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Key Challenges in Estimation
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Characteristics of the envisioned Estimator Stabil ity

Reduced computational requirements
+ Causal (to be used during the mission)
Possible to be refined in post-processing

Robustness \
In the linear case, all relevant features

Performance

are obtained together: exponential stability,
optimal performance and robustness
(gain and phase margins).

In the nonlinear case no optimal common
solution is available.

(e.g. EKF is the performance tentative solution).



Theme
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« Stochastic H, filtering, prediction, and smoothing problems are
only optimal for linear time-varying systems under Gaussian
disturbance assumptions with known power spectral densities

« H,, allows to lift the noise assumptions for LTV systems
« Real world systems are nonlinear!

« In general, EKF does not guarantee stability, performance, nor
robustness

* Nonlinear observers can outperform linear or linearized versions
of observers (EKF / SOF), both for structured and unstructured
disturbances [1, 2]



Il Exponential Observers
for Linear Systems

Consider the linear system
x(t)e R"

[x(@)=Ax(@ )+ Bu(r) e
et e

where the pair (A, C )is observable.
The Luenberger observer, in a deterministic setup, is given by

2(t)= A% )+ Bu( )+ K (G()- C2(2))
Exponential stability can be proven resorting to the Lyapunov equation
(4-KC) P+P(4-KC)=-20

That is, for a positive definite matrix Q there exists a unique positive
definite P, such that the above equation is verified.



Observers for Nonlinear Systems
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Consider the class of affine nonlinear systems
x(t)e R"

(O reh)
2R e

where f()g () and A(.) are known.

The suggested Luenberger-like nonlinear observer would be
x()= FGO+ gGO O+ K ()~ hGE)))

What fails in the stability proof
for this nonlinear observer?
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Thau’s Observers @ 1973
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02w el )<
S v()) = () ) v (Z)E({e)

A,C, and f () are known; the pair (A,C ) 1S observable, u 1s a

deterministic input, and f () 1s a Lipschitz time-invariant

|7G@)- 7G| < L]x@)-20)
Proposed observer (motivated by Luenberger’s and Kalman’s work)

()= 4x@)+ fFEE))+ K(()-Ci()) (2)

function, 1.e.
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Proposition : Given the observability condition for systems of
class (1) forany positive definite matrix O, there exists a unique
positive definite matrix P, such that the Lyapunov equation

ATP+ P4, =20, 3)
is verified, where 4, = A— KC.

Main result:
Theorem|2] : For the class of systems (1), 1f the gain K is selected

such that 1t can make the solution of the Lyapunov equation to satisfy

ﬂ“min (Q)> L 4
I @

forall x then the Thau observer (2) 1s assymptotically stable.




Elements of Proof (l)
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Defining x(t)= x(t)— %(¢ ) and for the Lyapunov candidate
function V(t)=X(¢) Px(¢) where P > 0is a symmetric

constant matrix, lets apply Lyapunov's second method

/0= ey PRORFE PR30 PO)
The error dynamicsis given by

x(()=(4-KCR + f(x(O))- £ GE)= 47 + f (&)~ £ GE)

and

P (0)=5CY (4 P+ P4, J @)+ 2% (Y PLF (@)= £ GO



Elements of Proof (ll)
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From the Lyapunov equation (3) one can write

V()=-23(@) 0x()+25() PLf (x()- £ GC))

From the Lipschitz condition
V()< =25 ) Ox @)+ 2L|x @ f||P[x )
<=2, @YF Q] +2LfF ) A )

<2... @)-L|P|)xC)
if 1_(0)> L|P|| then V(t)<0,i.e.it is enough that
(4) be verified.
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Visualization of the Filter
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f(x(t))
x(t)
v t
ﬁ D > C) o
A) REAL
NLO
f(X(t))
y(t) . X(t)




Example with difficulties [4]
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Example 1 nonlinear system

T 0 1] [ 2y 0 0
: = + . + U
9 0 0] | @ — Sln g ()
B
y=[11]"" ]
) )
Lipschitz constant for f (x) =sinx,is L=1.y =sinx




@ Example with difficulties [4]
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The minimum occurs when Q=l.

! > 1
1P|
| PII° _pr r(P1P)
6.j=|
L1 |
we select P = {_21 A, P=PL >0, |P| =0.68 <1, but
13

Ag no exists. If we select

Amax (P) = 1.809 > 1, the condition is not satisfied. So the
method is difficult.



