Kalman Filter for Continuous-Time Dynamics and Discrete-Time Measurements

MICHAEL ATHANS

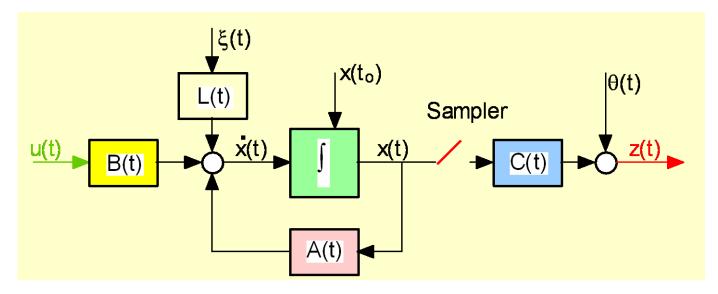
MIT & ISR/IST

Last Revised: November 19, 2001 Ref. No. KF #8B

Theme

- Summarize Kalman filter equations for the common case of
 - continuous-time plant dynamics
 - discrete-time noisy sensor measurements
- This model is very useful since most physical dynamical systems are naturally modeled by continuous-time stochastic differential equations, but sensors only make measurements at discrete instants of time

Visualization



 The discrete - time measurements are visualized using a SAMPLER that closes at discrete - instants of time t₁, t₂, ..., t_k, t_{k+1}, ...

Thus, the measurements are modeled as
 (1) z(t_k) = C(t_k)x(t_k) + θ(t_k); k = 1, 2, ...
 where θ(t_k) is discrete-time white noise

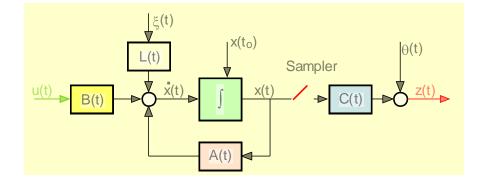
Mathematical Modeling

STATE DYNAMICS

 The state satisfies a linear timevarying stochastic differential equation

(2) $\frac{dx(t)}{dt} = A(t)x(t) + B(t)u(t) + L(t)\xi(t)$ where $\xi(t)$ is continuous - time white noise MEASUREMENTS

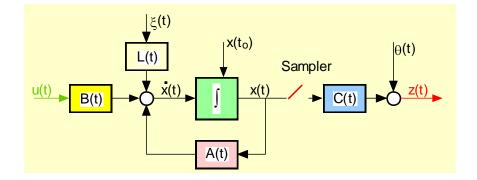
The sensors generate noisy measurements at discrete instants of time in the presence of additive discrete white noise
(3) z(t_k) = C(t_k)x(t_k) + θ(t_k); k = 1, 2, ...



STATISTICAL INFORMATION (4) $E\{x(t_0)\} = \bar{x}_0; cov[x(t_0); x(t_0)] = \Sigma_0$ (5) $E\{\xi(t)\} = 0; cov[\xi(t); \xi(\tau)] = \Xi(t)\delta(t - \tau)$ (6) $E\{\theta(t_k)\} = 0; cov[\theta(t_k); \theta(t_j)] = \Theta(t_k)\delta_{t_kt_j}$ • All variables are assumed gaussian • $x(t_0), \xi(t), \theta(t_k)$ independent

Basic Problem

 We seek continuous- time estimate of the state and of its covariance for all t ≥ t₀



