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Theme

 We discuss a very powerful method, the so-called “Multiple-
Model Adaptive Estimation (MMAE)” algorithm, for combined
state-estimation and system-identification problems, [1]-[4]

« the MMAE combines hypotheses-testing and state-
estimation

« The detailed results will be presented for linear time-varying
(LTV) discrete-time systems with Gaussian uncertainties

» we shall take full advantage of the classical discrete-time
Kalman filter theory for linear-gaussian problems

« we shall provide complete proofs, through extensive use of
Gaussian conditional density functions and repeated
applications of Bayes rule, following the development in [1]

« The MMAE framework can be used for suboptimal estimation in
nonlinear nongaussian situations



Typical MMAE Applications

Tracking maneuvering vehicles in aerospace, ground, and
marine applications, taking into account that applied maneuvers
are not known to the observer a-priori

Doing accurate state-estimation for plants with wide uncertainty
In the parameters of the dynamic system and sensors

Doing accurate state-estimation for nonlinear systems with large
uncertainties, by employing a family of distinct linearized models

Initial framework for dealing with multi-target multi-sensor
surveillance and tracking systems



The MMAE Structure
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MODEL OF K-TH PLANT
e Timeindex: r=0,12,....
e Modelindex: k£=12,..,.N
x(t+1) = Ay (O)x(1) + By (hu(t) + L ()E(1)
z(t+1)=C (t+1)x(t+1)+0(t+1)

PROBABILISTIC INFORMATION
Initial state: x(0) ~ N(To; Zox )
Plant disturbance: &(t) ~ N(0, 5, (1)6,, )
Sensor noise: 6(t) ~ N(0,0,(1)3,,)
x(0), &t), 6(r) independent for all ¢, 7




e GIVEN: prior probabilities, B,(0) k=12,..., N,
that nature selects the k - th model to generate
data, with

B3>0, ¥ BO)=1
k=0

GIVEN: the set of past controls
u(0), u(l),u(2),...,u(t—1)
and the set of past measurements, including the
one at the "present" time ¢
z(1),z(2),...,z(t—1),z(¢)
DETERMINE: (1) the true conditional mean of
the present state vector, x(z), i.e.

X(t|t)= E{x(t) | y(O), u), u(2),..,ut—1);,z1), z(2),...,z(t — 1), z(t)}
20

and (2) the true conditional covariance matrix of the

present state vector, x(z), i.e.

J|t)=Efx(t) =Xt |t))(x(t)—x(t | t))’ | Z(t)]



MMAE: Problem Visualization

u(t) z(t)
o o
%’o ® o T......o o®
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 The MMAE filter is driven by the sequence of past controls and
Noisy sensor measurements

« The MMAE filter generates both a state-estimate vector and a
corresponding error-covariance matrix

« The MMAE is a recursive algorithm: it updates the state-
estimate and covariance every time a new control is applied and
a new sensor measurement is obtained



Review: The Discrete-Time Kalman Filter

_u(t)_’ Unknown Plant AEL»

-ANn
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>
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A

Hik(t+1)
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Kth KF COVARIANCE EQUATIONS
e [nitialization: 2, (0|0)= 2,
e Predict Cycle:
S (t+1]1) = A, ()T (t | ) A4(1) + Ly (D) 5 ()L (1)
e Update Cycle:

2(t+1|t+D) =2 t+1]|t)+ 2, (t+1|t)Ci(t+])e

o[C(t +1) 2, (t+1 | )Ci(t+1) + Ot + ] ' o
oCr(t+1)2 (t+1]1)

Kth KALMAN FILTER EQUATIONS
Predict Cycle:
Sp(t+1]8)= A ()%, (t | )+ By (t)u(t)
Zy(t+1 | ) =C(t+Dx,(t+1| 1)

e Residual: n(t+)=z(t+1)—z,(t+1|1)

Update Cycle:

Xe(t+1|t+)=x, (t+1|t)+ H (t+ D, (t+1)
KF Gain Matrix:

H(t+) =% (t+1]|t+)Cit+1)O " (t+1)

Kth RESIDUAL INFORMATION
Residual definition:;
nt+)=zt+) -z, (t+1|¢)

e Residual covariance matrix:

