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The Basic Estimation Questions

• Where am I?

• How much do I believe 

the “where am I” 

estimate
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The Concept of Sensor Fusion

• Different sensor types yield 

different position estimates 

(and uncertainty volumes)

• SENSOR FUSION combines 

the measurements from all 

the different sensors to yield

• “better” updated position 

estimate

• reduced volume of 

uncertainty about fused 

estimate

• Sensor fusion is a 

centralized decision problem
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Never Forget ...

• Obtaining only an estimate of a quantity is never enough

• Being “right” on the average is nice, but not enough

• We must also obtain a measure of the quality (or believability) of 

the estimate

• We need something like a standard-deviation or some bounding 

measure

• Example.  An estimate of, say, 5.2 with ±23% uncertainty is 

“worse” than an estimate of, say, 5.12 with ±7% uncertainty



5

Theme

• We shall deal with the dynamic evolution of uncertainty, so we 

must combine

• stochastic processes (time-varying random variables)

• linear and nonlinear dynamic systems, whose state-evolution 

depends on stochastic processes

• We shall define the three common classes of estimation 

problems

• filtering

• prediction (or forecasting)

• smoothing (or interpolation)

• We shall employ “optimal” methods for extracting information 

from uncertain measurements, and avoid ad-hoc processes

• Expert understanding of the filtering problem is essential for the 

solution of the prediction and/or the smoothing problem
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Dynamic Systems and “Where am I?”

• Recall that the state variable description of dynamical systems 

is useful because 

• knowledge of the present state summarizes past behavior

• knowing the present state and future inputs is sufficient to 

determine exactly all future states and output (sensor) 

variables

• The question “where am I?” in dynamic systems (plants) 

corresponds to the estimation of the entire state vector

• positions, velocities, accelerations ... in mechanical systems

• Pressures, temperatures ... in thermodynamic systems

• inductor currents, capacitor voltages ... in linear electric 

circuits

• We shall deal with state estimation problems where the plant 

is subject to stochastic disturbances, and on the basis of 

noisy sensor measurements
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The Physical System

• The only real-time signals that are available are the control(s) 

and the noisy sensor measurement(s)

• Cannot directly measure the actual state variables or plant 

disturbances or sensor noise
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Example: A Sailboat

STATE VARIABLES

• 3D positions and velocities

• Roll, yaw, and pitch angles

• Roll, yaw, and pitch rates

CONTROL VARIABLES

• Rudder angle

• Sail area and angle

PLANT DISTURBANCES

• Wind and wave forces and 

moments (including 

fluctuations from mean)

NOISY MEASUREMENTS

• Heading angle, yaw angle 

and rate(?), roll angle and 

rate(?), ...
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The Physical System: Uncertainties

• Exogenous uncertainties

• initial state is random vector

• plant disturbance is vector-valued random process (or 

sequence)

• sensor noise is vector-valued random process (or sequence)

• Mathematical models of plant dynamics and sensors are 

inaccurate
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Open-Loop Prediction

• Make a  mathematical model of the plant and sensors, driven by 

known control

• Use average values of initial state, plant disturbance and sensor 

noise 
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Estimator (Filter) Structure

• Use real-time information to provide input signals to the plant 

model, so as to improve state estimates
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Filtering, Prediction and Smoothing

         FILTERING PROBLEM

  Given input time function U t0 , t  

    and measurement time function

     Y t0 , t ,  find   " best"  estimate of

     the state x(t)

       PREDICTION PROBLEM

  Let T be a prediction time.  

