

New Methods for State Estimation

PAULO OLIVEIRA

DEEC/IST and ISR

Last Revised: December 14, 2007 Ref. No. NLO#2

Key Challenges in Estimation

Characteristics of the envisioned Estimator

- Reduced computational requirements
- Causal (to be used during the mission)
- Possible to be refined in post-processing

In the linear case, all relevant features are obtained together: exponential stability, optimal performance and robustness (gain and phase margins).

In the nonlinear case no optimal common solution is available.

Robustness

(e.g. EKF is the performance tentative solution).

Performance

Stability

Theme

- Stochastic H₂ filtering, prediction, and smoothing problems are only optimal for linear time-varying systems under Gaussian disturbance assumptions with known power spectral densities
- H_{∞} allows to lift the noise assumptions for LTV systems
- Real world systems are nonlinear!
- In general, EKF does not guarantee stability, performance, nor robustness
- Nonlinear observers can outperform linear or linearized versions of observers (EKF / SOF), both for structured and unstructured disturbances [1, 2]

Exponential Observers for Linear Systems

Consider the linear system

$$\Sigma_{\mathcal{L}} : \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases} \qquad \begin{aligned} x(t) \in \mathbb{R}^{N} \\ y(t) \in \mathbb{R}^{N} \\ u(t) \in \mathbb{R}^{N} \end{cases}$$

where the pair (A, C) is observable.

The Luenberger observer, in a deterministic setup, is given by

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + K(y(t) - C\hat{x}(t))$$

Exponential stability can be proven resorting to the Lyapunov equation

$$(A-KC)^T P + P(A-KC) = -2Q$$

That is, for a positive definite matrix *Q* there exists a unique positive definite *P*, such that the above equation is verified.

Observers for Nonlinear Systems

Consider the class of affine nonlinear systems

$$\Sigma_{\mathcal{N}} : \begin{cases} \dot{x}(t) = f(x) + g(x)u(t) \\ y(t) = h(x) \end{cases} \qquad \begin{aligned} x(t) \in \mathbb{R}^{N} \\ y(t) \in \mathbb{R}^{P} \\ u(t) \in \mathbb{R}^{N} \end{aligned}$$
where $f(.), g(.)$, and $h(.)$ are known.

The suggested Luenberger-like nonlinear observer would be

 $\dot{\hat{x}}(t) = f(\hat{x}(t)) + g(\hat{x}(t))u(t) + \mathcal{K}(y(t) - h(\hat{x}(t)))$

What fails in the stability proof for this nonlinear observer?

Lipschitz Nonlinear Observers

PAULO OLIVEIRA

DEEC/IST and ISR

Last Revised: December 14, 2007 Ref. No. NLO#2

Thau's Observers @ 1973

$$\Sigma_{\mathcal{G}} : \begin{cases} \dot{x}(t) = Ax(t) + f(x(t)) & x(t) \in \mathbb{R}^{n} \\ y(t) = Cx(t) & y(t) \in \mathbb{R}^{p} \\ 1, C, \text{ and } f(.) \text{ are known; the pair } (A, C) \text{ is observable, } u \text{ is a} \\ \text{eterministic input, and } f(.) \text{ is a Lipschitz time-invariant} \end{cases}$$

function, i.e.

$$||f(x(t)) - f(\hat{x}(t))|| \le L||x(t) - \hat{x}(t)||$$

Proposed observer (motivated by Luenberger's and Kalman's work) $\dot{\hat{x}}(t) = A\hat{x}(t) + f(\hat{x}(t)) + K(y(t) - C\hat{x}(t))$ (2)

Thau's Observers @ 1973

Proposition : Given the observability condition for systems of class (1) for any positive definite matrix Q, there exists a unique positive definite matrix P, such that the Lyapunov equation $A_0^T P + PA_0 = -2Q$, (3) is verified, where $A_0 = A - KC$.

Main result:

Theorem[2]: For the class of systems (1), if the gain K is selected such that it can make the solution of the Lyapunov equation to satisfy $\lambda_{min}(Q) = -\lambda_{min}(Q)$

$$\frac{\lambda_{\min}(Q)}{\|P\|} > L$$

(4)

for all x then the Thau observer (2) is asymptotically stable.