Se(t+1) =cov|n (t+1), n(t+1)]=
=C(t+1)Z,(t+1 | )Ch(t+1) + Ot +1)

8



Basic Idea of the MMAE Method

Construct a bank of N discrete-time Kalman filters, each KF
“matched” to each of the N possible models

Each KF generates (in real-time) a local state-estimate vector
and a residual vector

All of the N available KF residual vectors are used to compute
(on-line) the posterior probability P, (t) , k=1,2, ..., N, that the kth
model is indeed the true one (l.e. the one that generates the
data)

The overall MMAE state-estimate is formed by weighting the
local state-estimates by the corresponding posterior probability

The overall MMAE state-covariance matrix is formed by
weighting the local state-covariance matrices by the
corresponding posterior probability, including a correction that
Involves the global conditional mean



The MMAE Filter

u(t-1)
Y Q1(t/)
1 A
] KF#1 >
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Qa(th) | ()
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Posterior Probability Evaluator

On-line residuals
from bank of KF’s

10 20 TN POSTERIOR PROBABILITIES
e Posterior probability:

P@), t=12,...; k=12,..N
S1(t) S P1(D) Pk(t):Prob{k”“ model is true | Z(t)}
S2(t) Probability —»PZ(t) . g
SN() Evaluator PN() e Prior probabilites £ (0) are known
Residual Posterior
covariances hypotheses
(off-line) probabilities

DEFINITIONS

DYNAMIC PROBABILITY EVALUATION

o k" KFresidual: r.(t); r.(t)eR" e Fort=0,1,2,...and k=12,.... N

e k™ KF residual covariance: S, (¢); m x m matrix ( 1 )
e Define the scalar quantities B(t+ 1)8_5W"(t+1)
P(t+1)= o P (1)
Bi(t+1) 1 k 3 3w :
t+1)= (t+1 P (t
: Q)" fdet S, (t +1) ngﬁ,( the i)
wit+1)=rt+1)S @+ r (t+1) with the initial probabilities £, (0) = given
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Result Summary: Global State Estimate

u(t-1)
X(th)

KF #1

VY

ri(t)
Ro(th)

_>
< KF #2

ro(t)
IN(tH)

> rN(t)‘L
Si(t) VV

Posterior
%LD Probability
Sn(t) p| Evaluator

on-line

CALCULATION OF STATE-ESTIMATE

e Sum individual KF state - estimates

multiplied by the associated posterior
probabilities

N
X(t|t)=2 ()X (t|t)
k=1

CALCULATION OF COVARIANCE MATRIX

N
2(t|t)= ZPk(t)|:2k(t PENCAARESTAN) EAGEST(A t))}
k=1

e Note that the covariance matrix 2z | ) must be computed

12



Important Remark

Both the MMAE state-estimate and state-covariance matrix
represent true conditional expectation and conditional covariance

This fact will be proven in the sequel

DEFINITIONS AND NOTATION
e Datasetattimet: Z)={u(0),ul),..,ut-1);z(1),z(2),...,z(t)}
e Then, x(t|t)= E{x(t)| Z(t)}, and
S(t | 1) = cov[x(t); x(1) | Z(1)]
e To prove these assertions, we must explicitly calculate
the conditional probability density function p(x(t) | Z(2))
e We shall show that the desired pdf, p(x(?) | Z(¢)) turns out
to be a weighted sum of gaussian densities, where the
weights are found from the posterior probability evaluator

13



Elements of Proof

The problem is a combination of a hypothesis-testing problem
and a state-estimation problem

The fact that one of the N models is the true one is modeled by
hypothesis random variable that must belong to a discrete set of
hypotheses H,, H,, ..., Hy

The focal point is to calculate the conditional probability density
function, p(x(t)|Z(t)), of the state at time t, given measurements
up to time t. Then,

 the conditional expectation of the state, E{x(t)|Z(t)}, provides
the global state estimate

 the conditional covariance of the state, cov[x(t);x(t)|Z(t)],
provides the measure of uncertainty

It also turns out that on-line generation of the posterior
conditional probabilities determines which hypothesis is true

