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Theme

• Define the concept of continuous-time random processes

• scalar-valued random processes

• vector-valued random processes

• Discuss nonstationary and stationary situations, the nature of 

the probability density functions (pdf), mean and covariance

• nonstationary means that statistics change with time

• stationary means that statistics are constant over time

• For stationary random processes we define the “autocorrelation 

function” and the “power spectral density”

• Demonstrate how to analyze linear time-invariant (LTI) systems 

driven by stationary random processes

• Define and discuss a modeling tool, the continuous-time white 

noise process
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What Do We Observe?

• Example of random sequence:  The numerical outcome of 

sequentially throwing a die, i.e. {3, 6, 6, 2, 3, 1, 2, 5, 5, 5, …} 

• Example of a random process:  Wind disturbances acting on 

physical systems

• We concentrate on continuous-time random processes (RPs)

• We shall examine random sequences later
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Example:  Sailboat Motion

• Wind speed is an example of 

a random process.  There 

are random wind speed 

variations about the mean 

wind speed.

• The wind speed will 

influence the speed of the 

sailboat, so that its velocity 

will also be a random 

process

• The sailboat speed will 

depend on the sailboat 

dynamics and the 

randomness of the wind 

speed
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Example: Aircraft Pitching

• Vertical wind gusts are an 

example of a random 

process

• Resulting aircraft pitch angle 

is also a random process

• Aircraft pitch angle depends 

on aircraft dynamics 

influenced by the vertical 

wind gusts
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Dynamical Systems with Random 

Inputs

• We will study how dynamic systems behave when their input, 

u(t), is a random process

• We should expect that the output, y(t), will also be a random 

process

• We must learn how to characterize, in a mathematical 

framework, random processes

• We must discover how dynamic systems interact with their input 

random processes and how they generate their output random 

processes

Dynamical 
SystemInput, u(t) Output, y(t)
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Continuous-Time Random Processes

• Think of a random process (RP) as a 

collection, or ensemble, of time-

functions, any one of which may be 

observed on any trial of an experiment

• Denote the ensemble of functions by 

{x(t)}, and of any observed member of 

the ensemble by x(t)

• On repeated trials of experiment, say 

at times t1 and t2, x(t1) and x(t2) are 

random variables

• Example: the RP may represent the 

temperature from 9:00 to 10:00 am, on 

July 13, in Boston (different 

temperature observed each year)
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Stationary Random Processes

  At time  t t1:   random variable  x(t1) x1,   

    with pdf  p(x1, t1)

  At time  t t2:   random variable  x(t2 ) x2 ,  

    with pdf  p(x2 , t2 )

  If the statistical properties of the ensemble

    x(t)   change with time,  then we call the 

    random process "non - stationary",  and we 

    write the pdf as  p x(t), t

  If the statistical properties of the ensemble

    x(t)   do not change with time,  then we 

    call the random process " stationary",  

    and we write the pdf as  p x(t)

t

t

t

t

t1 t2
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Illustration

• Non-stationary random process: the temperature profile, in 

Boston, on November 28 from 3:00 am to 11:00 pm (it will 

depend on the time)

• Stationary random process: the temperature profile on 

November 16, in Boston, from 9:00 to 10:00 am 



10

Statistics of Random Processes

      NONSTATIONARY RANDOM PROCESS

  Time - varying mean:   m(t)

m(t) E x(t) x(t)p x(t), t dx(t)

  Time - varying variance:   2 (t)

2 (t) E x(t) m(t)
2

x(t) m(t)
2

p x(t), t dx(t)

      STATIONARY RANDOM PROCESS

  Constant mean:  m

m E x(t) x(t) p x(t) dx(t)

  Constant variance:  2

2 E x(t ) m
2

x(t) m
2
p x(t) dx(t)
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Nonstationary Correlation Function

    NONSTATIONARY RANDOM PROCESS,   x(t)

  Time - varying pdf:   p x(t), t

  Assume:   E x(t) 0 t

  Consider:   x1 x(t1), x2 x(t2 )

  The two RVs  x1 and x2 have a joint density function

p x1, x2 p x(t1), t1; x(t2 ), t2

  The autocorrelation function  xx(t1, t2 ) is defined by

xx(t1, t2 ) E x(t1)x(t2 )

x(t1)x(t2 )p x(t1), t1; x(t2), t2 dx(t1)dx(t2 )

  Note that  xx(t1, t2 )  will depend on the absolute 

    values of time,   t1 and t2

t

t

t

t

t1 t2
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Stationary Autocorrelation Function

        STATIONARY RANDOM PROCESS,   x(t)

  Time - independent pdf:   p x(t)

  Assume:   E x(t) 0 t

  Let  t2 t1 ,   and consider  x1 x(t1), x2 x(t1 )