Elements of Proof (I)

Defining $\tilde{x}(t) = x(t) - \hat{x}(t)$, and for the Lyapunov candidate function $V(t) = \tilde{x}(t)^T P \tilde{x}(t)$, where P > 0 is a symmetric constant matrix, lets apply Lyapunov's second method $\dot{V}(t) = \frac{d}{dt} \left[\tilde{x}(t)^T P \tilde{x}(t) \right] = \dot{\tilde{x}}(t)^T P \tilde{x}(t) + \tilde{x}(t)^T P \dot{\tilde{x}}(t)$ The error dynamics is given by $\dot{\tilde{x}}(t) = (A - KC)\tilde{x} + f(x(t)) - f(\hat{x}(t)) = A_0 \tilde{x} + f(x(t)) - f(\hat{x}(t)),$

and

 $\dot{V}(t) = \tilde{x}(t)^T \left(A_0^T P + P A_0 \right) \tilde{x}(t) + 2 \tilde{x}(t)^T P \left[f(x(t)) - f(\hat{x}(t)) \right]$

Elements of Proof (II)

From the Lyapunov equation (3) one can write $\dot{V}(t) = -2\tilde{x}(t)^T O\tilde{x}(t) + 2\tilde{x}(t)^T P[f(x(t)) - f(\hat{x}(t))]$ From the Lipschitz condition $\dot{V}(t) \leq -2\tilde{x}(t)^T Q\tilde{x}(t) + 2L \|\tilde{x}(t)\| P\| \|\tilde{x}(t)\|$ $\leq -2\lambda_{\min}(Q)\|\widetilde{x}(t)\|^{2} + 2L\|\widetilde{x}(t)\|P\|\|\widetilde{x}(t)\|$ $\leq -2 \left[\lambda_{\min}(Q) - L \| P \| \right] \widetilde{x}(t) \|^2$ if $\lambda_{\min}(Q) > L \|P\|$ then $\dot{V}(t) < 0$, i.e. it is enough that (4) be verified.

The choice of *K* impacts indirectely on *P* and constitutes a trial and error process. Moreover, it can lead to very conservative results.

Visualization of the Filter

Example with difficulties [4]

Example 1 nonlinear system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ -\sin x_1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1, 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Lipschitz constant for $f(x) = \sin x_1$ *is* L = 1. $y = \sin x$

Example with difficulties [4]

The minimum occurs when Q=I.

$$\begin{aligned} \frac{1}{\|P\|} > 1 \\ \|P\|^2 &= \sum_{i,j=1}^n p_{ij}^2 = tr(P^T P) \\ we \ select \ P &= \begin{bmatrix} \frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{3} \end{bmatrix}, \ P = P^T > 0, \ \|P\| = 0.68 < 1, \ but \\ A_0 \ no \ exists. \ If \ we \ select \end{aligned}$$

The method is not effective, however given *L* and *P*, is of some use to proove stability of the observer.

 $\lambda_{\max}(P) = 1.809 > 1$, the condition is not satisfied. So the method is difficult.

Consider the class of nonlinear systems

$$\Sigma_{\mathcal{K}} : \begin{cases} \dot{x}(t) = f(x(t)) & x(t) \in \mathbb{R}^{n} \\ y(t) = h(x(t)) & y(t) \in \mathbb{R}^{p} \end{cases}$$
(5)
where $f(.)$ and $h(.)$ are continuously differentiable.

The proposed observer has the structure

 $\dot{\hat{x}}(t) = f(\hat{x}(t)) + g(y(t), h(\hat{x}(t)))$ (6) where g(.) is also continuously differentiable.

An observer should verify in general that $g(y(t), h(\hat{x}(t))) = 0$ if $h(x(t)) = h(\hat{x}(t))$ however it is impossible to guarantee that $\hat{x}(0) = x(0)$.

(7)

Theorem[3]: Given the nonlinear autonomous systems (5) and (6) and some function g(.) satisfying (7), if there exists a scalar function $V(\tilde{x})$, where $\tilde{x} = x - \hat{x}$ and $\rho > 1$ such that a) $V(\tilde{x}) \ge c \|\tilde{x}\|$, for all $\tilde{x} \in R^n$, V(0) = 0 $b) \dot{V}(\tilde{x}) \le -\lambda V(\tilde{x})$, for all $\tilde{x} \in R^n$ and for some $\lambda > 0$. then the observer (6) is exponentially stable and $\|x(t) - \hat{x}(t)\| \le ke^{-\lambda t}$

The generic proof for autonomous systems is an immediate consequence of the Lyapunov second method.

