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The Basic Estimation Questions

A Pposition Estimate

Sa

X

e Where am 1? >

« How much do | believe
the “where am |”
estimate A




The Concept of Sensor Fusion

« Different sensor types yield
different position estimates

(and uncertainty volumes) @

« SENSOR FUSION combines
the measurements from all
the different sensors to yield

» “better” updated position

>

estimate A

* reduced volume of /
uncertainty about fused %%
estimate Py

e Sensor fusionis a
centralized decision problem




Never Forget ...

Obtaining only an estimate of a quantity is never enough
Being “right” on the average is nice, but not enough

We must also obtain a measure of the quality (or believability) of
the estimate

We need something like a standard-deviation or some bounding
measure

Example. An estimate of, say, 5.2 with £23% uncertainty is
“‘worse” than an estimate of, say, 5.12 with 7% uncertainty



Theme

We shall deal with the dynamic evolution of uncertainty, so we
must combine

« stochastic processes (time-varying random variables)

 linear and nonlinear dynamic systems, whose state-evolution
depends on stochastic processes

We shall define the three common classes of estimation
problems

* filtering
* prediction (or forecasting)
 smoothing (or interpolation)

We shall employ “optimal” methods for extracting information
from uncertain measurements, and avoid ad-hoc processes

Expert understanding of the filtering problem is essential for the
solution of the prediction and/or the smoothing problem



Dynamic Systems and “Where am I?”

« Recall that the state variable description of dynamical systems
IS useful because

* knowledge of the present state summarizes past behavior

» knowing the present state and future inputs is sufficient to
determine exactly all future states and output (sensor)
variables

« The question “where am |?” in dynamic systems (plants)
corresponds to the estimation of the entire state vector

* positions, velocities, accelerations ... in mechanical systems
* Pressures, temperatures ... in thermodynamic systems

 Inductor currents, capacitor voltages ... in linear electric
circuits

« We shall deal with state estimation problems where the plant
IS subject to stochastic disturbances, and on the basis of
Noisy sensor measurements



The Physical System

E(t): Plant Disturbances
O(t): Sensor

X(to): Initial :
State iNmse
Noisy
Control Physical True State’ Physical Measulsments
Plant x(t) Sensors || y(t)

« The only real-time signals that are available are the control(s)
and the noisy sensor measurement(s)

« Cannot directly measure the actual state variables or plant
disturbances or sensor noise



Example: A Sailboat

STATE VARIABLES
3D positions and velocities
Roll, yaw, and pitch angles
Roll, yaw, and pitch rates
CONTROL VARIABLES
Rudder angle
Sail area and angle
PLANT DISTURBANCES

Wind and wave forces and
moments (including
fluctuations from mean)

NOISY MEASUREMENTS

Heading angle, yaw angle
and rate(?), roll angle and
rate(?), ...

heading A

angle

—>
waves

rudder \



The Physical System: Uncertainties

E(t): Plant Disturbances

X(to): Initial
State

o(t): Sensor
i Noise

Noisy
Control Physical True State> Physical | | Measurements
Plant x(t) Sensors || y(t)

e EXogenous uncertainties
* Initial state is random vector

« plant disturbance is vector-valued random process (or
sequence)

* sensor noise is vector-valued random process (or sequence)

«  Mathematical models of plant dynamics and sensors are
Inaccurate



Open-Loop Prediction

Make a mathematical model of the plant and sensors, driven by
known control

Use average values of initial state, plant disturbance and sensor
noise

E(t): Plant Disturbances
x(to): Initial l

O(t): Sensor

State Noise

Noisy
Control IPhysical il True State | Physical || Measur.
Plant x(t) Sensors || y(t)
Xave (to) leave (t)
State Mea_asur.
Estlmate> Sensor | | Estlmgte

Model

x(t) y(t)
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Estimator (Filter) Structure

« Use real-time information to provide input signals to the plant

model, so as to improve state estimates

E(t): Plant Disturbances

0(t): Sensor

)s(&;)e Initial iNoise
Noisy
Control BPhysical Physical | | Measur.
Plant Sensors || y(t)
Eave(t)
Xave(to) ieave (t)
State Measur. +
Estimate Sensor| | Estimat
u(t A Model A i_( )
. yit
Signals that
update plant -
model Linear or r(t)
Nonlinear Gain -
(transformation) Residual
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Filtering, Prediction and Smoothing

Ulto ] FILTERING PROBLEM
T/—\ if\» e Given input time function Uz, 7]
= 5 and measurement time function
i) > Plant Y[t,.t] find "best" estimate of
the state x(7)
PREDICTION PROBLEM SMOOTHING PROBLEM
e LetT be a prediction time. e Let rbe anytime, 7, <7<t

e Given U(fo I+ T) and Y(fo,f) e Given U(to’ t) and Y(tO’ t)
e Determine "best" estimate of

(future) state x(¢+ 7))

e Determine "best" estimate of
(past) state x(7)

12



The Nature of Mathematical Models

Dynamic models of the physical plant, with finite number of state
variables

Static models of sensor measurements

CONTINUOUS-TIME MODELS: ¢, <t

e State dynamics described by ordinary vector
differential equations

d%x(t ) = f(x(1), u(t), (1), 1)

y(t) = g(x(t),u(t),6(1).t)
DISCRETE- TIME MODELS: r=0,1,2,...,
e State dynamics described by vector difference equations
x(t+1) = f(x(t), u(t), &), )
y(t) =g(x(t),u(t),0(1),1)
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Linear Dynamical Systems