14



e Hypothesis random variable (scalar) is H

e H can attain only one of N possible values,
(1) HelH, H,, . . Hy}

e The event H = H, means that the k -th system is the true one, i.e. the
one that is generating the data inside the black box

e Prior probability: P, (0)= Prob(H = H,) atinitial time ¢ =0

N
(2) B(0)20, Y B(0)=1
k=1

e Datasetattimetr=0,12,...,

(3) Zt)={u0),u),..,ut—1);z>1),z(2),....z(t)}
consists of the set of past applied controls and observed sensor
measurements, including the latest one at time ¢, z(7)

e Posterior probability: B, (z)= Prob(H = H, | Z(t))

N
(4) B.()=0, > P.(t)=1
k=1

15



Digression: Discrete Random Variables, |

OUTCOME OF PERFECT DIE
e Let D be the number; De{l,2,34,56}

e The probability of each outcome is E

6 1/6 '
e The probability density function is ffffff
I I

p(D)=é5(D—1)+é5(D—2)+é5(D—3)+ 123456 "D

6. 1
> <5(D=k)

s+ lsm-s)+lsip—e) =
6 6 6 P

3-VALUED RANDOM VARIABLE
e Suppose that a discrete random variable A4
can only attain three values, 1,4, and5, 4 {1, 4,5}

A
e Assume that the probabilities of each outcome are e
Prob(Azl):l,Prob(A:4):§,Prob(A:5):g 2/67
5 6 6 1067 5 4
e Then, the PDF of 4 is given by 1 45 A

1 3 2
P(4) =2 5(A=1) += 5(A=4) + = 5(A=5)



GENERAL CASE OF DISCRETE RANDOM VARIABLES
Let x be a discrete - valued scalar random variable
xel{X, X, .. Xy}
Suppose that the probability that x attains a particular
value is given by
Prob(x = Xk): P, k=12,...M

M
P20; Y FB=I
k=1
Then the probability density function, p(x), of the RV x is
M
p(x)=> Bo(x—X,); O(x—X,)=unitimpulse atx= X,
k=1

Note that the area under the pdf is unity, since the area of
each unit impulse is unity, i.e.

J p(x)dx = | % Fo(x — X} )dx = f P[8(x - X )dx=1
kzl k:l & D ~
1

17



e Key quantity of interest is the conditional density function, p(x(z) | Z(z))
e Consider the joint density function, p(x(2), H | Z(t))

e Using the marginal density function we have

(5)  p((0) | Z@W) =] p(x@), H | Z(1)dH

e From Bayes rule we have

(6)  p(x@), H|Zt)=p(xt) | H Z(t)p(H | Z(t))
e Substitute (6) into (5) and use (4) to obtain

(7)  px@) | Z@)=[ p(x(t) | H,Z(t))p(H | Z(1))dH =
N
= [ p(x(®) | H.Z(0)Y) P ()(H - H, YiH =
k=1

Bo)] plx(0) | H, Z(t))5(H ~ Hy YiH =

N
=
N
= 3 Rpe) | H. Z)

18



Proof: Conditional Density Relations

e Key equation (7) repeated: p(x(t) | Z(t))= ﬁ B.()p(x() | Hy, Z(1))
k=1

e Butthe conditional density p(x(z) | H,, Z(t))is precisely the
conditional density of the k - th Kalman filter which assumes that
H = H,, i.e.thatthe true system s the k - th model

e Thus, we know that

(8)  p(x(®) | Hy Z())~ N(E (¢ | ) Z(t | 1))

e Therefore, we see that the desired conditional density
p(x(t) | Z(r)) is a probabilistically weighted sum of N gaussian
densities, p(x(z) | H,, Z(t)), each of which is generated by the bank
of the N Kalman filters

e Al that remains is to calculate the posterior probabilities

(9) B.(t)=Prob(H=H, | Z(1))

19



Proof: The Conditional Mean

e k- th Kalman filter assumesH = H,

e Then i1t generates

Xty (10)  %,(t|6)=Ex(t) | H,Z(1)}=

pler PR = [xp(x@) | H, Z())ix (1)
(11)  Z(t|0)=cox(®); x(t) | H, Z(1)]=
=[G =2, | w0 = 22 | 0)) p(x(@) | Hy, Z(2) Y (1)

e Key equation (7) repeated: p(x(?) | Z(t))= iPk(t)p(x(t) | H, Z(t))

k=1

e Global conditional mean: x(? | ¢)