Main result:

Theorem[3]: Given the nonlinear autonomous system (5) and the proposed observer (6) with $g(y(t),h(\hat{x}(t))) = K(y(t)-h(\hat{x}(t)))$, if there exists an $n \ge m$ gain matrix K, that, given Q > 0 there exits P > 0 such that

 $\left(\nabla f(x) - K \nabla g(x)\right)^T P + P\left(\nabla f(x) - K \nabla g(x)\right) = -2Q$ (8)

From any $\hat{x}(t_0)$, an exponential observer (6) is obtained verifying

$$|x(t) - \hat{x}(t)| \le \left(\frac{q_2}{q_1}\right)^{1/2} e^{-\lambda(t-t_0)} ||x(t_0) - \hat{x}(t_0)||$$

for all $t > t_0$, where q_1 and q_2 are the smallest and largest eigenvalues of Q, respectively.

Elements of Proof (I)

Defining $\tilde{x}(t) = x(t) - \hat{x}(t)$, the error dynamics is given by $\dot{\tilde{x}}(t) = f(x(t)) - f(\hat{x}(t)) - K(v(t) - h(\hat{x}(t)))$ For the Lyapunov candidate function $V(t) = \tilde{x}(t)^T P \tilde{x}(t)$ where P > 0 is a symmetric constant matrix (2nd method) $\dot{V}(t) = \frac{d}{dt} \tilde{x}(t)^T P \tilde{x}(t) = \dot{\tilde{x}}(t)^T P \tilde{x}(t) + \tilde{x}(t)^T P \dot{\tilde{x}}(t)$ $= (f(x(t)) - f(\hat{x}) - K(h(x) - h(\hat{x}))^T P \tilde{x}$ $+\widetilde{x}^{T}P(f(x)-f(\hat{x})-K(h(x)-h(\hat{x})))$

* Explicit dependence on *t* will be omitted.

Elements of Proof (II)

Resorting to the fundamental theorem of integral calculus $f(x) - f(\hat{x}) - K(h(x) - h(\hat{x})) = \int_{0}^{1} (\nabla f(w_s) - K \nabla h(w_s)) \tilde{x} ds$ for $w_s = sx + (1-s)\hat{x}$. Therefore $\dot{V}(t) = \tilde{x}^T \int (\nabla f(w_s) - K \nabla h(w_s))^T P + P(\nabla f(w_s) - K \nabla h(w_s)) ds \tilde{x}$ Using (8) and the fact that $\tilde{x}^T P \tilde{x} > \varepsilon \|\tilde{x}\|^2$ results $\dot{V}(t) < -2\varepsilon \widetilde{x}^T Q \widetilde{x} < -2\frac{q_2}{q_1}\varepsilon V(t),$ for $\varepsilon > 0$.

Example, from [3]

EXAMPLE 1. Consider the following nonlinear system:

 $\hat{x}_1 = x_1$, $\hat{x}_2 = x_1 - 2x_2 + e^{-x_2}$, $y = x_1 + x_2$ Let B be a 2 × 1 constant matrix with elements b_1 , b_2 to be determined, then

then the gradients of f and h are

$$\nabla \mathbf{f} = \begin{bmatrix} 1 & 0\\ 1 & -2 - e^{-x_{\mathrm{B}}} \end{bmatrix} \quad \text{and} \quad \nabla h = \begin{bmatrix} 1 & 1 \end{bmatrix}.$$

$$\nabla f - B \nabla h = \begin{bmatrix} 1 - b_1 & -b_1 \\ 1 - b_2 & -2 - e^{-v_2} - b_2 \end{bmatrix}$$

The symmetric part of $\nabla f - B \nabla h$ is

$$(\nabla \mathbf{f} - B \nabla h)_{\text{sym}} = \begin{bmatrix} 1 - b_1 & \frac{1}{2}(1 - b_2 - b_1) \\ \frac{1}{2}(1 - b_2 - b_1) & -2 - e^{-x_2} - b_2 \end{bmatrix}$$

Thus, if the matrix is selected to be $\begin{bmatrix} 3\\-1 \end{bmatrix}$ then

$$(\nabla \mathbf{f} - B\nabla h)_{sym} = \begin{bmatrix} -1 & 0\\ 0 & -1 - e^{-x_3} \end{bmatrix}.$$
 (16)

ln (16), the two eigenvalues are -1 and $-1 - e^{-\pi z_2}$, so the maximum eigenvalue is -1, i.e.,

$$w^{T}(\nabla \mathbf{f} - B\nabla h)w = w^{T}(\nabla \mathbf{f} - B\nabla h)_{sym}w \leq (-1) \cdot ||w||^{2}$$

Now by Theorem 2 we have that

$$\dot{z} = f(z) + \begin{bmatrix} 2 \\ -1 \end{bmatrix} (h(x) - h(z))$$

10

$$\begin{split} \dot{x}_1 &= z_1 + 2[y - (z_1 + z_2)] \\ \dot{x}_2 &= z_1 - 2z_2 + e^{-z_1} - [y - (z_1 + z_2)] \end{split}$$

is an exponential observer with $\pi_1(0)$, $\pi_2(0)$ arbitrarily given for the system of the example.

