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« KF only corresponds to the optimal filtering strategy under
restrictive assumptions, and for some objectives (functionals)

- The requirement on the knowledge of the power spectral density
of the disturbances is too restrictive. The WNG assumption too.

« Unknown multimodal and/or skewed pdfs are common

However

» Optimality and stability still of great importance, in the presence of
uncertainty (robustness)

 Other functionals / objectives can be used to formulate estimation
problems. Minimization must be feasible



Norms of Signals
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L,[0,T] norm

T
= e Yo < o
0

L,[0,T] norm
(energy)

1

Hqu [J.u(t)Tu(t)dt] < oo

)

L., norm
(least upper bound) HMHOO = sup([u (t))< oo
t
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Motivation for H,, Filtering

ulL, yIL,

— G

For finite energy signals in the input of system G, how much is the
minimum energy on the output?

Possible interpretation as a Min-max Nash game in estimation:
Maximum energy in the error is minimized.

For bounded systems, the H,, norm is defined as

H H = Su ng”z Denominated as the L,

0 Hqu induced norm.

uel, ,|u

B

For LTI systems corresponds to the peak in the Bode diagram.



Norms of Systems
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LTI Continuous - time model

{x(t)— Ax(t + Bu(r)
y(0)=Cx(r)

H, norm

Transfer function

G(s)=C(sI-A)'B

.| 5 Jrlct oo
( fZGZ(GOw))ch)

H ., norm Hg”w =supo, [G(] a))]
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*See [1] for details



Plant and Sensor Modeling
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x(t)e R"
HO- 400 B
%55 et b BT S

4 (t) B (t) C (t) D (t )piecewise continuous bounded functions.
z(t)= L(t)x(r) quantity of interest to be estimated.




H., Filtering
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Problem statement : For system G, with known (unknown)

initial conditions” and using the measurements y(t } obtain an

estimate 2(t)of z(t )that minimizes the (worst case) indeces

2= 23 =43
Jy= sup 22 Jy = sup 5 '2 , R >0.
0=wely | 0#ueLs |lw|5 + xR,

Important questions:

« Given g>0,does there exist a filter with finite J, (or Jz)?

 Under the assumptions , does it verifies J,<g~ (or J2<g2)?

« How to find a realization for such filter?

* Considered 0 without loss of generality
“* R1is a covariance matrix



H, Filtering
ww Finite Horizon, Known Initial Conditions

Theorem|2] : Let the initial conditions be known and 7" < oo,

1)There exist a filtersuch that J, < y* if and only if there

exists a symmetric matrix P(¢)for e [0, T Jthat satisfies

P(1)= A@O)P@)+ PO)A" ()~ PE)CT ()C(P?) (2)
+% PO OLEOPE)+BEB" () with P0)=0.

2)Moreover, if it exists, one filter for J, < y° is given by

)é(t) = A(t)#(¢)+ P(¢)C” (t)[y(t) _ C(z)i(t)] with £(0)=0. (3)

Null initial conditions considered without loss of generality.



Elements of Proof (l)
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The value of the functional J, can be written as

From 2, introducing 2(t)=L(t (¢ )and X (z )= x(z)— 2(¢)

1 ~
LRl =0

Using the L,/ 0,7/ norm definition (1) we can write

fE(t)T w(f)T]%L(t)TL(t) O_F(’)}:o )

0 ~1 W(f))

O
- N
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TTTTTTTTT Systems’ Theory Digression
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Dissipativity [6] - The system G: w — z with supply rate s (t)is strictly

dissipative if there exists a non - negative function/: x — R such that
1)
V) [ 5@ y@)r> v (e())
forall tyg < and for all trajectories of the system.

A system is dissipative if can not provide to the environment the
same energy that was suplied by the exterior — energy losses.

Examples: electrical circuits, mechanical systems, thermodynamics...

Moreover, if V(t)is differentiable, V(t)< S(t) holds.

From ;l— s@(t) y())+V (x()dt <0, forany € [z,,1,].

11
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V' Lyapunov Stability — Second Method
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Lyapunov theorem (second method) - The equilibrium point

x = 0 1s stable if there exists a Lyapunov function that verifies
i) V(0)=0
i) V(x)> OcHxH2
iii) V(x(l‘))s 0, along all solutions of .
* Note that V(t)-> o as lIxll, = .

« Stability of dynamic systems can be studied, whitout solving the
differential equations. Sufficient conditions.

* No systematic method to find a Lyapunov function exists.



Elements of Proof (ll)
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Re - interpreting (4) and resorting to dissipativity concepts
the Lyapunov candidate function V(x) X" ()P (t)?(t)ls used

ko o9 ]_L(’)TL(’) : {’“(’)}_ oY

0 g |Lw)

From the definition of G and (3), the error dynamlcs 1S

¥ =@-PC"C]+(B-PC"D )W

Therefore

O O OROE O OFOE O (FC)
= P RO~ P OF O RO+ & P OF0)

.

=0

Vo




TTTTTTTTT Elements of Proof (lll)
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Re-arranging the terms results

Hx(tf w () T}ra ") gz

where*

] )
- —2LTL +A'P'-2c'Cc-P'PP'+P'4 P'B-C'D
=l 7

BP—-D'C —1

Using (2) and cancelling terms

|

/\.