(13) i(t|)=E(x(1) | Z(1) =
= [P | 205 = [ SR Op(x(0) | H Z0Yirtt) =

=

= 2RO xOp(x(t) | H Z(0)x(1) = ZP (0%t | 1)

) k(f\f)

20



Proof: The Conditional Covariance, |

e k- th Kalman filter assumes H = H,

e Then it generates

u(t-1

Ry, (10) % (| 0)= E{x(t) | H, Z(1) ;=
k-th Kalman

z(t) ,

Filter Zi(t[t), = Ix(t)p(x(t) | H,, Z(t)):lx(t)

(11) Z.(¢]|t)= cov[x(t);x(t) | H,, Z(t)]:
= j (@) =2, | ONx(@) = %,(¢ | 1)) p(x(@) | Hy, Z(1) )dx(1)

e Key equation (7) repeated: p(x(t) | Z(t))= % B.()p(x() | Hy, Z(1))
k=1

e Global conditional covariance: X(t | ¢)
19 2 10=E it | )x -3t |0 | 20) |-
= [ (e(t) = 2(t | ))x(t) = %(2 | 1)) p(x(1) | Z(1))dx(1) =
- /ﬁl&m [(e0) =5t | OXx(®) = 3( | ) p(x(t) | Hy, Z(1))dx(1)

21



Proof: The Conditional Covariance, I
e Eq. (14) repeated
(I14)  2(t]1)= ZN:Pk(f)I(X(f)—)?(f [ ))x() = x(t | 1)) p(x(0) | Hy, Z(1) Jx(1)
e Add and subtr;::ltfck (t|t) in(x(t)—x(t|t))
() =%, (1| )+ R (1| )= R | )Nx (@) — X (t | )+ X (¢ | ) —X(t| 1)) =
= (x() =X (t | )ONx@) =X (t 1)) + (X, (2| 0) —X(t | )X (¢ | )= x(t| 1)) +
+(x(t) =2, (| D) (0 | )= 3(t | ) + @ (] 1) =2t | )Noxe(t) = % (2 | 1))
- (15) f(x(f)—fc(f | )Xx(@) =%t | 8)) p(x(t) | H, Z(1))dx(t) =
= f(x(t)— Xe(t 1 )YWx(t)=%(t | 1)) p(x(@) | H, Z(t) )dx(t) +

2y (1))

()= 3G | DN | 9= 3| 0) [ p() | Hy, Z0))x (o) +

1

+ j (@) =% (t | D)p(x@) | H,Z@))dx(@)-(F (¢ |t)—5(t | 1)) +

+ (Rt 9= %0 [ ) [ @)= %ot | ) p(x (@) | Hy, Z(t) pix (1)

0

22



e Fromegs. (14) and (15) we deduce that:

(16) 010 = 3 A(0] 2t |9+t 1056 10Xt 19 =56t1) |

e The global covariance matrix Xz | 1) cannot precomputed
off -line, even though the (local) KF covariances X, (t |t) are
computed off -line

e The posterior probabilities 7, (z) = Prob(H = H, | Z(t)) must be
also computed on-line

e The mean correction terms (X, (¢ | t) — (¢ | £)) must also be

computed on -line
e All that remains is to derive the recursive relation that generates

the posterior probabilities, P,(z) = Prob(H = H, | Z(1))

23



e Data at timet: Z(t) = {u(0),...u(t—1);z(1),... z(1)}

e Data at timet +1:  Z(t+1)={u(0),....ut—1),ut);z(1),...z(t),z(t + 1)}

e Note: Z(t+1)={u(t),z(t +1), Z(t)} ; u(t) determmistic

e Recall P (1)=Prob|H=H, | Z(1)} E(t+1)= Prob|H=H, | Z(t +1)]
e Recall that since H 1s a discrete random varible the associated

probability density function is a weighted sum of impulses.e.