Linear Time - Varying (LTV) Systems
e Continuous -time

d%x(t) = A(t)x(t) + B(t)u(t) + L(t)&(t)
y(t)=C()x(t)+0(t)
e Discrete-time
x(t+1)=A(t)x(t) + B(t)u(t)+ L(t)&(t)
y(t)=C()x(t)+0(t)
Linear Time - Invariant (LTI) Systems
e Continuous -time

d%X(t) = Ax(t)+ Bu(t) + L&)

y(t)=Cx(t)+0(t)

e Discrete-time
x(t+1) = Ax(t) + Bu(t)+ L&(t)
y(t)=Cx(t)+0(1)

LTI continuous-time model

§ &0

L

X(t

E(t): Plant Disturbances
X(to): Initial

Physical
Sensors

lx(O)

J

Noise

lB(t): Sensor

Noisy
Measurements
y(t)

0(t)

y(t)

A

xr C
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Computational Considerations

The filter must operate in
real-time

We must solve in real-time
the plant-model dynamical
equations and sensor-model
equations

The types of the impleme-
nted transformations (that
map the residuals to plant
model corrections) are dicta-
ted by real-time computer
constraints

e optimal
« suboptimal

£(t): Plant Disturbances

x{to): Initial BN(t)_: Sensor
P State oise
k Noisy
N_ Physical True State Physical Measur. .
T Plant Sensors || y(t)
L] Eavelt)
Bave(t

F l ve(t)
|
L State Measur. +
T Estimate | Sensor M‘C)
R ul Model [ [~
R ¥ y(t)

Signals that

update plant .

Linear or
model Nonlinear Gain r(_t) |
(transformation) | | Residual
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Dynamic Evolution of Uncertainty

In dynamic estimation the state-vector estimate evolves with time

The covariance matrix of the state estimation vector can be used
to quantify the volume of uncertainty about the state estimate

Thus we must find the dynamic equations that govern the
dynamic evolution of BOTH the state estimate and error-

covariance matrix

A X
X(t)

time, t
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Radar (Ladar) Tracking

Estimate (3D) positions, velocities, and perhaps accelerations of
moving aerospace target, based upon noisy measurements of
range, azimuth and elevation

A
z
N
r({t)=range ‘ ’c\{
a(t)=azimuth PR
pB(t)=elevation {t) -

>
)
>
A
/i\,
\
\
A
/N N
\J
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Passive Sonar Tracking

 Towed-array (an array of microphones) deployed behind our
submarine can measure azimuth angle to enemy submarine

« No range measurement available, for stealth

S

o(t)
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Basic Oxygen Furnace

To Mass

Steel production S“Si’;‘;:,fed CreETo et
DeS|_red steel st_rength Sa e
requires a certain % of H20, ...
carbon in iron
Iron ore is mixed with
carbon, calcium etc in CARBON
pressurized vessel
Superheated oxygen melts
mixture and burns carbon | % Carbon
Mass spectrometer

dt Spectrom. oo
megsurements are used to data |y oo cac |% Carbo
estimate % carbon as a dested  \_
function of time > ¢

19



Combined Plant-ldentification and

State-Estimation

Example of simultaneous
system identification and
state estimation

True plant is one (or close to
one) of N possible models

A parallel bank of N filters is
constructed, each
corresponding to a specific
model

It is possible to evaluate the
posterior probabilities of
each model being the true
plant

Global state estimate is
generated by probabilistic
weighting the state estimates
of each model

UNKNOWN
PLANT

R1(t)

vV

F #1

P>

True plant is one of
N possible models

r1(t)
ﬁz(t)

vV

F #2

2(t)

RN(1)

T

F #N

_Wti
VV

Posterior
Probability
Evaluator
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Concluding Remarks

We must understand stochastic sequences and stochastic
processes

We must study the response of dynamic systems to uncertain
Initial states, modeled as random vectors

We must study the response of dynamic systems to both
deterministic time-functions and stochastic processes

We must specify precisely the optimization philosophy of
generating “best” estimates

Real-time computational requirements dictate whether we use a
truly optimal estimation algorithm or resort to a suboptimal one

« solving in real-time differential or difference equations is
feasible

» solving in real-time partial (or integro-partial) differential
equations is NOT feasible

21



References

[1]. A. Gelb (ed), Applied Optimal Estimation, MIT Press, 1974 (text
for the course)

[2]. B.D.O. Anderson and J.B. Moore, Optimal Filtering, Prentice
Hall, 1979

[3]. A.H. Jazwinski, Stochastic Processes and Filtering Theory,
Academic Press, 1970

[4]. P.S. Maybeck, Stochastic Models, Estimation and Control, Vol.
1, Academic Press, 1979

[5]. P.S. Maybeck, Stochastic Models, Estimation and Control, Vol.
2, Academic Press, 1982

[6]. H.W. Sorenson, Kalman Filtering Techniques, IEEE Press,
1985

[7]. M.S. Grewal and A.P. Andrews, Kalman Filtering: Theory and
Practice, Prentice Hall, 1993

22



