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STOCHASTIC ESTIMATION

The Bayesien Approach to
Parameter Estimation

Part 1

2
- MOTIVATION

fn most physical or socioeconomic
problems we make actual experiments
to increase our knowledge about
"something'' of interest,

3

. The very act of making a measure-
ment in the real world with a real
“sensor'' is fundamentally an un-
certain process (recall the Heissenberg
uncertainty principle in quantum
mechanics). Hence, measurements
are inherently unreliable or noisy.

4

. Sometimes we can directly measure
the quantity or variable of interest
{subject to an inherent measurement
error associated with the sensor).

5

. However, there are cases that the
measurements that we can, or care
to, carry out contain only indirectly
information about the quantity or
variable of interest (still subject to
measurement errors).




6
PRIOR VS POSTERIOR INFORMATION

. From a philosophical point of view it is
reasonable to suppose that before we
make an experiment we know something
about the variable(s) of interest. 1f we
knew nothing at all why should we be
interested in the variables?

We shall refer to such knowledge before
the experiment as prior information
(no matter how bad it may be),

7

. It is also reasonable to suppose that we
know the physical significance of our
measurement with respect to the variable
of interest,

Example: The physical measurement of
the dimensions of Ms. Smith contains
no information about the height of

Mr. Brown, but it may contain informa-
tion about his blood pressurel

8

. Thus, before we make the experiment
we have another type of prior informa-
tion namely the relation between the
measurements that we may carry out
and the quantities that we are interested
in.

9

« Another type of prior information per-
tains to the accuracy of our "sensor.
The sensor accuracy may be known
from "manufacturing data" or from
previous carefully controlled experi-
ments (independent of the one that we
are about to carry out) on the sensorf(s)
themselves.

Remark: Often an increase in sensor
accuracy requires more monetary
expenditures.
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THE VALUE OF DOING EXPERIMENTS

. Intuitively, if we expend time, money,
and energy to carry out an experiment,
we should certainly hope that after
the experiment we should know more
about the quantity of interest than before.
Thus,

Posterior information= Prior Information

. Irrelevant experiments should preserve
the equality about prior and posterior
information.

11

Remark: If we had absolutely no infor-
mation about the quantity of interest,
then we would be hard pressed to

(a) establish-the relevance of the
experiment.

(b) the role of the sensor accuracy.
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MATHEMATICAL MODELLING

. Variables or quantities of interest

Xpr Koroons X, e reéal scalars

Notation: B X1 ]

¥ RANDOM

2

X 4 parameter vector
*** | of interest
X
— n o
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« Actual variables that we measure

Scala <
21’22""’Zm rlal Sca

Notation: [z. ]

I~
i

measurement
vector

Z
Lom

Each Zi contains the measy rement error.
14

- Actual errors introduced by
measurements

6., o 0 USUO‘“Y; r=m
1 % e,

2 | measurement
noise vector

[Jes]
I

15 ' 5 5 )
- Relation of experiment to quantities 1.e, ZK:S’ ("a PRI SR I
: <
of interest
Z=gl(x,8)

Remark: Knowledge of the mapping
(function) g (., .) forms part of our

prior information,

16

- MODELL ING OF UNCERTAINTY ON VECTOR
X BEFORE THE EXPERIMENT.
S ==L 2 RE AL EAPERTMENT,

- X is modelled as a random vector.

: . . D X
- Prior information on x is modelled by the P(x): Prior PDF Of _
assumption that jts probability density -

function, pi(x), is known
p(z):p(xl, Xorov ., xn)

scalar valued function of many
variables

k=1l Z . me
(I 7/
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MODELLING OF SENSOR ERRORS (i.e.
MEASUREMENT UNCERTAINTY) PRIOR
TO EXPERIMENT

.Measurement noise vector g is modelled
as a random vector,

-Manufacturers specification on sensor

accuracy (part of prior information) are 6 + ¢
modelled by assummg that the probability P(G) prioc PDF df h
density function, p(g), is available SénsSor nay S ver("Or-

p(e) =p(1, ez,..., er)

18

.Common Assumption: The inherent un-
certainty of sensors has nothing to do
with the inherent uncertainty on our
prior knowledge of the parameter vector
X.

-Mathematically this is modelled by
assuming that x and e are independent

—~ p(x.9) “p{y)-nlo)

19
THE UNCERTAINTY ON THE MEASUREMENT
VECTOR z
JFromeq. (1) ,
F of measurémeut
z=9(x 0) p(z 2) . prier POF of
vecto—

. We can see that before the experiment we
do not know what the measurements will
be. Since x and e are random vectors,
Z (prior to the experiment) will be also a
random vector, with prior probability

density function
p(g)=p<zl,22 ..... Zm)




20
REMARKS

. Under our assumptions the probability
density function p(z) can be evaluated

. After the experiment, our "sensors"
have measured z: hence it is no longer
random. z