:[

(0" wi) T} _c'c—pae’p P'B_C'p || XY
BP—D'C ] w(t)

— -
*Time-dependence omitted for simplicity.

+dt =0
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Elements of Proof (1V)
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Schur Complements - Given matrices Ue R™, Ve R™",

We R™" and Ze R™", where Z > 0 the Schur complements

U V. »
of matrix sU-VZW.
w Z

Can be seen as a generalization to the matrix inversion lemma.

15
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B(1) »ﬁ D X0 oy e YUy
All)
y(t)
(O R
i H_gain
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Discussion

TTTTTTTTT
RRRRRRRR

« Optimal structure obtained, similar to LTV Kalman filter
- Unbiased estimator obtained (otherwise J, 2 o, J, > )

- Complete proof is out of scope, but can be obtained
I. using systems’ theory [2, 5];
ii. using estimation tools in Krein spaces [3];

- Stationary solutions can also be obtained (finite or infinite
horizon cases)

- Modified Riccati equation that
For gl¥] 0 degenerates on the Riccati equation in KF
Provides more robust solutions, for smaller g
Unfeasible for g<g ., ! 47




H,. Smoothing
w2 Finite Horizon, Known Initial Conditions

Theorem|2]: Let the 1nitial conditions be known and T < oo,

<=

1)There exist a smoother such that J, < y? if and only if there

exists a symmetric matrix X (¢ )for e [0, T Jthat satisfies

~X@)= AT OX )+ XOAC)- X OBOBT ()X ()
—%LT(r)L(rﬁcT(r)c(r)
with X (7')=0.

2)One smoother that minimizes J, and verifiesJ, < y° is
[ 40 BOsO]H0),[ 0
o Letro "6 L) Laoh?

with £(0)=0, A(r)=0. 18
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Remarks

Proof is omitted, see [2] for details.

The H ,, smoother structure is equal to the H.!
Smoothers for all 4 cases are well known.
Much more recent results than the H, solutions

Other functionals have already been solved, e.g. mixed H,/H
Also, solutions for nonlinear cases available

Now a couples of examples from [5] are included to document
some of the results outlined

19
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Examples, from [5]

Example 1: In this example, we demonstrate the reduced peak-error-
level of an H  -filter, and its inherent robustness. We apply H, -opti-
mal and L,-optimal filters on the following second order resonant
system

. 0 w, 0
x=[_w 2tw, }x-&-[l]w, y=[0 1lx+n, z=[ 0]x

n
where w, and ¢ are not certain. The filters were designed for a nominal
system with w, = 11 and £ = 0.1 . Figure 4.1 depicts the Bode magni-
tude plot of T,; of the H, and L, filters, for the nominal case, and an

envelope of T,,, for w, varying in the range [8.2-13.7] and ¢ varying in
the range [0.075-0.125]. 15 :

10F Ao i)

5,

0

5

db

.10} -
‘ nominal N
-15 AN

Frequency (Rad:Secj

Fig. 4.1: Sensitivity comparison between: (a) the A, -filter, and (b) the 5
L,-filter. 0
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Examples, from [5]

Example 2 (Deconvolution): In this example we demonstrate the tra- 0o —— v : e

deoff that exists between the L, and H,, performance in a continuous-

time, steady-state filter design. In the deconvolution problem of Fig. Do A
4.2, we use the noise corrupted measurement of the output of a system, - N
to estimate a regularized version of its input. The regularizing filter is

ah

required to make the deconvolution problem well-posed. We look for 2 s

filter that achieves |[T,; |l. <y for the following systems: |

G.(5)= , G,(5)= SNR = 100 -20}

104
s2+130s+104 °
Recalling that y—>oo leads to L,-estimation, we are motivated to

100
52 +0.45+100

25
check few values of y. The transfer function 7', for central filters that e 10: 10t
were designed with different values for v is depicted in Fig. 43. The Freguency [RadSec]
Fig 4.3: The Bode plot of T,; for: (a) y=ygy; (b) y=1.02v;

effect of the design parameter y on the performance of the above dec- (©)y=1.lvy; (d)y=oo.

onvolutor is further emphasized in Fig. 4.4., where the H, -norm that is

actually achieved is related to the design parameter vy, and the corres- 12— - e e
ponding L,-norm of 7,,. In this typical example, we see that vy is an 1

. . . g 10, o
effective design parameter for values that are near vyg, where a signifi- AN, '
. . . . IR i
cant improvement in the L, performance can be gained by slightly com- Ri \ i
promising the H , performance. \ f
6+ A
Measurement nolse | e ———— . |
4 j 1‘

(v}

/
2 !
Deconvo lutor __‘_‘_,_,_—-/ !

) Er'or 85T o5 O &2 osd 08 G607 0m
G =Regularizing filter I——-C)—— ”["d”u

Fig 4.4: The tradeoff between L, and H,, performance: (a) |[T,, [b: (b) 21

Fig 4.2 The deconvolution scheme Y.
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