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STOCHASTIC ESTIMATION

The Continuous Time Kalman-

Bucy Fi
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fter

MOTIVATION

. In many continuous time decision and
control problems accurate estimates of
the system state variables are needed
continuously in time to generate real
time decision and feedback control
strategies.
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« Basic problem:

Design a physical system or data-
processing algorithm that generates
"'good"’ on-line estimates of the plant
state variables based upon unreliable

sensor measurements,
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MATHEMATICAL MODELLING

« State Dynamics

g(t>=g(t)x(t)+5(t)g(t) (1)
+L(t) &(t)

» Measurement Equation

2 (t) = Clhx(t)+a(t) (2)
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»Variable Dimensions
x(t), k(t)eR EH)eRp)
(

ultie R olt) e R (3)
yleRr Z(tieR,
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ASSUMPTIONS

« Deterministic Quantities
(Assumed known exactly for all
t>t
0
System matrix: A(t) (nxn)
Control gain matrix: B(t) {nxm)
Plant noise gain matrix: L(t) (nxp)
Measurement gain matrix: C(t) (rxn)

Control input vector: u(t) (mx1)
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« STOCHASTIC QUANTITIES

Initial state: x <t 0)

Plant noise: &(t) Couti nuows —me orle-—nsice
Measurement noise: a(t)
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STATISTICAL INFORMATION

Initial State Uncertainty

.g(to) modelled as random vector

E%g(,(to)% = Xo = initial mean state (4)
cov[g(t )i x (t )} = 2 =initial state (5)
0 0 0 )
covariance
Z, = ZOz 0 (6)
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o These quantities are used to model the
fact that the initial state (initial con-
ditions) are not precisely known

% tells mathematics best "guess"
on value of initial state

tells mathematics how much to
"helieve" Xo (via specification

of standard deviations, etc)
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PLANT NOISE E(t) &— Couhinoocn—tm &

- €(t) is a white noise stochastic process

E {€(t)} = 0forallt (7)
(et g(m] = 20 8it-T) (8)

%]
Q
=<

(t) called plant noise intensity matrix

ity 1l

(1) = Z(t)=0 (pxp matrix)
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Plant noise €(t) is used to model
eactuator errors

eexternal disturbances

emodelling errors in A(t), B(t),
L{t)

that cause "wiggles' in state x(t)

e The "larger™ Z(t), the greater the
plant uncertainty, the "more random"
the state x(t)
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MEASUREMENT NOISE o(t) &— couutinoows~t1m €

eo(t)is a white noise stochastic process
E{o(t)} = Oforallt (10)
cov [alt); 0(0)] = 0(1)6(t-T) (11)

*0(t) is called the measurement intensity
matrix (rxr)

oft) = @' (t)>0 (12)
== every measurement contains
white noise
= @-l(t) exists (13)
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e Measurement noise o(t) is used to model
.actual sensor innacuracies
.modelling errors in C(t)

e The "larger" O(t), the "noisier' the
measurements, the "more high frequency
wiggles'in z (1)
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«ADDITIONAL ASSUMPTIONS

(t ),&8(t), e(t)areindependent for

I><

0l %
all t , t, 1

0

cov[;((to) _E_(U] 0¥t ,t

cov[g<to),9(t>} 0wt t (14)
cov[g(t) Q(‘T}] =0¥t,T
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«This assumption implies that different,
and unrelated, physical phenomena give

riseto
. initial state uncertainty

. plant disturbances

» SENSOT inaccuracies
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DEFINITION OF FILTERING PROBLEM
*Given
. past measurements time functions
Z(Uégg(T);tOSTS tz (15)
. past inputs time functions
é . <T<
ut) %gﬁLtO*Tﬁtg )
*Find

a vector gﬁ)eRn which is a "good"

estimate of the actual state vector
x(t) € Rn
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MATHEMATICAL SPECIFICATION OF
KALMAN-BUCY FILTER

OFF-LINE CALCULATIONS

eDetermine nxn matrix Z(t) by numerical
integration (forward in time) of matrix
Riccati equation

-(%_Z_(t) = Alt) Z(‘() + Z(H AT + LE ZML'()

-2t C(be ()()Z();

Z(’(O) 2 0

eCompute the nxr filter gain matrix H(t)

Hit) - S C'H 0 )
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«ON LINE CALCULATIONS

Construct an (analog or digital) simulation
that accepts as "inputs"

.the actual applied input, uft)
_the actual measurement, z(t)

and generates the state estimate & (1) by

Recall 9. (1<)
n(q-——i(&)C(fe)@ ()

—g—tgm - AR + Bitut) + H[zt) - o] \ (20}
[P et
Ap v oo
Xltg) = X ReSiduwal C(&):
B A
4 Cle)= Z(#)-5 C(¥) }_Ui)
OPTIMALITY CONSIDERATIONS E{ (&) ’j o
1. Assumption
E(to), €(t), o(T) are all gaussian Cov{_r(ﬂ r('c)]
« Then KBF generates conditional mean =k { f“: f [r ] =
A _ _A
Xt = E{x(t)] z(0), Ut} = X 1) 22) _ @(t) S (t—7)
) - cov [x(th; xit)| Z(t), U] = Z(t/t @) -
p(x(t)[Z(t),U(t)) is gaussian (24) - Tle_f\dwa.’{ 1S
Cout. hwme
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2. Assumption

(@) The gaussjan assumption is made

(b) For any esymate x( t) of the
state x(t), giken past measurement
data Z(t) and past input data U(t),
one measures p‘mormance by the
"east squares' oyi

Then: The KBF estimate g(t)i ptimal,
in the sense that it minimizes J

whule honrt Froc—afw

Add honal l’)maf)
lv hWex+ lechure

(25)