  The two RVs  x1 and x2 have a joint density function

p x1, x2 , p x(t1), t1; x(t1 ), t1 p x(t1), x(t1 ),

    which now only depends on the time - difference  

  The autocorrelation function  xx( ) is defined by

xx( ) E x(t)x(t )

x(t)x(t )p x(t), x(t ), dx(t)dx(t )

  Note that in stationary random processes  xx( ) 

   will only depend on the time - interval    and not on 

   the absolute value of time  t

t

t

t

t

t1 t2
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Autocorrelation Function

  Stationary random  process, x(t)

  Mean:   E x(t) x  constant for all  t

    Assume  x 0  for convinience

  Variance:  E x2(t) xx
2  constant for all  t

DEFINITION

  Autocorrelation function of x(t): xx( )

xx( ) E x(t)x(t )

  Autocorrelation function depends only on

    interval    and not on time  t

PROPERTIES

  xx( )  is symmetric,  i.e.

xx( ) xx ( )

xx(0) xx
2
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Power Spectral Density (PSD) Function

  Given,  zero -mean stationary

    random process, x(t),  with

    autocorrelation function  xx( )

                 DEFINITION

  The power spectral density (PSD)

    function  xx( ) of  x(t)  is the Fourier

    transform of the autocorrelation

    function  xx( )

xx( ) xx( )e j d

            PSD PROPERTIES

  We can recover the autocorrelation

    by the inverse Fourier transform

xx( )
1

2
xx( )e

j
d

  Note that

xx(0) xx( )d

xx( ) xx ( )

xx( )

AA 0

AREA

AREA=POWER OF x(t) IN FREQUENCY 

RANGE, - A< < A
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First-Order Markov Process

  Simplest example of a 

    random process

xx ( ) 2e
| |

; 0

xx( )
2

2

2 2

  
1

 correlation time- constant

  =  bandwidth of PSD

  Note:

2e
| |

xx ( )
-

+
e

j
d

2 2

2 2 xx( )

1

2

2 2

2 2

xx ( )

e j d 2e | |
xx( )

0

xx( )

xx( )

0
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The Ergodic Hypothesis

• A stationary random process is ergodic if we can calculate its 

statistics by averaging over time a single “representative” 

outcome (time function)

• “Representative” means that the time function must reflect all 

the attributes of the random process (wiggles etc)

• The set of constant random functions is not ergodic, since no 

outcome is representative

  Mean calculation:   m E x(t) lim
T

1

2T
x(t)dt

T

T

  Variance:  xx
2 E x(t) m 2 lim

T

1

2T
x(t) m

T

T 2

dt

  Autocorrelation function  (with m 0):   

    xx( ) E x(t)x( ) lim
T

1

2T
x(t)x(t )dt

T

T
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Calculating Autocorrelation Functions 

Using Tapped-Delay Lines

• The autocorrelation function 

can be approximated by using 

a tapped-delay line

• Then, the power spectral 

density (PSD) function can be 

approximated using discrete 

Fourier transforms (DFT)

D=

D=

D=

...

x(t)

x(t- )

x(t-2 )

x(t-N )

xx( )

0

x
x

x
x

x

...

xx( )

xx( )

xx( )

xx( )

(.)
2

1

T

(.)
2

1

T

(.)
2

1

T

(.)
2

1

T
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Stochastic SISO LTI Systems

  Given LTI SISO system

    y(s) h(s)u(s)

  Assume  h(s)  strictly stable

  Random process inputs will 

    generate a random process

    output

  Want statistical characterization

    of output random process at

    steady - state    

                PROBLEM

  Given PSD  uu ( ) of input u(t)

  Find PSD  yy ( )  of output  y(t)

            SOLUTION

yy ( ) h( j ) h( j ) uu ( )

yy ( ) | h( j ) |2
uu ( )

LTI Dynamical 
System, h(s)

Input, u(s) Output, y(s)
h(s)
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Important Remark

• It is very easy to analyze stochastic LTI systems in the 

frequency domain

• Very simple algebraic relations linking

• the PSD of the input random process signal

• the magnitude of the of the SISO LTI system transfer 

function as a function of frequency

to the PSD of the (steady-state) output random process

• We can recover statistical time-domain properties (variance, 

autocorrelation function) of the output random process by the 

inverse Fourier transform of the output PSD 
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Continuous-Time White Noise (WN)

             DEFINITION

  Zero -mean,  unit intensity white noise,   (t)

E (t) 0, cov (t) ( ) E (t) ( ) (t )

  Autocorrelation function of WN is unit impulse

E (t) (t ) ( ) ( )

