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Theme


•  KF only corresponds to the optimal filtering strategy under  
restrictive assumptions, and for some objectives (functionals)


•  The requirement on the knowledge of the power spectral density 
of the disturbances is too restrictive. The WNG assumption too.


•  Unknown multimodal and/or skewed pdfs are common


However


•  Optimality and stability still of great importance, in the presence of 
uncertainty (robustness)


•  Other functionals / objectives can be used to formulate estimation 
problems. Minimization must be feasible
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Norms of Signals


L1 [0,T] norm 


L2 [0,T] norm 

(energy) 



 
 
 
 
 
 
 
 
 
(1)


L∞ norm 

(least upper bound)
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Motivation for H∞ Filtering 


For finite energy signals in the input of system G, how much is the 
minimum energy on the output? 


Possible interpretation as a Min-max Nash game in estimation:


Maximum energy in the error is minimized.


 
 
        
 



For bounded systems, the H∞ norm is defined as



 
 
 
 
 
 
 Denominated as the L2 


 
 
 
 
 
  
     induced norm.


For LTI systems corresponds to the peak in the Bode diagram.


G 
u Î L2  y Î L2  



5


Norms of Systems


H2 norm


H ∞  norm
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Input-output Relations*


Stochastic


Stochastic
 ?


?


?


*See  [1] for details 

∞
∞


∞
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Plant and Sensor Modeling 


Assume that 


  

A, B( )  is stabilizable

A,C( )  is detectable
D t( ) B t( )T

D t( )T
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= 0

I
⎡
⎣⎢

⎤
⎦⎥

,

 Independent plant/measurement  noises
Normalized measurement noise
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H∞ Filtering


Important questions:


•  Given g>0, does there exist a filter with finite J1 (or J2)? 

•  Under the assumptions , does it verifies J1<g 2 (or J2<g 2 )?


•  How to find a realization for such filter?

* Considered 0 without loss of generality

** R-1 is a covariance matrix
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H∞ Filtering 
Finite Horizon, Known Initial Conditions


  
x̂
.

t( ) = A t( ) x̂ t( ) + P t( )CT t( ) y t( ) − C t( ) x̂ t( )⎡⎣ ⎤⎦ with x̂ 0( ) = 0.

(2) 

(3) 

Null initial conditions considered without loss of generality.
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Elements of Proof (I)


(4) 
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Systemsʼ Theory Digression


A system is dissipative if can not provide to the environment the 

same energy that was suplied  by the exterior – energy losses.


Examples: electrical circuits, mechanical systems, thermodynamics...
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Lyapunov Stability – Second Method


•  Note that V(t) ∞ as ||x||2  ∞.


•  Stability of dynamic systems can be studied, whitout solving the  
differential equations. Sufficient conditions.


•  No systematic method to find a Lyapunov  function  exists.
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Elements of Proof (II)
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Elements of Proof (III)


   

Re-arranging the terms results

x t( )T
w t( )

T⎡
⎣⎢

⎤
⎦⎥

P
x t( )
w t( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dt

0

T

∫ = 0,

where*

P =
1
γ 2 LT L + AT P−1 − 2CTC − P−1 PP−1 + P−1A P−1B − CT D

BP − DTC − I

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

   

Using (2) and cancelling terms

x t( )T
w t( )

T⎡
⎣⎢

⎤
⎦⎥

−CTC − PBBT P P−1B − CT D
BP − DTC − I

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x t( )
w t( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dt

0

T

∫ = 0

*Time-dependence omitted for simplicity.
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Elements of Proof (IV)


  

Using Schur complements 
−CTC − PBBT P−1 + B − CT D( ) BP − DTC( ) = 0

−CTC − PBBT P−1 + PBBT P−1 − P−1BDTC − CT DBT P−1 + CTC = 0
using the noises independence and normalization assumptions 

0 = 0 . q.e.d.

Can be seen as a generalization to the matrix inversion lemma. 
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Visualization of the H ∞ Filter


B(t) w(t) x(t) x(t) D y(t) C(t) 

A(t) 

r (t) x(t) x(t) z(t) 
C(t) 

A(t) 

y(t) 

- 

. 

^ ^ ^ . 

H ∞ gain 

REAL 

H ∞  

D P(t)CT(t) 

D(t) 
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Discussion

•  Optimal structure obtained, similar to LTV Kalman filter


•  Unbiased estimator obtained (otherwise J1  ∞, J2  ∞)


•  Complete proof is out of scope, but can be obtained 

i.  using systemsʼ  theory [2, 5]; 

ii.  using estimation tools in Krein spaces [3]; 


•  Stationary solutions can also be obtained (finite or infinite 
horizon cases)


•  Modified Riccati equation that

For g  ∞ degenerates on the Riccati equation in KF

Provides more robust solutions, for smaller g

Unfeasible for g< g min !!
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H∞ Smoothing 
Finite Horizon, Known Initial Conditions
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Remarks


•  Proof is omitted, see [2] for details.


•  The H ∞  smoother structure is equal to the H2!


•  Smoothers for all 4 cases are well known.


•  Much more recent results than the H2 solutions


•  Other functionals have already been solved, e.g. mixed H2/H ∞ 
Also, solutions for nonlinear cases available


•  Now a couples of examples from [5] are included to document 
some of the results outlined
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Examples, from [5]
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Examples, from [5]
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