t | t)  ˆ x k (t | t) ˆ x (t | t)  ˆ x k (t | t)  ˆ x (t | t) 




k 1

N



  The global covariance matrix   (t | t)  cannot precomputed

    off - line,  even though the (local) KF covariances   k (t | t)  are

    computed off - line

  The posterior probabilities  Pk (t)  Pr ob H  Hk | Z(t)   must be

    also computed on - line

  The mean correction terms  ˆ x k (t | t)  ˆ x (t | t)   must also be

    computed on - line

  All that remains is to derive the recursive relation that generates

    the posterior probabilities,  Pk (t)  Pr ob H  Hk | Z(t) 
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Proof: Model Probabilities

  Data at time t: Z(t)  u(0),. .. ,u(t 1);z(1),. .. ,z(t) 

  Data at time t 1: Z(t 1)  u(0),. .. ,u(t  1),u(t); z(1),. .. ,z(t ),z(t  1) 

  Note:  Z(t  1)  u(t),z(t 1), Z(t)   ;  u(t )  deterministic

  Rec all:  Pk (t)  Prob H  Hk | Z(t) ; Pk (t 1)  Prob H  Hk | Z(t 1) 
  Rec all that since  H  is a discrete random variable, the associated

    probability density function is a weighted sum of impulses, i.e.

(17)  p H | Z(t )  Pk (t)(H Hk )
k1

N



(18)  p H | Z(t 1)   Pk(t 1)(H  Hk)
k1

N



  PROBLEM:  Relate Pk(t 1)   to  Pk (t)
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Proof: Probability Relations

  Use Bayes rule to obtain:

(19)  p H | Z(t 1)   p H | u(t), z(t 1), Z(t)  
p H, z(t 1) | u(t), Z(t) 

p z(t  1) | u(t), Z(t) 



p z(t 1) | u(t), H, Z(t)  p H | u(t), Z(t) 

p z(t  1) | u(t), Z(t) 



p z(t 1) | u(t), H, Z(t)  p H | Z(t) 

p z(t  1) | u(t), Z(t) 

  Substitute eqs. (17) and (18) into eq. (19) to obtain

 (20) Pk (t 1) (H  Hk ) 
k1

N


p z(t  1) | u(t), H, Z(t) 

p z(t  1) | u(t), Z(t) k1

N

 Pk (t) (H  Hk )

  Equate coefficients of delta functions (impulses) to obtain

 (21)  Pk (t 1) 
p z(t 1) | u(t), Hk , Z(t) 

p z(t 1) | u(t), Z(t) 
 Pk (t)
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Proof: Probability Calculations, I

         k - TH KF RESIDUAL

rk (t 1)  z(t 1) Ck (t 1) ˆ x (t 1 | t)

E rk (t 1) | u(t), Hk , Z(t)  0

Sk (t 1)  cov rk (t 1); rk (t 1) | u(t), Hk , Z(t) 

 Ck (t 1) k (t 1 | t) C k (t 1) k (t 1)

  In eq. (21) we need to evaluate  p z(t 1) | u(t), Hk , Z(t) 

  But,  for the k - th model,   

(22)   z(t 1)  Ck (t 1)x(t 1) (t 1)  rk (t 1) Ck (t 1)ˆ x k (t 1 | t)

(23)  E z(t 1) | u(t), Hk , Z(t)  Ck (t 1)ˆ x k (t 1 | t)

(24) cov z(t 1); z(t 1) | u(t), Hk , Z(t) 

 Ck (t 1) k (t 1 | t) C k (t 1) k (t 1)  Sk (t 1)

p z(t 1) | u(t), Hk , Z(t)  is gaussian with mean (23) and covariance (24)

(25)   p z(t 1) | u(t), Hk , Z(t) 
1

2 m/ 2 det Sk (t 1)
e


1

2
 r k ( t1)S

k
1 (t1)rk ( t1)

k-th Kalman 
Filter

u(t)

z(t)

rk(t+1)

Sk(t+1)
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Proof: Probability Calculations, II

  In eq. (21) we also need to evaluate  p z(t 1) | u(t), Z(t) 

  Using the marginal density and Bayes rule we deduce that

(26)  p z(t 1) | u(t), Z(t)  p z(t 1), H | u(t), Z(t)  dH 

 p z(t 1) | H,u(t), Z(t)  p H | u(t), Z(t) dH 

 p z(t 1) | H,u(t), Z(t)  p H | Z(t) dH 

 p z(t 1) | H,u(t), Z(t)  Pj (t) (H  H j )
j1

N

 dH 

 Pj (t)p z(t 1) | H j ,u(t), Z(t) 
j1

N



  We have already calculated  p z(t 1) | H j ,u(t), Z(t)   in eq. (25)!
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Proof: Probability Calculations, III

  From eqs. (21) and (26) we obtain the general recursion

(27)  Pk (t 1) 
p z(t 1) | Hk ,u(t), Z(t) 

Pj (t)  p z(t 1) | H j ,u(t), Z(t) 
j1

N



 Pk (t)

  For notational simplicity define

(28)   i(t 1) 
1

2 m/ 2 det Si (t 1)

(29)  wi (t 1)  r i (t 1)Si
1(t 1)ri (t 1)

  Then,  from eqs. (27), (28), (29) and (25), we deduce that

(30)  Pk (t 1) 
k (t 1)e

(1/ 2)wk (t1)

 j (t 1)e
(1/2)w j ( t1)

 Pj (t)
j1

N



 Pk (t); Pk (0)  prior model probs.