Thau's Observers @ 1975

Consider the class of autonomous nonlinear systems

$$\Sigma_{\mathcal{G}} : \begin{cases} \dot{x} = Ax + \phi(x, y, \dot{y}) & x : x(t) \in \mathbb{R}^{n} \\ y = Cx & y : y(t) \in \mathbb{R}^{p} \end{cases}$$
(9)
where A and C are known and $\phi(.)$ is Lipschitz in its arguments
and verifies
$$\phi(x, y, \dot{y}) = \phi_{1}(y) + \nabla \phi_{2}(y) \dot{y} + \phi_{3}(x)$$
(10)
where $\phi_{1}(.), \phi_{3}(.) \in C^{1}, \phi_{2}(.) \in C^{2}$ and such that
$$C \nabla \phi_{2}(y) \dot{y} = 0.$$

Theorem[3] : For the nonlinear autonomous systems (9), verifying(10) if a) the pair (A, C) is observable b) there exist P > 0, Q > 0, and a gain vector K such that $(A - KC)^T P + P(A - KC) = -2Q$

$$\frac{\lambda_{\min}(Q)}{\lambda_{\max}(P)} > \left\| \nabla \phi_3 \right\|_{\infty}$$
(11)

then there exist an exponential observer for system (9).

Elements of Proof (I)

Define the new variable $w = x - \phi_2(y)$, and note that $\dot{\phi}_2 = \nabla \phi_2(y)\dot{y}$ The derivative, relative to time, of this new signal verifies $\dot{w} = Ax + \phi_1(y) + \nabla \phi_2(y)\dot{y} + \phi_3(x) - \nabla \phi_2(y)\dot{y}$ That can be simplified to $\dot{w} = Aw + \phi_1(y) + A\phi_2(y) + \phi_3(w + \phi_2)$ Considering that w = Cw = w, $C\phi_1(w)$ the observer

Considering that $y_1 = Cw = y - C\phi_2(y)$, the observer

$$\dot{\hat{w}} = A\hat{w} + \phi_1(y) + A\phi_2(y) + \phi_3(\hat{w} + \phi_2) - K(y_1 - C\hat{w})$$

is proposed.

Elements of Proof (II)

Defining $e = w - \hat{w}$, the error dynamics is given by $\dot{e} = (A - KC)e + \phi_3(w + \phi_2) - \phi_3(\hat{w} + \phi_2)$ For the Lyapunov candidate function V(t) = $e^T Pe$, where P > 0 is a symmetric constant matrix (2nd method) $\dot{V}(t) = \dot{e}^T Pe + e^T P\dot{e}$ $= -2e^T Qe + (\phi_3(w + \phi_2) - \phi_3(\hat{w} + \phi_2))^T Pe + e^T P(\phi_3(w + \phi_2) - \phi_3(\hat{w} + \phi_2))$

Elements of Proof (III)

$$\dot{V} \leq -2\lambda_{\min}(Q) + \left(\int_{0}^{1} \nabla \phi_{3}(w_{s} + \phi_{2}(y))dse\right)^{T} Pe$$
$$+ e^{T} P\left(\int_{0}^{1} \nabla \phi_{3}(w_{s} + \phi_{2}(y))dse\right)$$
$$\leq \left[-2\lambda_{\min}(Q) + 2\|P\|\|\nabla \phi_{3}\|_{\infty}\right]e\|^{2}$$

From this relation (11) is immediate.

Example, from [3]

EXAMPLE 3. We consider a simple pendulum with viscous damping and without driving torque.

$$\ddot{x} + a_2 \dot{x} + a_3 \sin x = 0, \quad y = x,$$
 (28)

where a_2 , a_3 are constants.

Let us rewrite Eq. (28) as a vector differential equation

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ 0 & -a_2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ -a_3 \sin x_1 \end{bmatrix},$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}.$$

Now the linear part of this system is observable and we denote the nonlinear part by

$$\phi(\mathbf{x}) = \begin{bmatrix} 0 \\ -a_3 \sin x_1 \end{bmatrix} \quad \text{so} \quad \nabla \phi(\mathbf{x}) = \begin{bmatrix} 0 & 0 \\ -a_3 \cdot \cos x_1 & 0 \end{bmatrix}.$$

If $a_2 = \frac{3}{4}$, $a_3 = \frac{1}{8}$ then the following matrices

$$B = \begin{bmatrix} \frac{3}{4} \\ -\frac{1}{4} \end{bmatrix} \qquad Q = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \qquad \text{and} \qquad P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{29}$$

satisfy Condition (b) of Theorem 3. So the observer (23) with B given by (29) and $\phi_1 = 0$, $\phi_2 = 0$ is an exponential observer and the ϵ of (27) is $\frac{1}{5}(5-(5)^{1/2}) > 0$.

