REF. NO. KF #8

1

STOCHASTIC ESTIMATION

The Continuous Time Kalman-Bucy Filter

2

MOTIVATION

 In many continuous time decision and control problems accurate estimates of the system state variables are needed continuously in time to generate real time decision and feedback control strategies.

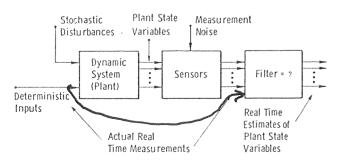
3

. Basic problem:

Design a physical system or dataprocessing algorithm that generates "good" on-line estimates of the plant state variables based upon unreliable sensor measurements.

4

VISUALIZATION



MATHEMATICAL MODELLING

State Dynamics

$$\frac{\dot{\underline{x}}(t) = \underline{A}(t)\underline{x}(t) + \underline{B}(t)\underline{u}(t)}{+\underline{L}(t)\underline{\xi}(t)}$$
(1)

• Measurement Equation

$$\underline{z}(t) = \underline{C}(t)\underline{x}(t) + \underline{\theta}(t)$$
 (2)

ĥ

Variable Dimensions

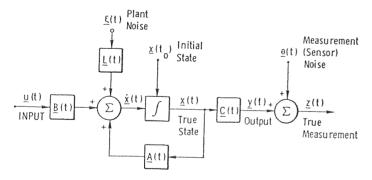
$$\underline{x}(t), \underline{\dot{x}}(t) \in R_{n} \qquad \underline{\xi}(t) \in R_{p}$$

$$\underline{u}(t) \in R_{m} \qquad \underline{\theta}(t) \in R_{r}$$

$$\underline{y}(t) \in R_{r} \qquad \underline{z}(t) \in R_{r}$$
(3)

7

VISUALIZATION



8

ASSUMPTIONS

Deterministic Quantities
 (Assumed known exactly for all t≥t 0

System matrix: $\underline{A}(t)$ (nxn)

Control gain matrix: $\underline{B}(t)$ (n x m)

Plant noise gain matrix: $\underline{L}(t)$ (nxp)

Measurement gain matrix: $\underline{C}(t)$ (rxn)

Control input vector: $\underline{u}(t)$ (mx1)

STOCHASTIC QUANTITIES

Initial state: $\underline{x}(t_0)$

Plant noise: $\underline{\xi}(t)$

Measurement noise: $\underline{\theta}(t)$

} continuous-time white-noise

(4)

(5)

10

STATISTICAL INFORMATION

Initial State Uncertainty

• $\underline{x}(t_0)$ modelled as random vector

$$E\left\{\underline{x}(t_0)\right\} = \overline{\underline{x}}_0 = \text{initial mean state}$$

$$cov\left[\underline{x}(t_0);\underline{x}(t_0)\right] = \underline{\Sigma}_0$$
 = initial state covariance

$$\frac{\Sigma_0}{\Sigma_0} = \frac{\Sigma_0'}{\Sigma_0} \ge \underline{0} \tag{6}$$

11

- These quantities are used to model the fact that the initial state (initial conditions) are not precisely known
- • \overline{X}_0 tells mathematics best "guess" on value of initial state
- $\underline{\Sigma}_0$ tells mathematics how much to 'believe' $\underline{\overline{X}}_0$ (via specification of standard deviations, etc)

12

PLANT NOISE E(t) - Continuous-time

 $\bullet~\xi(t~)$ is a $\underline{\mbox{white}}$ noise stochastic process

$$\mathsf{E}\left\{\underline{\xi}(\mathsf{t})\right\} = \underline{\mathsf{0}}\,\mathsf{for\,all\,t} \tag{7}$$

$$cov \left[\xi(t); \xi(\tau) \right] = \Xi(t) \delta(t - \tau) \tag{8}$$

• Ξ (t) called plant noise intensity matrix

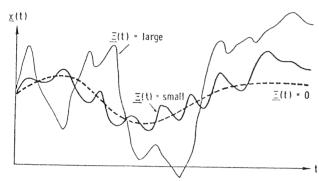
$$\Xi(t) = \Xi'(t) \ge 0$$
 (pxp matrix)

Plant noise $\xi(t)$ is used to model

- actuator errors
- external disturbances
- •modelling errors in $\underline{A}(t)$, $\underline{B}(t)$, $\underline{L}(t)$

that cause 'wiggles' in state x(t)

• The 'larger' $\Xi(t)$, the greater the plant uncertainty, the 'more random' the state $\underline{x}(t)$



15

MEASUREMENT NOISE e(t) - continuous-time

• <u>e</u>(t) is a <u>white</u> noise stochastic process

$$E\{\underline{\theta}(t)\} = \underline{0} \text{ for all } t$$

(10)

$$\operatorname{cov}\left[\underline{\theta}(t);\underline{\theta}(\tau)\right] = \underline{\Theta}(t)\delta(t-\tau)$$

(11)

• $\underline{\Theta}$ (t) is called the <u>measurement intensity</u> matrix (rxr)

$$\overline{\Theta}(t) = \overline{\Theta}_{1}(t) > \overline{0}$$

(12)

every measurement contains white noise

$$\rightarrow$$
 $\underline{\Theta}^{-1}(t)$ exists

(13)

- Measurement noise $\underline{\theta}(t)$ is used to model
- actual sensor innacuracies
- .modelling errors in C(t)
- The 'larger' $\underline{\Theta}(t)$, the 'noisier' the measurements, the 'more high frequency wiggles' in $\underline{z}(t)$