QED
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Observations

• Clearly, as in the single-model case, the past control sequence 

{u(0), u(1), …, u(t-1)} influences the conditional state-estimate 

and residuals at time t

• Unlike the single-model case, in the MMAE algorithm, the past 

control sequence {u(0), u(1), …, u(t-1)} also influences the 

conditional covariance matrix, (t|t), and hence the accuracy of 

the state-estimate

• This implies that some control sequences are “better” for 

improving the accuracy of the state-estimates and model 

identification probabilities
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Model Identification
  DYNAMIC PROBABILITY EVALUATION

  For t  0,1,2,... and  k  1,2, ...,N

Pk (t 1) 
k (t 1)e


1

2
wk (t1)

 j (t 1)e


1

2
w j (t1)

Pj (t)

j1

N























 Pk (t)

    with the initial probabilities  Pk (0)  given,  and

k (t 1) 
1

2 m/2 det Sk (t 1)

wk (t 1)  r k (t 1)S1
k (t 1)rk (t 1)

  It can be shown that,  if  H  Hi is true,  i.e. the i - th model is the true one,  then

lim
t

Pi (t)  1, lim
t

Pj (t)  0 j  i

    which means that the true model is identified with probability ONE.

  If none of the models is the true one,  then the model " nearest"  to the true one (in a 

    probabilistic sense) will be identified.  See [5],   pp. 270 - 277 for

    mathematical details on convergence

Posterior 
Probability 
Evaluator

P1(t)

P2(t)

PN(t)

S1(t)

S2(t)

SN(t)

Residual 
covariances  
(off-line)

Posterior  
hypotheses 
probabilities

r1(t) r2(t) rN(t)

•••

On-line residuals 
from bank of KF’s
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Concluding Remarks

• The basic concept of the MMAE is extremely powerful, since it 

combines system identification and state estimation

• Results are also available for the continuous-time case, but care 

must be exercised for their proper implementation

• In nonlinear problems, one can obtain suboptimal solutions by 

using extended Kalman filters (EKFs), rather than linear KFs

• The structure of the MMAE algorithm is very similar to that used 

in the so-called “Sum of Gaussian Methods” for nonlinear 

estimation

• Advances in computational speed and digital parallel computer 

hardware and software make MMAE-type of implementations 

more and more practical for very complex identification and 

state estimation problems
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Extensions

  DYNAMIC PROBABILITY EVALUATION

  For t  0,1,2,. .. and  k  1,2,. .. ,N

Pk (t 1) 
k (t 1)e


1

2
wk (t1)

 j (t  1)e


1

2
w j (t 1)

Pj (t)

j1

N























 Pk (t)

    with the initial probabilities  Pk (0)  given, and

k (t 1)
1

2 m/2 det Sk(t 1)

wk (t  1)  r k(t 1)S1
k(t 1)rk (t 1)

  ADVICE:   During the on - line calculation of the posterior probabilities  Pk (t),  put a 

    lower bound ,  say   =10-2 ,  on each probability,  i.e. Pk (t)    for all k, t

  This will enable the MMAE to respond if the true model,  say H j , changes to

     another,  say Hi

Posterior 
Probability 
Evaluator

P1(t)

P2(t)

PN(t)

S1(t)

S2(t)

SN(t)

Residual 
covariances  
(off-line)

Posterior  
hypotheses 
probabilities

r1(t) r2(t) rN(t)

•••

On-line residuals 
from bank of KF’s
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Time-Dependent Hypotheses

    BASIC  MMAE ASSUMPTION

  The true hypothesis,  H  Hk ,  does

    not change during the experiment

  Then we guarantee that Pk (t)  1

     DYNAMIC  HYPOTHESES

  Suppose that the true hypothesis

    changes, one or more times,

    during the experiment

  For example,

Htrue(t) 

H1 for 0  t  t1

H2 for t1  t  t2

...

Hk for tk1  t  tk












H1 H2 Hk HN... ...

“TRUE MODEL” CHANGES WITH TIME
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Dynamic Hypotheses Example
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Estimation With Dynamic Hypotheses

• The truly optimal extension of the MMAE algorithm to handle the 

dynamic hypotheses problem requires to take into account the 

exploding hypotheses-tree, and at each time construct each 

Kalman filter so that takes into account the postulated past 

history of the hypotheses

• The optimal algorithm requires a growing number of parallel 

Kalman filters

• The combinatorial explosion prohibits the implementation of the 

truly optimal algorithm

H1 H2 Hk HN... ...

“TRUE MODEL” CHANGES WITH TIME
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Suboptimal MMAE Estimation

• Assumption: the time-interval between changes in the true 

hypothesis is “larger” than the convergence time of the standard 

MMAE algorithm

• unfortunately, estimates of the convergence rate are not 

known

• As long as we enforce a lower-bound on each posterior 

probability, we can expect the standard MMAE algorithm to 

recover when the hypothesis changes

• it will only “work well” only if the changes are infrequent

• Allowing even a small number of dynamic hypotheses trees help 

the MMAE to respond more rapidly

• These are precisely the issues in complex surveillance problems 

where several sensors track several maneuvering targets, 

including “newborn” targets and “dying” targets
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