21

MODELLING OF POSTERIOR INFORMA-
TION ON x

In general, since

« X Was uncertain to begin with

- the sensor measurements were un-
certain

we would expect that after the measure-
ment we would not still know the value

of x perfectly (but only "better"). Hence
after the measurement the parameter
vector of interest is still a random vector,

22

. Parameter vector of interest prior to
experiment:

X = px)

.Parameter vector of interest after the
experiment:

xIz = plxlz)

The conditional density fupnction (or
posterior density function) p(x/z)

models the inherent uncertainty ow x
persisting through the measurement.

i« h
Cead. Z\,z‘:‘) ié‘vwg




QUANTIFIES PRIOR

ppi // INFORMATION
{
\ PRIOR
¢ DENSITY
' FUNCTION
A § . X
Apx12) QUANTIFIES POSTERIOR
INFORMATION b
(«éerev\’f‘
! POSTERIOR ° w‘\ean
| DENSITY .
' FUNCTION . Small@ervariants
H

24

. COMPUTATION OF POSTERIOR DENSITY
FUNCTION

.Main tool is Bayes Rule

25

Computational question

.p(x)was assumed known
Need to evaluate

plzlx)andp(z)
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EVALUATION OF p(z/x) — _Tf I knew i)wha“{" cau L
In fundamental measurement relation Sa)/ about }_ ‘95#’4 L
27gx,0) szeR  xeR ~, eeR measure 1+ 7

X is now viewed as given (no longer a
random parameter

Hence, assumption that sensor measure-
ments are always in error, because of
measurement noise ==

Z is random vector whenever
8 is random vector

27

. But
m = number of sensed variables =
number of sensors

r =number of measurement noises

To have an one-to-one correspondence
between number of sensors and number
of measurement noises, we must have

-r=m| (5

~——

S-(—andmj 4 ssumphon

ol hNow 04y

28

. It is also reasonable to assume that any
two different values of measurement
noise do not yield the same measurement

z=g(x, o) =18=g l(_x,z)

i.e.

g (x, .)isone-to-one and onto (6)

(%]
w0
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Under the two assumptions (5) and (6)
p(z/x) can be evaluated by

(zlx) = (e) (7)
e det J P
. ¥*
where Jy is the mxm (r=m) Jacobian matrix
~ 3q(xe) xisparameter
Je - GQ 4 (8)

Hence p(z/x) can be evaluated from the
prior knowledge of p(e ) and g (x, &)

30
EVALUATION OF p(z)

. In principle, p(z) can be evaluated
analytically using the relations

.General formulas are complex we shall
see how this is done in special cases
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STOCHASTIC ESTIMATION

The Bayesian Approach to
Parameter Estimation

Part 2

32
USEFUL STATISTICS

o The prior and posterior probability
density functions provide the most
general mathematical description
for the uncertainty.

33

eFor engineering problems one is often
interested in a more 'summary' type
of information pertaining to the para-

meter vector of interest. Two intuitively

appealing "statistics" are
(@) A "good" estimate of X, denoted

by X.
(b) A 'good" measure of the estima-
tion error
XSx-%

34

« COMMON ESTIMATES OF RANDOM
VECTORS

Let y be a random vector, with probability
density function ply). Then, the most

often used estimates are:

1) The mean

dewnates gfh mate

M Jenotes €shmation €rcer
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2) The median, i.e. the estimate that
minimizes the maximum possible
magnitude of the estimation error.
If we let §,0q denote this estimate,
then

Y~ Jmed 11 < max 11y =9

where § is any other estimate.

36

3) The most probable estimate (maximum
likelihood in Bayesian sense), ¥ o o

which corresponds to the highest peak
of the density function, I.e.

p<§/\_m P. e_) = D(X) for all y {10

37

Given any estimate Q we can get an idea
of the confidence of that estimate by com-
puting the matrix

o= E{(_y-?)(y;?)'l (12)

o |f _9 = E{g}, then 3 is the covariance
matrix

38
oFACT Any single mode symmetric
probability density function, has
the property that

]
N - N - N ¢
Y mean Ymedian l/m.p.e. (13) {

{

&~ may not k¢ &a.,uéfta«u/&‘g,
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*FACT The Gaussian probability density

function with mean y and covariance
matrix 2, where_y € Rn
-

1

det 2_)2-

oyl = (2m) 2 |

is a single mode symmetric probability
density function, so that
A A A

Xmean ) —Xmedian =~Ym. p. e.zl/

40

APPLICATION OF BAYESIAN ESTIMATION

T0 A LINEAR-GAUSSIAN EXAMPLE

Definitions
X € Rn parameter vector of interest

Z¢ Rm measurement vector

|D

€ Rm noise vector

-Measurement Equation (Linear)

2= Hx +e

H mxn known deterministic matrix

41
*PRIOR INFORMATION

* X is Gaussian random vector

Shortband:

R N(f)?}_)

(14)

. Wit
§ub§(r:pt 'b" Mé’ay:'f
i bf#ﬂf? exreriméut ) 1€
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- 8 is Gaussian random vector

- x ande are independent

==p(x,8)=p(x)p(e)