  PSD function of WN is constant for all  

( ) 1

• Continuous-time WN is physical fiction; it is completely 

unpredictable

• WN has infinite variance

• WN has zero time-correlation

• WN has infinite power

• But, very useful in modeling
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WN as Limit of 1st-order Markov Process

  We can model WN as the limit of a 1st- order Markov process with decreasing 

    correlation time - constant,  
1

  Consider the 1st - order Markov random process,  x(t),   with autocorrelation function

xx( )
2

e
| |

Note that:  
2

e
| |

d 1 0

    and associated power spectral density

xx( )
2

2 2

  Then,  the unit intensity white noise  (t)  is the limiting process as  

0

xx( )

1

xx( )

0
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Comments on White Noise

• White noise can approximate a “broadband” noise process, with 

constant power density over a wide frequency-range, and which 

eventually “rolls-off” at very high frequencies

• we avoid complex models at these high-frequencies

• Continuous white noise is the “most” unpredictable continuous 

random process, because of its infinite variance and zero time-

correlation

• one can neither estimate nor predict white noise, even 

though it has been observed for ever

• Pure continuous-time white noise does not exist in nature

• remember, it has infinite power

• Also, continuous-time white noise is not an “ordinary” 

mathematical function, so it is easy to make mistakes using 

white noise in non-rigorous mathematical proofs

• it belongs to the so-called class of “distribution functions”

• nevertheless, it is a very useful modeling tool
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White Noise Can Approximate 

Broadband Noise

  Broadband noise RP  x(t) has

    large bandwidth,  , much larger

    than the bandwidth of the

    LTI system  g(s) 

  Can approximate output RP

    PSD,  yy ( ),  assuming that

    input RP x(t)  is white noise

  Exact calculation:

    yy( ) | g( j ) |2
xx ( )

  Approximate calculation:

    yy ( ) | g( j ) |2

    valid for  1
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Prewhitening

  Input WN,   (t)

( ) ( ); ( ) 1

  Output RP  y(t)  has PSD given by

yy ( ) h( j )h( j ) | h( j ) |2 . 1
( )

• We can always model a physical (colored) stationary random 

process y(t) as the output of a fictitious LTI SISO dynamical 

system, with transfer function h(s), driven by a fictitious white 

noise input, (t)

• This modeling concept is called “prewhitening”
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Modeling Using Prewhitening

  Assume that y(t)  is ergodic RP

  Measure (experimentally) approximate

    autocorrelation function,  yy ( )

  Take inverse Fourier transform of yy ( )

    and determine approximation to the PSD

    of y(t), yy ( )

  Find a stable and minimum -phase transfer function, h(s),   such that

    its squared frequency- response  h( j )  approximates the PSD, i.e.

| h( j ) |2
yy ( )

  Determine, if required, a state - space representation for the transfer 

    function  h(s)

  Think of  y(t)  as the output of the fictitious  h(s)  driven by the (also 

    fictitious) unit intensity white noise  (t)

h(s)
Input WN, (t) Output RP, y(t)
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First-Order Example

  Variance:  E y2(t) 2

  Autocorrelation function:  yy ( ) 2e | |                                  

  Power spectral density:   yy ( )
2 2

2 2      

  Transfer Function: h(s)
2

s

  Ref. [1], p.44
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A Second-Order Example

  Variance:  E y2(t) 2

  Autocorrelation function:   yy ( ) 2e | |  1 | |

  Power spectral density:   yy ( )
4 3 2

2 2 2

  Transfer function:  h(s)
2 3/2

s2 2 s 2

  Ref. [1], p.44
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Another Second-Order Example

  Variance:  E y2(t) 2

  Autocorrelation function:  yy ( )
2

cos
e n | | cos 1 2

n | |

  Power spectral density:   yy ( ) 2 a2 2 b2

4 2 n
2(2 2 1) 2

n
4

  Transfer function:  h(s)
as b

s2 2 ns n
2

  Ref. [8], p. 72



29

Modeling Implications

• The output random process, y(t), of a “real” system g(s) to a 

colored input random process, x(t), can also be modeled by the 

cascaded system g(s)h(s), where h(s) is the “prewhitening” 

system for the random process x(t)
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Remarks

• Continuous-time random processes are essential in modeling 

the impact of random disturbances and “noise” on physical 

systems

• It is crucial to appreciate, and fully understand, the time-domain 

and frequency-domain properties of stationary random 

processes, via the associated autocorrelation and PSD function

• The power spectral density of stationary random processes is a 

very powerful tool when we analyze the input and output 

signals, of a SISO LTI system, as random processes

• Even though a physical fiction, continuous-time white noise is a 

powerful modeling tool

• All SISO results will be extended to the multi-input multi-output 

(MIMO) case, fully taking advantage of state-space 

representations
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Vector Random Processes (VRPs)

