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Key Challenges in Estimation


Characteristics of the envisioned Estimator


•  Reduced computational requirements

•  Causal (to be used during the mission)

•  Possible to be refined in post-processing


In the linear case, all relevant features 

are obtained  together: exponential stability, 

optimal performance and robustness 

(gain and phase margins).


Stability 

Performance 

Robustness 

In the nonlinear case no optimal common

solution is available.


(e.g. EKF is the performance tentative solution).
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Theme


•  Stochastic H2 filtering, prediction, and smoothing problems are 
only optimal for linear time-varying systems under Gaussian 
disturbance assumptions with known power spectral densities


•  H∞  allows to lift the noise assumptions for LTV systems


•  Real world systems are nonlinear!


•  In general, EKF does not guarantee stability, performance, nor 
robustness


•  Nonlinear observers can outperform linear or linearized versions 
of observers (EKF / SOF), both for structured and unstructured 
disturbances [1, 2]
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Exponential Observers  
for Linear Systems


Consider the linear system 


The Luenberger observer, in a deterministic setup, is given by 


Exponential stability can be proven resorting to the Lyapunov equation


That is, for a positive definite matrix Q there exists a unique positive 
definite P, such that the above equation is verified.
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Observers for Nonlinear Systems


Consider the class of affine nonlinear systems


The suggested Luenberger-like nonlinear observer would be


What fails in the stability proof 
for this nonlinear observer? 
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Thauʼs Observers @ 1973


Consider the class of autonomous nonlinear systems 


Proposed observer  (motivated by Luenbergerʼs and Kalmanʼs  work)
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A,C,  and f .( )  are known; the pair A,C( )  is observable, u is a 

deterministic input, and f .( )   is a Lipschitz time-invariant 

function, i.e.

(1) 

(2) 
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Main result:


(3) 

(4) 

Thauʼs Observers @ 1973




9


Elements of Proof (I)
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Elements of Proof (II)
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Visualization of the Filter
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Example with difficulties [4]




13


The minimum occurs when Q=I.


Example with difficulties [4]


The method is not effective, however given L and P,  
is of some use to proove stability of the observer. 
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Consider the class of nonlinear systems 


The proposed observer  has the structure


(5) 

(6) 

(7) 

Exponential Observers @ 1975
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Exponential Observers @ 1975


The generic proof for autonomous systems is an immediate 
consequence of the Lyapunov second method.
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Exponential Observers @ 1975


Main result:


(8) 
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Elements of Proof (I)


* Explicit dependence on t will be omitted. 
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Elements of Proof (II)
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Example, from [3]
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Thauʼs Observers @ 1975


Consider the class of autonomous nonlinear systems 


(9) 

(10) 
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Exponential Observers @ 1975


(11) 
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Elements of Proof (I)
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Elements of Proof (II)
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Elements of Proof (III)


From this relation (11) is immediate.
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Example, from [3]
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Lipschitz Observers @ 1998


Consider the class of non-autonomous nonlinear systems 


Proposed observer  (motivated by Luenbergerʼs and Kalmanʼs  work)


(12) 

(13) 

(14) 



27


(15) 

Lipschitz Observers @ 1998


The estimation error dynamics is


and the following major result holds:
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Elements of Proof (I)


The proof is done in three parts (see [5] for details):

i)


ii) 
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Elements of Proof (II)


cont...

iii)


Using the properties introduced before, results:


   
V t( ) ≤ xT A− KC( )T P + P A− KC( ) + γ 2 PP + I⎡

⎣⎢
⎤
⎦⎥
x
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