43

Prior (i.e. Before the Experiment)
Statistics

X=E %gs = x, {(Prior Mean)
Prior Covariance

“oov [xix| <%,

44

COMPUTATION OF POSTERIOR DENSITY
FUNCTION p (x/z)

» From Bayes rule

pix/z)= p(z/x)pix)

plz)

«p (x)is known - see eq. (17)

45
- Evaluation of p (z/x)

Z=Hx *o

Viewing x as known, then Hx is viewed
as a deterministic vector. All uncertain-
ty in z is caused by uncertainty ino




recall z =Hx+8
46 |
Hence (z/x) is Gaussian 0 Thiank o X aogww.
= K
2/ x| Hx+E o - Hx (23) conditonal meau
o | f /X
cov [g;;/ﬂ -0 (24)
_m 1
plzlx)=(27)° eto) °. 25)
exp%*%@“ﬂxj @“1 (z-Hx)
47 ,
EVALUATION OF p(z) €— Prtor .
-Z=Hx+te
T . 0
== 7 {5 Gaussian
E{z} =HE {x] +}M{ﬁxb (26)
48 b d e
@ ol X And =
7] = . ! ; {
¥ cov[;,g] Hcov [g,gg]_ + cov[g,g} (27) ace mdepewde‘—"& '
=HZ H +0
~=b
Hence
m 1
p(z)-zm) . Jaet (Hz, W+ o)l 2. (28)
. ]
oxp| -5 (2-Hx,) (20 = 6] (et )|

o

x,7

\ndepeu deut randowa
ve@ectors

-+
/
Cov [wiw]=A cou[ ;x| A 4 Bear (1508
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THE POSTERIOR DENSITY p{x/z )

e Substitution and linear algebra
(lots!) yield structure of p(x/z) -

l.e. plugin (30) to (32) into (29) and
crank out.

«Structure of p(x/z)

{
Subscript “a' meaur "atler
e : "
+u XFQHW\&A‘E , Le. osterier

_)i\’_?:- ~ N (-)—(a.) ga;)

/

{29)

x/z is still Gaussian! €— +h.¢
& v
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POSTERIOR MEAN X

X =X, + H' @nlz~Hx
=a ~b —=3 - = {— —~J

X, " E 35/g£= optimal posterior
estimate of x

o 2_1s posterior covariance matrix
q = ——
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POSTERIOR COVARIANCE _Z_a

Frlls oot of math ! TH1S not
Affomp o,

) , -l
Ic o, zbﬂ<ﬂzbﬂ+@> HE

2. = cov [5;5/4 = posterior

covariance
matrix of x
52
"1 - “1 ' _1
Za Zb +H 0 " H

=== reduced uncertainty

i A and B are F"Sr‘xéo
defuiTe wmatrices; 272

‘@_)“Q‘TLM







Nomeprical Exouwple x &

P(x)NN(O)t) :—-’> plx) = ﬁ e 9: (4)
?(G)N N(OIZ) = P(@): l e“"‘—z"‘ (2)
2w - 1 2
Z= X+6 (3)
Suppat we meanuns ’é.—’:'yz > (a)
L -xz=Y)
p(2(¥)~ N(*Z)—?P(l) =ieh )

{ } M*E ' (6)

uaf[}’)“var{x]—(-va([@] |+2=3 5 (:‘1_)
p(z)~ N(9,3) = p(z) = o T T
P(2) ,_ﬂr (1 2
“ylz ( 2
Feowm (4 P(le)P(ﬁ) 'ﬁ%‘""l‘ie 4 Lz _E{é
P(X\Z:,.L): Y
* P (2) R
g 24
T s
z 2 \
\ e(“i-(—‘i-x) ,Jix 4—;;]
/__\/_,—/‘—"
[or |2 ~
\ ! 3 2.
Com show that: a:—%(xz——'?X%—_gg :.._‘,{_.(x__“lé_}

:l/é Z—_;}-a

) Q

o) axed (32
Lo\; ch cau also be uen@-ed %‘W‘ eqs. (39 )
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NUMERICAL EXAMPLE

X1
.Parameter vector x = J
X x2

*Prior Mean: _xb{l:}

2 4 1
«Prior Covariance: zb = 1
54
* MEASUREMENT
= e =
Z=xy* 3x2 +
[1 3] x| +e

Hoorx,

oF {e}= 0, cov [e;e] =0 =2
» Numerical outcome: z=9

55

« CALCULATION OF POSTERIOR
COVARIANCE 3 _

4 1| 1] [7

2y B -
b L 2] |3 |7
Hep H' +0 =28+2-30




4 1] [Les 1633

1 2] |L6e3 1633

2366 -0.633
i 4s)
0.63 0366
57
CALCULATION OF POSTERIOR MEAN
- 1 -1 .
Ky T Xp I H Ozt ) we)

:[1 +[2.366 —0.633] H 1
2| 10366 0366] (3] °
l9- 1 3] [1 ]
2
R e
5
1] [oas6] [1466
i ]

2 0.466 2.466

(o]
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