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Smoothing (or Interpolation) Algorithms

• A smother estimates the state of a dynamic system at some 

time t, using measurements made both before and after the 

specific time t

• Contrast this to a filter (or a predictor) that uses only past and 

present measurements at time t, to estimate the state at time t

(or predict the state at some future time, t+T)

• The accuracy of a smoother state-estimate must be better than 

its filter estimate, since more measurements are utilized by the 

smoother

• Often, smoothing algorithms are called “non-causal”, since 

future measurements are used to estimate past states 
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Types of Smoothers

• Fixed-Interval Smoothers: These use all measurements over a 

fixed interval to estimate the state at all times in the same 

interval

• Fixed-Point Smoothers: These are used to estimate the state at 

some fixed time in the past, given the measurements up to the 

present time, and updating that state-estimate every time a new 

measurement is made

• Fixed-Lag Smoothers: These estimate the state at a fixed time-

lag from the present measurement, and update the state-

estimate (using the same fixed lag) every time a new 

measurement is made



4

Why Smoothing (or Interpolation)?

• Fixed-Interval (FI) smoothers are used for post-processing of 

experimental data to provide the most accurate state-estimate

• useful in trouble-shooting, e.g. post-processing of tracking 

radar measurements for an experimental missile to check 

that the guidance system has worked as designed

• Fixed-Point (FP) smoothers are used when one is only 

interested at a most-accurate state-estimate at a specific time 

instant

• often is used in obtaining a very accurate estimate of the 

initial state, e.g. useful in determining orbit injection 

parameters for an orbiting satellite

• Fixed-Lag (FL) smoothers are used whenever a delay in 

obtaining a more accurate state-estimate can be tolerated

• sometimes can be used in conjunction with telemetry data
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Topic Outline and Remarks

• We summarize the complete equations for all three smoothing 

algorithms for the general linear time-varying (LTV), discrete-time 

case with gaussian uncertainties, following Ref. [1]

• for simplicity, we do not include deterministic inputs

• results are also available for continuous-time LTV problems, 

see [1]-[5], but are not presented here

• results are also available for (suitably formulated) continuous-

time LTV dynamics with discrete-time measurements

• No detailed proofs are provided.  They hinge on showing that the 

appropriate conditional probability density function of the state is 

gaussian, so that it can be fully described by its conditional mean 

and covariance (whose equations we present, [1])

• All three smoothing algorithms require the implementation of the 

discrete-time Kalman filter (predict and update cycles) for the filter 

state-estimate and associated covariance matrices
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Definitions

   LTV DISCRETE- TIME MODEL

t 0,1,2,3,...

(1)  x(t 1) A(t)x(t) L(t) (t)

z(t 1) C(t 1)x(t 1) (t 1)

             UNCERTAINTY

  Initial state  x(0) ~ N(x 0 , 0 )

  Plant noise  (t) ~ N(0, (t) t )

  Sensor noise  (t) ~ N(0, (t) t )

x(0), (t), ( ) independent t,

  Assume that all standard KF

    variables are available,  ˆ x (t | t),

(t | t), ˆ x (t 1 | t), (t 1 | t),

ˆ x (t 1 | t 1), (t 1 | t 1)

  Data set, Z(t)

(2)  Z(t) z(1), ...,z(t)

  In smoothing problems we want,  for  t

(3)  ˆ x ( | t) E x( ) | Z(t)

(4) ( | t) cov x( ); x( ) | Z(t)
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Fixed-Interval Smoothing: Definition

  Given a fixed number of 

    measurements ( T  is fixed), Z(T)

  Determine for all t, 0 t T,

      the conditional mean,  ˆ x (t | T )

      the conditional covariance, (t | T)

  In example shown,

t 2, t 5



8

Fixed-Point Smoothing: Definition

  Estimate - time,    is fixed

  Given data  Z(t), t

  Determine  ˆ x ( | t)

  Determine  ( | t)

  In example shown

= 3, t 5

3, t 6

3, t 7
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Fixed-Lag Smoothing: Definition

  Lag  k  is fixed

  Given  Z(t k),   for  t k

  Find  ˆ x (t | t k)

  Find  (t | t k)

  In example shown,   k 2

t 2, t k 4

t 4, t k 6

t 6, t k 8
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Smoothing: Basic Ideas

  Start with set of data  Z( )

  For any time  t, 0 t ,   run

    ordinary KF " forward- in - time"

    to obtain state - estimate

  ˆ x f (t | t) E x(t) | Z f (t)

  For any time  t, 0 t ,   run

    ordinary KF "backward - in - time"

    to obtain state - estimate

  ˆ x b (t | t) E x(t) | Zb (t)

  Determine the optimal way of 

    combining the estimates  ˆ x f (t | t)

    and  ˆ x b(t | t) to obtain

   ˆ x (t | ) E x(t) | Z( )  
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Fixed-Interval Smoother: Summary