  Given U(t0 , t T)  and  Y(t0 , t)

  Determine "best"  estimate of 

    (future) state x(t +T)

     SMOOTHING PROBLEM

  Let  be any time,  t0 t

  Given U t0 , t  and Y t0 , t

  Determine "best"  estimate of

    (past) state x( )
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The Nature of Mathematical Models

• Dynamic models of the physical plant, with finite number of state 

variables

• Static models of sensor measurements

           CONTINUOUS- TIME MODELS:  t0 t

  State dynamics described by ordinary vector 

    differential equations

d

dt
x(t) f x(t), u(t), (t), t

y(t) g(x(t),u(t), (t), t)

           DISCRETE - TIME MODELS:  t 0,1, 2, ...,

  State dynamics described by vector difference equations

x(t 1) f x(t), u(t), (t), t

y(t) g(x(t),u(t), (t), t)
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Linear Dynamical Systems

    Linear Time - Varying (LTV) Systems

  Continuous - time

d

dt
x(t) A(t)x(t) B(t)u(t) L(t) (t)

y(t) C(t)x(t) (t)

  Discrete- time

x(t 1) A(t)x(t) B(t)u(t) L(t) (t)

y(t) C(t)x(t) (t)

    Linear Time - Invariant (LTI) Systems

  Continuous - time

d

dt
x(t) Ax(t) Bu(t) L (t)

y(t) Cx(t) (t)

  Discrete- time

x(t 1) Ax(t) Bu(t) L (t)

y(t) Cx(t) (t)

u(t)
B

L

A

C

(t)

x(t)

(t)

y(t)

x(0)

x(t)•

LTI continuous-time model
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Computational Considerations

• The filter must operate in 

real-time

• We must solve in real-time

the plant-model dynamical 

equations and sensor-model 

equations

• The types of the impleme-

nted transformations (that 

map the residuals to plant 

model corrections) are dicta-

ted by real-time computer 

constraints

• optimal

• suboptimal
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Dynamic Evolution of Uncertainty

• In dynamic estimation the state-vector estimate evolves with time

• The covariance matrix of the state estimation vector can be used 

to quantify the volume of uncertainty about the state estimate

• Thus we must find the dynamic equations that govern the 

dynamic evolution of BOTH the state estimate and error-

covariance matrix
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Radar (Ladar) Tracking

Estimate (3D) positions, velocities, and perhaps accelerations of 

moving aerospace target, based upon noisy measurements of 

range, azimuth and elevation
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Passive Sonar Tracking

• Towed-array (an array of microphones) deployed behind our 

submarine can measure azimuth angle to enemy submarine

• No range measurement available, for stealth

• • • • • •

Enemy Sub

Our SubTowed-array

(t)



19

Basic Oxygen Furnace

• Steel production

• Desired steel strength 

requires a certain % of 

carbon in iron

• Iron ore is mixed with 

carbon, calcium etc in 

pressurized vessel

• Superheated oxygen melts 

mixture and burns carbon

• Mass spectrometer 

measurements are used to 

estimate % carbon as a 

function of time
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Combined Plant-Identification and 

State-Estimation

• Example of simultaneous 

system identification and 

state estimation

• True plant is one (or close to 

one) of N possible models

• A parallel bank of N filters is 

constructed, each 

corresponding to a specific 

model

• It is possible to evaluate the 

posterior probabilities of 

each model being the true 

plant

• Global state estimate is 

generated by probabilistic 

weighting the state estimates 

of each model

F #1

F #2

F #N

Posterior 
Probability 
Evaluator

r1(t)

r2(t)

rN(t)

P1(t)

P2(t)
PN(t)

Posterior hypotheses 
probabilities

x1(t)^

x2(t)^

xN(t)^

x(t)^

...

u(t) UNKNOWN 
PLANT

y(t)

True plant is one of 
N possible models
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Concluding Remarks

• We must understand stochastic sequences and stochastic 

processes

• We must study the response of dynamic systems to uncertain 

initial states, modeled as random vectors

• We must study the response of dynamic systems to both 

deterministic time-functions and stochastic processes

• We must specify precisely the optimization philosophy of 

generating “best” estimates

• Real-time computational requirements dictate whether we use a 

truly optimal estimation algorithm or resort to a suboptimal one

• solving in real-time differential or difference equations is 

feasible

• solving in real-time partial (or integro-partial) differential 

equations is NOT feasible
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