Lipschitz Observers @ 1998

Consider the class of non-autonomous nonlinear systems

$$\Sigma_{\mathcal{G}} : \begin{cases} \dot{x}(t) = Ax(t) + \phi(x(t), u(t)) \\ y(t) = Cx(t) \end{cases} \qquad \begin{array}{l} x(t) \in \mathbb{R}^{n} \\ y(t) \in \mathbb{R}^{p} \\ u(t) \in \mathbb{R}^{m} \end{cases}$$
(12)
A, *C*, and *f*(.) are known; (A, C) is observable, u is a
deterministic input, and $\phi(.)$ is a Lipschitz time - invariant
function, i.e.

$$\left\|\phi(x(t),u(t)) - \phi(\hat{x}(t),u(t))\right\| \le \gamma \|x(t) - \hat{x}(t)\|$$
(13)

Proposed observer (motivated by Luenberger's and Kalman's work) $\dot{\hat{x}}(t) = A\hat{x}(t) + \phi(\hat{x}(t), u(t)) + K(y(t) - C\hat{x}(t))$ (14)

Lipschitz Observers @ 1998

The estimation error dynamics is

$$\dot{\widetilde{x}}(t) = (A - KC)\widetilde{x}(t) + [\phi(x(t)u(t)) - \phi(\widehat{x}(t)u(t))]$$

and the following major result holds:

Theorem [5] : For the nonlinear non - autonomous systems(12), verifying (13), if the observer given by (14) satisfies
a) the pair (A, C) is observable
b) the gain K can be chosen such that as to ensure
 $\min_{\omega \in R^+} \sigma_{\min} (A - KC - Ij\omega) > \gamma$ (15)then it is asymptotically stable.

Elements of Proof (I)

The proof is done in three parts (see [5] for details):

i) If $\min_{\omega \in R^+} \sigma_{\min} (A - KC - j\omega I) > \gamma$, then there exits $\varepsilon > 0$ such that the matrix $H = \begin{bmatrix} (A - KC) & \gamma^2 I \\ -I - \varepsilon I & -(A - KC)^T \end{bmatrix}$ has no imaginary eigenvalues.

ii)

If (A - KC) is stable then there exists a P > 0 such that there exits a solution to the equation $(A - KC)^T P + P(A - KC) + \gamma^2 PP + I + \varepsilon I = 0$

Elements of Proof (II)

cont...

iii) Defining $\tilde{x}(t) = x(t) - \hat{x}(t)$, the error dynamics is given by $\dot{\widetilde{x}}(t) = (A - KC)\widetilde{x}(t) + [\phi(x(t)u(t)) - \phi(\hat{x}(t)u(t))]$ For the Lyapunov candidate function $V(t) = \tilde{x}(t)^T P \tilde{x}(t)$ where P > 0 is a symmetric constant matrix (2nd method) $\dot{V}(t) = \frac{d}{dt} \widetilde{x}(t)^T P \widetilde{x}(t) = \dot{\widetilde{x}}(t)^T P \widetilde{x}(t) + \widetilde{x}(t)^T P \dot{\widetilde{x}}(t)$ $= (A - KC)^T P \widetilde{x} + \widetilde{x}^T P (A - KC) +$ $2\widetilde{x}^T P[\phi(x(t)u(t)) - \phi(\hat{x}(t)u(t))]$ Using the properties introduced before, results:

$$\dot{V}(t) \leq \tilde{x}^{T} \left[\left(A - KC \right)^{T} P + P \left(A - KC \right) + \gamma^{2} P P + I \right] \tilde{x}$$

References

[1] P. Kokotovic, *The Joy of Feedback: Nonlinear and Adaptive,* Macmillan Press, 1991 Bode Prize Lecture, 1992.

[2] F. Thau, "Observing the state of nonlinear dynamical systems," International Journal of Control, pp. 471-479, 1973.

[3] S. Kou, D. Elliot, and T. Tarn, "Exponential observers for nonlinear dynamic systems," Journal of Information and Control pp. 204-216, 1975.

[4] Wen Yu, "Nonlinear Observer," class notes, CINVESTAV-IPN.

[5] R. Rajamani, "Observers for Lipschitz Nonlinear Systems," Transactions on Automatic Control, pp. 397-400, 1998.