A7) pH | Z1)= 2B W5H-H,)

(18)  p(H | Z(t +1)) = ipkm VS(H - H,)

e PROBLEM: Relate P(t+1) to B (2)

24



Proof: Probability Relations

e Use Bayes rule to obtain:
_ . _p(H 2(t+1) [u(®), Z(1) _
(19) p(H | Z(t+1)=p(H |u(t), z(t +1), Z(1)) = D+ 1) |ut) Z(1)

_ et + ) Lu(), H, Z)- p(H | u(0), Z(1)) _
pC(t+1) [u(t), Z(1))
_ e+ Lu), H, Z(1)- p(H | Z(1)

pz(t+1) |u(), Z(1))
e Substitute eqgs. (17) and (18) into eq. (19) to obtain

N N
20) S Pt +)5(H- Hy =y PECTV IO B ZW) p 50 g
(20) /Z:l (1 +1)o( ) kZ::l p(z(t+ 1) | u(t), Z(t) 1 (1)o( v/

e Equate coefficients of delta functions (impulses) to obtain

_plet+D) |u@), Hy, Z(1)
D RO el za)

()

25



Proof: Probability Calculations, |

k- TH KF RESIDUAL

SEGEN 1) r(t+) =2+ ) = Gt + DR+ ] Y
z(t) i éﬁgpan Sk(t+1= E{rk (t+1) | ut), H, Z(t)}: 0

Se(t+1) = colr (t+ V) (1 +1) | u(t), Hy, Z(1)]=
=C (t+ )2, (t+1 | )CLt+1) + O, (t+1)
e Ineg. (21) we need to evaluate p(z(r+1) | u(t), Hy, Z(1))
e But, for the k-th model|,
(22) zt+)=C,(t+Dx(t+)+0(t+)=r(t+1)+C, (t+1)x, (t+1]¢)
(23) E{z(t+1) |u(t), H,, Z(1) } = C, (t+ VX (1 +1 | 1)
(24) cov[z(t—l— V;z(t+1) | u(t), H, Z(t)]z
=C.(t+ D)2, t+1 | ))C (t+1)+ O, (t+1)=S,(t+1])
p(z(t+1) | u(t), H,, Z(t))is gaussian with mean (23) and covariance (24)

1 ——;-r,;(m)slj (t+1)ry (t+1)
Qn)"2 Jdet S+ 1)

(25) p(e(t+1) | u@), Hy, Z(1))=

26



e Ineqg. (21) we also need to evaluate p(z(t+1) | u(z), Z(t))

e Using the marginal density and Bayes rule we deduce that

(26)  p(z(t+1) | u(t), Z(1))= | p(z(t+1), H | u(t), Z())dH =

= [ p(t+1)
= [ pl@+1)

= [ pE(t+1)

H,u(t), Z(t))p(H | u(t), Z(1))dH =
H,u(t), Z(t))p(H | Z(1))dH =

H.u(t) Z(0)3, P, ()5 (H ~ H,)dH -
j=1

N
= Z}’J.(t)p(z(t+l) | H;,u(t), Z(t))
j=1

e \We have already calculated p(Z(t+ V| H;,u(1), Z(t)) In eq. (25)!

27



Proof: Probability Calculations, Il

e Fromegs. (21) and (26) we obtain the general recursion
@) B+l — POV Heu®) Z20))
N
>\ Pi(1)-ple(t+1) | Hyut). Z(1))
j=1

B(1)

e For notational simplicity define

- 1
(28) IBi(t-I-l): (Zﬂ)m/szetSi(t_Fl)

(29) w(t+1) =rt+)S (t+ Dt +1)
e Then, fromegs. (27), (28), (29) and (25), we deduce that
ﬂk(t+l)e_(l/2)wk (1+1)

N
~(1/2)w ; (t+1)

> p(t+ve VP 1)

j=1

(30) P(t+1) = - P.(t); P,.(0)=prior model probs.

QED

28



Observations

Clearly, as in the single-model case, the past control sequence
{u(0), u(1), ..., u(t-1)} influences the conditional state-estimate
and residuals at time t

Unlike the single-model case, in the MMAE algorithm, the past
control sequence {u(0), u(1), ..., u(t-1)} also influences the
conditional covariance matrix, 2{t|t), and hence the accuracy of
the state-estimate

This implies that some control sequences are “better” for
Improving the accuracy of the state-estimates and model
identification probabilities