RRRRRRRR
CCCCCCC

Exponential Observers @ 1975

Consider the class of nonlinear systems

o {1 e
WORHEE) e r? )

where £ ()and /() are continuously differentible.

The proposed observer has the structure

x(0)= f GO g (v ) nGE0)) (©)

where g() is also continuously differentmble.

(7)

14
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Exponential Observers @ 1975

Theorem|[3] : Given the nonlinear autonomous systems (5) and (6)
and some function g(.)satisfying(7), if there exists a scalar function

V(%) where X =x—%and p >1such that
a) V (x)> CHE ,forallXe R",V(0)=0
b)YV (X)<—AV(X) forall Xe R” and forsome A > 0.

then the observer (6) 1s exponentially stable and

Jx()- £ < ke~ M

The generic proof for autonomous systems is an immediate
consequence of the Lyapunov second method.

15



Exponential Observers @ 1975
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Main result:
Theorem|[3] : Given the nonlinear autonomous system (5) and the

proposed observer (6) with g(y(t)#(())= K (y(t)—h(z()))
if there exists an » x m gain matrix K, that, given O > 0 there
exits P > 0 such that

(V/ (x)-KVg(x)) P+ P(Vf (x)-KVg(x))=-20 (8)

From any fc(to ) an exponential observer (6) is obtained verifying

Hx(f)_)e(fmg[%j M )-36,)

forall? >1,, where ¢, and ¢, are the smallest and largest

eigenvalues of O, respectively.

16



Elements of Proof (l)
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Defining ¥ (¢)= x(¢)— £(¢) the error dynamicsis given by

x(O)= f6O)- £ GE)- K ()~ hGE)
For the Lyapunov candidate function V(t)=x(¢) Px ().

where P > 0 is a symmetric constant matrix (2" method)

V'(f):%az(t)fpz(f): SCY PR+ 36T PG

~ (FGO)- 7G)-K(hx)-hG)) P
5 P(7(6)- £ 6)- KO- h3))

* Explicit dependence on t will be omitted.
17



Elements of Proof (ll)
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Resorting to the fundamental theorem of integral calculus

F() £ @)= K- hE )= [ (77 G, )~ KV o, eds

for w, = sx+(1—s)x. Therefore
1

Ve)=%" [ (Vf On,)-KVh(w, )] P+ P(Vf (w, )~ KVh(w, s %
0

Using (8) and the fact that X' Px > 8”)7 H2 results

V()< _ZﬁTQf<—22€V(t), fore > 0.

q,
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Examere 1. Consider the following nonlinear system:

t«':x’, £‘=x‘—2x’+’—‘e|

then the gradients of f and h are

vi=|] L] amd V=)

= Xy + Xy Lee Bbea2 x 1 constant matrix with elements by , 33 to be determined, then

S T =
vi— BV = ||~ '2_8_,‘_5#].

The symmetric part of Vf — BVA is

1—b 'l'{l"bt—bxll

(9F = BV = [y 3,20y 22

Thus, if the matrix is selected 1o be [_]] then
(V€ — BVh)ym = [_0' 1 -o-e“"]' (16)

In{16), the two eigenvalues are —1 and —1 — &7, so the maximum eigen-
nhe & —1, ie,

wI(VE — BUA)w = w'(Vf — BVA)mw < (—1) - Tw]R

Now by Theorem 2 we have that

2 = £(z) + [ 2| thix) — hea)

H=5+2—(x + #4)]
Gy=2 =25+ — [y — (3 +39)

ian exponential observer with 2,(0), 50) arbitrarily given for the system of
the example,



Thau’s Observers @ 1975
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Consider the class of autonomous nonlinear systems

i - . ) n
Zg:<X—AX+¢(X,)/,J/) x:x({)e R (9)
y=Cx Jy0)e RP
where 4 and C are known and (b(.)is Lipschitz in its arguments
and verifies
P(x. 3, 9)=4 )+ Ve (v)i+,(x) (10)

where @, ()@, ()e C',9,()e C* and such that
vV, (y)y =0.

20



Exponential Observers @ 1975
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Theorem|3] : For the nonlinear autonomous systems (9),
verifying(10)1f
a) the pair (4,C)1s observable
b) there exist P >0, O > 0, and a gain vector K
such that
(4-KC) P+P(A-KC)==20
and
A ©)
M (P)

then there exist an exponential observer for system (9).