                NOTATION

  ˆ x (t | t), ˆ x (t 1 | t)  ordinary KF

    state - estimates

  (t | t), (t 1 | t)  ordinary KF

    covariances

  Given data  Z( ), 0 t

  The smoother conditional pdf

p x(t) | Z( )   is gaussian

    with conditional mean

(5)  ˆ x (t | ) E x(t) | Z( )

    and conditional covariance

(6)  (t | ) cov x(t); x(t) | Z( )

  Smoother state - estimate,  ˆ x (t | )  

(7)  ˆ x (t | ) ˆ x (t | t) G(t) ˆ x (t 1 | ) ˆ x (t 1 | t)

(8)  boundary condition:  ˆ x ( | )  from KF

  Smoother gain matrix,   G(t)

(9) G(t) = (t | t)A (t) 1(t 1 | t)

  Smoother covariance,  (t | )

(10) (t | ) (t | t) G(t) (t 1 | ) (t 1 | t) G (t)

(11) boundary condition:  ( | )  from KF

  NOTE:  Both  ˆ x (t | )  and  (t | ) are computed

    recursively, "backward - in - time"
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Fixed-Interval Smoother: Example

  Data:  Z(5) z(1), z(2), ..., z(5)

  Run KF forward in time to generate

ˆ x (1 | 0), ˆ x (1 | 1), ˆ x (2 | 1), ˆ x (2 | 2), ..., ˆ x (5 | 5)

(1 | 0), (1 |1), (2 | 1), (2 | 2), ..., (5 | 5)

FI Smoother State Estimates  ˆ x (t | 5)

are computed bacward in time

ˆ x (4 | 5) ˆ x (4 | 4) G(4) ˆ x (5 | 5) ˆ x (5 | 4)

ˆ x (3 | 5) ˆ x (3 | 3) G(3) ˆ x (4 | 5) ˆ x (4 | 3)

ˆ x (2 | 5) ˆ x (2 | 2) G(2) ˆ x (3 | 5) ˆ x (3 | 2)

ˆ x (1 | 5) ˆ x (1 |1) G(1) ˆ x (2 | 5) ˆ x (2 | 1)

ˆ x (0 | 5) ˆ x (0 | 0) G(0) ˆ x (1 | 5) ˆ x (1 | 0)

FI Smoother Gain Calculation

G(0) (0 | 0)A (0) 1(1 | 0)

G(1) (1 | 1)A (1) 1(2 | 1)

G(2) (2 | 2)A (2) 1(3 | 2)

G(3) (3 | 3)A (3) 1(4 | 3)

G(4) (4 | 4)A (4) 1(5 | 4)
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Fixed-Point Smoothing: Summary

  Given:   = fixed, growing data 

    set  Z(t), t

(12) t 1, 2, 3, ...

  Smoother state - estimate,  ˆ x ( | t),  is computed

    forward- in - time for each new measurement

(13) ˆ x ( | t) ˆ x ( | t 1) D( | t) ˆ x (t | t) ˆ x (t | t 1)

(14) Boundary condition:  ˆ x ( | )  from KF

  Smoother gain:  D( | t),  is calculated forward- in - time (precomputed) 

(15) D( | t) D( | t 1) (t 1 | t 1)A (t 1) 1(t | t 1); D( | ) I

  Smoother covariance:  ( | t),  is also calculated forward- in - time

(16) ( | t) = ( | t 1)+ D( | t) ( | ) - ( | 1) D ( | t);

     where ( | ) and ( | 1) from KF

    



14

Fixed-Point Smoothing: Example

  Data:  Z(5) z(1), z(2), ..., z(5)

  Desired FP estimate at  2, ˆ x (2 | t)

  Run KF forward in time to generate

ˆ x (1 | 0), ˆ x (1 | 1), ˆ x (2 | 1), ˆ x (2 | 2), ..., ˆ x (5 | 5)

(1 | 0), (1 |1), (2 | 1), (2 | 2), ..., (5 | 5)

FP Smoother estimate,  ˆ x (2 | t),  computed

forward- in - time,  for each new measurement

ˆ x (2 | 2)  from KF

ˆ x (2 | 3) ˆ x (2 | 2) D(2 | 3) ˆ x (3 | 3) ˆ x (3 | 2)

ˆ x (2 | 4) ˆ x (2 | 3) D(2 | 4) ˆ x (4 | 4) ˆ x (4 | 3)

ˆ x (2 | 5) ˆ x (2 | 4) D(2 | 5) ˆ x (5 | 5) ˆ x (5 | 4)

FP Smoother Gain  D(2 | t)

D(2 | 2) I

D(2 | 3) D(2 | 2) (2 | 2)A (2) 1(3 | 2)

D(2 | 4) D(2 | 3) (3 | 3)A (3) 1(4 | 3)

D(2 | 5) D(2 | 4) (4 | 4)A (4) 1(5 | 4)
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Fixed-Point Smoothing: Remarks

  Given fixed time,   ,   and growing data set,   Z(t), t

  The conditional pdf of the state,   p x( ) | Z(t) ,  is gaussian with

    conditional mean generated by eq. (13) and conditional covariance

    generated by eq. (15).  Thus,  in eq. (13)  the fixed -point

    state estimate is

(17) ˆ x ( | t) E x( ) | Z(t)

    and in eq. (15) the fixed - point covariance matrix is

(18) ( | t) cov x( ); x( ) | Z(t)
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Fixed-Lag Smoothing: Summary

  Given growing data set  Z(t); t 1,2,3, ...