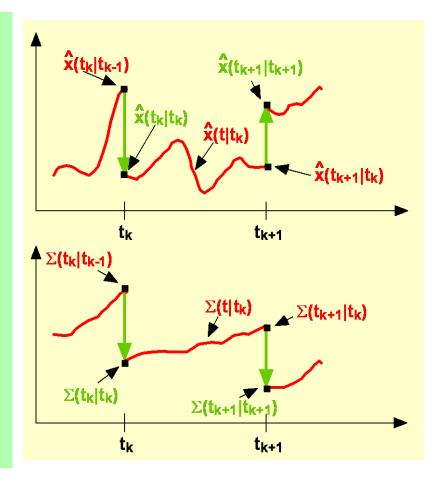
NOTATION

- *x̂*(*t* | *t_k*): predicted state estimate at time *t*, *t* > *t_k*, given the most recent past measurement *z*(*t_k*) at time *t_k* and given the past input time function *u*(*τ*), *t*₀ ≤ *τ* ≤ *t Σ*(*t* | *t_k*): predicted covariance matrix at time *t*, *t* > *t_k*, given the most recent past
- measurement $z(t_k)$ at time t_k and given the past input time function $u(\tau)$, $t_0 \le \tau \le t$
- $\hat{x}(t_{k+1} | t_{k+1})$: updated state estimate at time t_{k+1} , given the new measurement $z(t_{k+1})$ at time t_{k+1} and given the entire past input time function $u(\tau)$, $t_0 \le \tau \le t_{k+1}$
- $\Sigma(t_{k+1} | t_{k+1})$: updated covariance at time t_{k+1} , given the new measurement $z(t_{k+1})$ at time t_{k+1} and given the entire past input time function $u(\tau)$, $t_0 \le \tau \le t_{k+1}$

The Basic Idea

PREDICT CYCLE

- Use continuous time prediction for the state - estimate $\hat{x}(t \mid t_k)$ and covariance $\Sigma(t \mid t_k)$ to obtain $\hat{x}(t_{k+1} \mid t_k)$ and $\Sigma(t_{k+1} \mid t_k)$ UPDATE CYCLE
- Use update cycle formulas for the discrete-time Kalman filter to obtain the state - estimate update $\hat{x}(t_{k+1} | t_{k+1})$ and updated covariance matrix $\Sigma(t_{k+1} | t_{k+1})$



Filter Equations: Predict Cycle

- Initialization: $\hat{x}(t_0 \mid t_0) = \overline{x}_0$; $\Sigma(t_0 \mid t_0) = \Sigma_0$
- Predict Cycle: For all t, $t_k < t < t_{k+1}$, the state estimate $\hat{x}(t \mid t_k)$ is generated by solving the vector differential equation

(7) $\frac{d\hat{x}(t \mid t_k)}{dt} = A(t)\hat{x}(t \mid t_k) + B(t)u(t)$ starting at updated $\hat{x}(t_k \mid t_k)$ and the covariance matrix $\Sigma(t \mid t_k)$ is generated by the solution of the matrix Lyapunov differential equation

(8)
$$\frac{d\Sigma(t \mid t_k)}{dt} = A(t)\Sigma(t \mid t_k) + \Sigma(t \mid t_k)A'(t) + L(t)\Xi(t)L'(t)$$

starting at updated $\Sigma(t_k \mid t_k)$

• At the next measurement time $t = t_{k+1}$ we calculate from eq. (7) the predicted state $\hat{x}(t_{k+1} | t_k)$, and from eq. (8) the predicted covariance $\Sigma(t_{k+1} | t_k)$

Filter Equations: Update Cycle

- At time t_{k+1} we obtain the new measurement $z(t_{k+1})$
- The updated state estimate $\hat{x}(t_{k+1} | t_{k+1})$ is obtained as in the discrete time Kalman filter, i.e.

(9)
$$\hat{x}(t_{k+1} \mid t_{k+1}) = \hat{x}(t_{k+1} \mid t_k) + H(t_{k+1}) \left[z(t_{k+1}) - C(t_{k+1}) \hat{x}(t_{k+1} \mid t_k) \right]$$

• The Kalman filter gain matrix $H(t_{k+1})$ is given by

(10)
$$H(t_{k+1}) = \Sigma(t_{k+1} \mid t_{k+1})C'(t_{k+1})\Theta^{-1}(t_{k+1})$$

where the updated covariance matrix $\Sigma(t_{k+1} | t_{k+1})$ is given by the discrete - time Kalman filter formula

(11)
$$\Sigma(t_{k+1} \mid t_{k+1}) = \Sigma(t_{k+1} \mid t_k) -$$

 $\Sigma(t_{k+1} | t_{k+1})C'(t_{k+1}) \left[C(t_{k+1})\Sigma(t_{k+1} | t_{k+1})C'(t_{k+1}) + \Theta(t_{k+1}) \right]^{-1} \cdot C(t_{k+1})\Sigma(t_{k+1} | t_{k+1})$

Discussion

- The results presented represent the intuitive blending of the appropriate concepts of discrete-time and continuous-time Kalman filters
- As to be expected, under the gaussian assumptions the conditional probability density of the state, given past measurements and control functions, is gaussian
 - therefore, all state estimates (predicted and updated) represent true conditional means, and
 - all covariance matrices (predicted and updated) represent true conditional covariances