>[Vey. (11)

21



Elements of Proof (l)
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Define the new variable w = x — ¢, (y ), and note that

¢52 = V¢2 ()/))/

The derivative, relative to time, of this new signal verifies

o= Ax+¢,(0)+ Ve, () +¢,(x)- Vo, ()i

That can be simplified to

W= Aw+¢(v)+ 49,0+ 9, (w+9, )
Considering that y, = Cw = y—C¢, () the observer

"AV: Aw+¢10’)+A¢2 ()/)4‘ ¢3 ("’i’+¢2 )_K(yl _Cﬁ’)

1s proposed.

22



Elements of Proof (ll)
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Defining e = w—w, the error dynamicsis given by
¢=(4-KCl+¢,(w+9,)-9,(+9,)
For the Lyapunov candidate function V(t)= e’ Pe,
where P > 0 is a symmetric constant matrix (2" method)
V(t)=é Pe+e’ Pé
=-2¢e' Qe+

@, (v+0,)-0,(v+9,)) Pet+e" Plp;(w+¢,)-0,(v+¢,))

23



Elements of Proof (lll)
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V's—zamm@>+[jw3(ws+¢z<y> ] Pe
+efp[jw>3 <ws+¢2(y»dse]

<b2a,. @+ 2|P|ve,_ld’

From this relation (11) is immediate.



ExampLE 3. We consider a simple pendulum with viscous damping and
without driving torque.

X +n - aysiny =10, y-:

I

(28)

where a, , a, arc constants.
Let us rewrite Eq. (28) as a vector differential equation

X == [g ___lag] X [._aa(:in‘ .\'1]‘
= LN 5

Now the linear part of this system is observable and we denote the nonlinear

part by
o) =[_ % ] s Ve

—ay SIN 2\,

) [—a3 -ocos 5 8] '
Ifay, = %, a; = { then the following matrices
SEA R T I

atisfy Condition (b) of Theorem 3. So the observer (23) with B given by
(29) and ¢, = 0, ¢, == 0 is an exponential observer and the e of (27) is
15— (5)'%) > 0.

25
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Lipschitz Observers @ 1998

Consider the class of non-autonomous nonlinear systems

. x(z‘)e R"
JiO=axOrocul) oS
=G '{y(f)= Cx(1) 586 ;:;Z (12)

A,C,and f (.)are known; (A, C)is observable,uisa
deterministic input, and ¢() 1s a Lipschitz time - invariant

function,1.e.

oG @u@)-pGE)u @) < v]x)-36) (13)
Proposed observer (motivated by Luenberger’s and Kalman’s work)

x(0)= 43+ ¢ (@) (O} K () C(0)) (14)

26



Lipschitz Observers @ 1998
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The estimation error dynamics is
x ()= (- KCF @)+ [pG@)u)- oG @) u@))]

and the following major result holds:

Theorem [5] : For the nonlinear non - autonomous systems
(12), verifying (13),1f the observer given by (14) satisfies
a) the pair (4,C)1s observable
D) the gain K can be chosen such that as to ensure
mino, . (A-—KC—Ijw)>y (15)

min
weR*

then 1t 1s asymptotically stable.

27
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Elements of Proof (l)

The proof is done in three parts (see [5] for details):

)

i)

If mino_. (4—KC— jwl )> v, then there exits

weR"

£ > 0 such that the matrix
A-K ]
. [( C) }

min

—I—¢l —(4-KC)

has no 1imaginary eigenvalues.

If (4 — K C)is stable then there existsa P > 0

such that there exits a solution to the equation

A—KCY P+P(A—KC)+y*PP+1+¢l =0
( ) P+ P( My

28



Elements of Proof (ll)
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cont...
iy Defining x (t)=x(¢)— x(z), the error dynamicsis given by

x ()= (4-KCR O+ [p6u )-GO u @)
For the Lyapunov candidate function V(t)=%(¢) Px(¢)

where P > 0 is a symmetric constant matrix (2™ method)

V'(f):%z(f)fpx(f): SCY PR+ (Y PEQ)
=(A-KC) PX+X"P(4-KC)+

25" PlpGe@)u )~ 9G @) u @)l

Using the properties introduced before, results:
V()< [(A — KC)T P+P(A-KC)+y*PP+ 1}2

29
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