  Given fixed lag  k 1

  Smoother state estimate:  ˆ x (t 1 | t 1 k)

(19)   ˆ x (t 1 | t 1 k) A(t) ˆ x (t | t k)

L(t) (t)L (t)A (t) 1(t | t) ˆ x (t | t k) ˆ x (t | t)

D(t 1 | t 1 k)H(t 1 k)

z(t 1 k) C(t 1 k)A(t k) ˆ x (t k | t k)

    with  ˆ x (0 | k)  from fixed- point smoother,  and

    H(t 1 k)  is the KF gain matrix

(20) D(t 1 | t 1 k) G 1(t)D(t | t k)G(t k)

    with boundary condition  D(0 | k)  from fixed-point smoother,  and  G(t)  being the

    fixed - interval smoother gain matrix,  eq. (9),  G(t) (t | t)A (t) 1(t 1 | t)

  Covariance matrix,  (t 1 | t 1 k)

(21) (t 1 | t 1 k) (t 1 | t)

D(t 1 | t 1 k)H(t 1 k)C(t 1 k) (t 1 k | t k)D (t 1 | t 1 k)

G 1(t) (t | t) ( (t | t k) G 1(t)

    with boundary condition  (0 | k)  from fixed- point smoother
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Fixed-Lag Smoothing: Example

  Data:  Z(4) z(1), z(2), ..., z(4)

  Fixed lag:   k 2

  Desired FL estimates at  t = 0,1,2

  Run KF forward in time to generate

ˆ x (1 | 0), ˆ x (1 | 1), ˆ x (2 | 1), ˆ x (2 | 2), ..., ˆ x (4 | 4)

(1 | 0), (1 |1), (2 | 1), (2 | 2), ..., (4 | 4)

FL smoother state- estimate

ˆ x (0 | 2)  from fixed- point smoother

ˆ x (1 | 3) A(0)ˆ x (0 | 2) L(0) (0)L (0)

A 1(0) 1(0 | 0) ˆ x (0 | 2) ˆ x (0 | 0)

D(1 | 3)H(3) z(3) C(3) ˆ x (3 | 2)

ˆ x (2 | 4) A(1) ˆ x (1 | 3) L(1) (1)L (1)

A 1(1) 1(1 |1) ˆ x (1 | 3) ˆ x (1 | 1)

D(2 | 4)H(4) z(4) C(4) ˆ x (4 | 3)

D(0 | 2)  from fixed-point smoother

D(1 | 3) G 1(0)D(0 | 2)G(2)

G 1(0) (0 | 0)A (0) 1(1 | 0)
1

G(2) (2 | 2)A (2) 1(3 | 2)

D(2 | 4) G 1(1)D(1 | 3)G(3)

G 1(1) (1 |1)A (1) 1(2 | 1)
1

G(3) (3 | 3)A (3) 1(4 | 3)
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Fixed-Lag Smoothing: Remarks

  Given fixed lag,   k 1,   and growing data set,   Z(t)

  The conditional pdf of the state,   p x(t) | Z(t k) ,  is gaussian with

    conditional mean generated by eq. (19) and conditional covariance

    generated by eq. (21).  Thus,  in eq. (19)  the fixed - lag 

    state estimate is

(22) ˆ x (t | t k) E x(t) | Z(t k)

    and is computed forward - in - time as new measurements are

    obtained.   In eq. (21) the fixed - lag covariance matrix is

(23) (t | t + k) cov x(t); x(t) | Z(t k)
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Remarks

• The very complicated nature of the smoothing algorithms has 

forced several authors to use different substitutions and 

formulas

• be careful when studying the literature: two different authors 

may present “different looking” algorithms that solve the 

same smoothing problem

• we follow [1], Chapter 5, with minor variations

• this is especially true for the “hairy” equations that 

characterize the fixed-lag smoother

• The three types of smoothing algorithms have been derived for 

continuous-time problems, described by stochastic differential 

equations, using the Kalman-Bucy filter as the starting point; see 

[1] and [4]

• In principle, one should be able to extend the MMAE framework 

to the smoothing case.  I am not sure that anyone has done that
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Concluding Remarks

• Smoothing (or interpolation) algorithms are very useful in 

several applications, where we can afford “non-real time” (or 

non-causal) state-estimates in return for increased accuracy 

over those generated by the corresponding Kalman filter

• As long as the plant white noise, (t), excites all the state 

variables, smoothing algorithms are guaranteed to yield better 

accuracy (smaller covariance) than the corresponding Kalman 

filter algorithm

• see the discussion on “smoothability” in [1], p. 163

• Smoothing algorithms can be adapted to nonlinear nongaussian 

problems to yield suboptimal state-estimates
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