  All definitions and results for the scalar case readily extend to the

    case of vector- valued random processes

  A VRP  x(t) Rn  is a n - dimensional column vector

x(t)

x1(t)

x2(t)

....

xn(t)

    whose elements,   xi (t),   are scalar - valued random processes
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PDF and Mean For Nonstationary VRP

  All elements  xi (t); i 1, 2,...,n,   are jointly - distributed RPs

  In the nonstationary case the pdf of the VRP is the 

    scalar - valued function   p x(t), t p x1 (t), x2 (t), ...,xn (t), t

    with mean  x (t)

x 1(t)

x 2 (t)

...

x n (t)

E x(t) x(t)p x(t), t dx(t)

    which is shorthand for

  x i (t) E xi (t)

... xi (t)p x1(t), x2 (t), ..., xn (t), t dx1(t)dx2 (t)...dxn (t)
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Covariance Matrix For Nonstationary VRP

  The nxn covariance matrix of the nonstationary vector random 

    process  x(t) Rn   is defined by

(t) cov x(t); x(t) E x(t) x (t) x(t) x (t)

x(t) x (t) x(t) x (t) p x(t), t dx(t)

  The nxn covariance matrix is symmetric and positive - semidefinite

(t) =

11(t) 12(t) ... 1n(t)

12(t) 22 (t) ... 2n (t)

... ... ... ...

1n(t) 2n(t) ... nn(t)

; (t) = (t) 0

    where,  element - by - element,

ij (t) E xi (t) x i (t) x j (t) x j (t)

... xi (t) x i (t) x j (t) x j (t) p x1(t), ...,xn(t), t dx1(t)...dxn(t)
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PDF and Mean For Stationary VRP

  All elements  xi (t); i 1, 2,...,n,   are jointly - distributed RPs

  In the stationary case the pdf of the VRP is the 

    scalar - valued function,    p x(t) p x1(t), x2 (t), ...,xn(t) ,

    which does not depend explicitly on time,

    with mean  x 

x 1

x 2

...

x n

E x(t) x(t)p x(t), t dx(t)  constant

    which is shorthand for

  x i E xi (t)

... xi (t)p x1(t), x2(t), ..., xn(t) dx1(t)dx2(t)...dxn(t)
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Covariance Matrix For Stationary VRP

  The nxn covariance matrix of the stationary vector random 

    process  x(t) Rn   is constant and is defined by

cov x(t); x(t) E x(t) x (t) x(t) x (t)

x(t) x (t) x(t) x (t) p x(t) dx(t)

  The nxn covariance matrix is symmetric and positive - semidefinite

=

11 12 ... 1n

12 22 ... 2n

... ... ... ...

1n 2n ... nn

; = 0

    where,  element - by - element,

ij E xi (t) x i (t) x j (t) x j (t)

... xi (t) x i (t) x j (t) x j (t) p x1(t), ...,xn(t) dx1(t)...dxn(t)
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Correlation and PSD Matrices

  For stationary zero-mean vector random processes, 

    the correlation matrix is defined by

xx ( ) E x(t)x (t )

    with elements  xi x j
( ) E xi (t)x j (t )

  The PSD matrix is denoted by  xx( ),  whose elements are computed

    by the Fourier transform of the associated correlation function

xi x j
( ) xi x j

( )e j d

  Formally,

xx( ) xx( )e j d ; xx( )
1

2
xx( )e j d
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Vector White Noise

  Nonstationary case:  (t) Rm   is vector white noise,  with

E (t) 0, cov (t); ( ) E (t) ( ) (t) (t )

  Stationary case:  (t) Rm   is vector white noise, with

E (t) 0, cov (t); ( ) E (t) ( ) (t )

    and correlation matrix   ( ) ( )

    and power spectral density matrix  ( )

  In either case, we refer to (t) or   as the " intensity matrix"

  By the law of large numbers,  white noise is gaussian
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Gaussian Vector Random Processes

  In the nonstationary case,  x(t) Rn,   the gaussian PDF takes the form

p x(t), t
1

2 n/2 det (t)
exp

1

2
x(t) x (t) 1(t) x(t) x (t)

  Often,  we use the abbreviation  x(t) ~ N x (t), (t)

  In the stationary case,  x(t) Rn ,   the mean and covariance

    are constant so that the gaussian PDF takes the form

p x(t)
1

2 n/2 det
exp

1

2
x(t) x 1 x(t) x 

  Often,  we use the abbreviation  x(t) ~ N x ,
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Remarks on Vector Random Processes

• We postpone till later the topic of how vector random processes 

interact with linear dynamic systems

• Such manipulations will require extensive use of state-space 

methods and models
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