17

ADDITIONAL ASSUMPTIONS

$$\underline{x}(t_{0}), \underline{\xi}(t), \underline{\theta}(\tau) \text{ are } \underline{\text{independent}} \text{ for }$$

$$\text{all } t_{0}, t, \tau$$

$$\text{cov} \left[\underline{x}(t_{0}); \underline{\xi}(t)\right] = \underline{0} \ \forall \ t_{0}, t$$

$$\text{cov} \left[\underline{x}(t_{0}); \underline{\theta}(t)\right] = \underline{0} \ \forall \ t_{0}, t$$

$$\text{cov} \left[\underline{\xi}(t); \ \underline{\theta}(\tau)\right] = \underline{0} \ \forall \ t_{0}, t$$

$$\text{cov} \left[\underline{\xi}(t); \ \underline{\theta}(\tau)\right] = \underline{0} \ \forall \ t_{0}, t$$

18

- This assumption implies that different, and unrelated, physical phenomena give rise to
 - . initial state uncertainty
 - plant disturbances
 - sensor inaccuracies

19 DEFINITION OF FILTERING PROBLEM

• Given

past measurements time functions

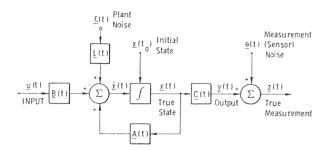
$$Z(t) \stackrel{\triangle}{=} \left\{ \underline{z}(\tau); t_0 \le \tau \le t \right\}$$
 (15)

.past inputs time functions

$$U(t) \stackrel{\triangle}{=} \left\{ \underline{u}(t); t_0 \le \tau \le t \right\}$$
 (16)

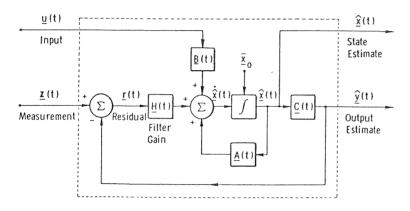
•Find a vector $\hat{\underline{x}}(t) \in R_n$ which is a "good" estimate of the actual state vector $\underline{x}(t) \in R_n$

VISUALIZATION



21

THE KALMAN-BUCY FILTER



22

MATHEMATICAL SPECIFICATION OF KALMAN-BUCY FILTER

OFF-LINE CALCULATIONS

•Determine $n \times n$ matrix $\Sigma(t)$ by numerical integration (forward in time) of \underline{matrix} Riccati equation

$$\frac{d}{dt} \underline{\Sigma}(t) = \underline{A}(t) \underline{\Sigma}(t) + \underline{\Sigma}(t) \underline{A}'(t) + \underline{L}(t) \underline{\Xi}(t) \underline{L}'(t)
- \underline{\Sigma}(t) \underline{C}'(t) \underline{\Theta}^{-1}(t) \underline{C}(t) \underline{\Sigma}(t);
\underline{\Sigma}(t_0) = \underline{\Sigma}_{0}$$
(17)

ullet Compute the nxr $\underline{\text{filter gain matrix}}$ $\underline{\text{H}}(t)$

$$\underline{H}(t) = \underline{\Sigma}(t) \underline{C}'(t) \underline{\Theta}^{-1}(t)$$
 (19)

•ON LINE CALCULATIONS

Construct an (analog or digital) simulation that accepts as "inputs"

- .the actual applied input, $\underline{u}(t)$
- .the actual measurement, $\underline{z}(t)$

and generates the state estimate $\frac{\hat{x}}{\hat{x}}$ (t) by

$$\frac{\bar{x}(t^0) = \bar{x}^0}{\bar{x}(t) = \bar{y}(t)\bar{x}(t) + \bar{y}(t)\bar{x}(t) + \bar{y}(t)\bar{x}(t) + \bar{y}(t)\bar{x}(t)}$$

24

OPTIMALITY CONSIDERATIONS

1. Assumption

$$\underline{x}(t_0)$$
, $\underline{\xi}(t)$, $\underline{\theta}(\tau)$ are all gaussian

• Then KBF generates conditional mean

$$\frac{\hat{x}(t)}{\hat{x}(t)} = E\{\underline{x}(t) \mid Z(t), U(t)\} = \hat{x}(t/t)$$

$$\underline{\Sigma}(t) = \text{cov}\left[\underline{x}(t); \underline{x}(t) \middle| Z(t), U(t)\right] = \underline{\Sigma}(t/t)$$

$$p(\underline{x(t)}/Z(t), U(t))$$
 is gaussian

25

2. Assumption

- (a) The gaussian assumption is made
- (b) For any estimate $\hat{\underline{x}}(t)$ of the state $\underline{x}(t)$, given past measurement data Z(t) and past input data U(t), one measures the performance by the 'least squares' criterion.

$$J = E\left\{\left\|\underline{x}(t) - \underline{\hat{x}}(t)\right\|^{2} \middle| Z(t), U(t)\right\}$$

$$= \int_{-\infty}^{+\infty} \left\|\underline{x}(t) - \underline{\hat{x}}(t)\right\|^{2} p\left(\underline{x}(t) \middle| Z(t), U(t)\right) \underline{dx}(t)$$
Gaussian

Then: The KBF estimate $\hat{\underline{x}}(t)$ is optimal, in the sense that it minimizes \hat{J}

(21) Residual [(t):

(20)

$$\Gamma(t) \stackrel{\triangle}{=} \Xi(t) - \Gamma(t) \stackrel{\wedge}{\times} (t)$$

$$= E\left\{ \Gamma(t) \Gamma'(z) \right\} =$$

$$\frac{(22)}{(23)} = \underbrace{(+)}_{(23)} (t) \delta(t-\tau)$$

white none process

Additional proofs in next lecture

(25)