29



Model Identification

DYNAMIC PROBABILITY EVALUATION
e Forr=0,1,2,...and £k=12,...,.N

( \ On-line residuals
, from bank of KF’s
——=wy (1+1) ri(t) r2(t) rn()
ﬂk (t + 1)@ -
F(t+)=|— e 1
——w(t+
Y Bit+l)e 2 P
‘ J J S1(t) - P1(t)
A N | S0l Fosener [ rn
with the initial probabiliies P,(0) = given, and  SNO ] Evaluaor | PNO 4
Residual Posterior
1 covariances hypotheses
,Bk (t n 1) - mnw/ (off-line) probabilities
(27) det S (t+1)

we(t+1) =i (t+)S ke (t+ Dr(t+1)
e [t can be shown that, if H = H, is true, i.e. the i-th model is the true one, then
lim B(t)=1 lim Pi(t)=0 Vj#i
t—o0

t—>0
which means that the true model is identified with probability ONE.
¢ If none of the models is the true one, then the model " nearest" to the true one (in a

probabilistic sense) will be identified. See [5], pp. 270-277 for

mathematical details on convergence 20



Concluding Remarks

The basic concept of the MMAE is extremely powerful, since it
combines system identification and state estimation

Results are also available for the continuous-time case, but care
must be exercised for their proper implementation

In nonlinear problems, one can obtain suboptimal solutions by
using extended Kalman filters (EKFs), rather than linear KFs

The structure of the MMAE algorithm is very similar to that used
in the so-called “Sum of Gaussian Methods” for nonlinear
estimation

Advances in computational speed and digital parallel computer
hardware and software make MMAE-type of implementations
more and more practical for very complex identification and
state estimation problems

31



Extensions

DYNAMIC PROBABILITY EVALUATION
e Fortr=0,12,...and k=12,.... N

On-line residuals

from bank of KF’s
( 1 ) 1O 120 e
—= Wy (l+1)
t+1)e 2
B(t+1)= Pelt+l) ° B (t)
u —=w; (t+) s1(t) P1(t)
Z,B-(l‘—i— e 2 P.(t) so | Posterior [ >
J J =280 ] Probability 2
j=l1 SN(t) »| Evaluator PNO)
. Co. ey . . Residual i
with the mitial probabilities £, (0) = given, and Covél_rilj’;mces E;’;},‘iﬂgges
(off-line) probabilities
1
Pi(t+1)=
Qr)"? JdetS (t+1)

wi(t+ 1) =rl(t+)S e (t+ r (1 +1)
e ADVICE: During the on -line calculation of the posterior probabilities P,(z), put a

lower bound &, say £=107, oneach probability, i.e. B.(t) > ¢ for all %, ¢
e This will enable the MMAE to respond if the true model, say H;, changes to
another, say H,



Time-Dependent Hypotheses

BASIC MMAE ASSUMPTION m "
The true hypothesis, H = H,, does Ha =
not change during the experiment Basket of N possible hypotheses (plants)
Then we guarantee that P, (z) — 1 Nature picks one hypothesis (plant)
DYNAMIC HYPOTHESES 1O, T O
Suppose that the true hypothesis
changes, one or more times,
during the experiment ¢
For example, Y A Y
H, for0<t<g Hﬂl_‘J :ﬂ :k‘-‘ :N -‘

HZ fOVtISt<t2

H true (t) =

“TRUE MODEL” CHANGES WITH TIME

Hk fOV tk—l <t <tk



Dynamic Hypotheses Example
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Estimation With Dynamic Hypotheses

Y \A
Ho .. | Hk
hAJ &A AJ

“TRUE MODEL” CHANGES WITH TIME

The truly optimal extension of the MMAE algorithm to handle the
dynamic hypotheses problem requires to take into account the
exploding hypotheses-tree, and at each time construct each
Kalman filter so that takes into account the postulated past
history of the hypotheses

The optimal algorithm requires a growing number of parallel
Kalman filters

The combinatorial explosion prohibits the implementation of the
truly optimal algorithm
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Suboptimal MMAE Estimation

Assumption: the time-interval between changes in the true
hypothesis is “larger” than the convergence time of the standard
MMAE algorithm

« unfortunately, estimates of the convergence rate are not
known

As long as we enforce a lower-bound on each posterior
probability, we can expect the standard MMAE algorithm to
recover when the hypothesis changes

it will only “work well” only if the changes are infrequent

Allowing even a small number of dynamic hypotheses trees help
the MMAE to respond more rapidly

These are precisely the issues in complex surveillance problems
where several sensors track several maneuvering targets,
including “newborn” targets and “dying” targets
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