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Theme

Consider the class of non-autonomous nonlinear systems
x = f (x,u)
2
S ly = k)
where x(t)e R" is the vector of system states, u(t)e R"

are the inputs, and y(t )e RPare the system outputs expressed

as a column vector and abb. as x,u, and y.

The search for a “very special” property...

Given a nonlinear system,with nonlinear measurements of the
state available, find a coordinate transformation that renders
the dynamics and the output linear on the new coordinates!!!

(except for a nonlinear output injection term)
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Challenge for the control problem set at IFAC 1978 (Helsinki) by
Roger Brockett to Arthur Krener [1]

Control problem well understood (during the 80s), see [1, 2] for
a survey on the new techniques: feedback linearization, input-
output linearization, backstepping , zero dynamics, ...

Harder to be solved for nonlinear observers

Relevant questions:
Conditions for the existence of such transformation

Synthesis methods (complexity)

Robustness relative to unmodelled dynamics...



Krener and Isidori @ 1983
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l)Find{ =/, u)/\{z = Az + Bu-+oy.u)

h(x)
2) Design an observer of the form
= A2+ Bu+a(y,u)+Kw—-C2)

3)Error dynamlcs Z = 7 -z (assume observability of (4, C))
—(4-KCF

First systematic approach [3] that resorts to a nonlinear state
transformation to linearize the original system up to an
additional output injection term

w= Cz



Krener and Isidori @ 1983
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The proposed solution proposed is composed of three steps (see
[1, 3] for details):

1) A set of partial differential equations (PDE) must be solved to
find g(y)

2) The integrability of conditions for this PDE involve the vanishing
of a pseudo-curvature

3) A coordinate transformation z=f(x) can be obtained after a set of
PDEs is solved, resorting to conditions on the Lie derivatives of
the outputs

“The process is more complicated then feedback linearization and
even less likely to be successftul...” in [1]



Kazantzis and Kravaris @ 1997
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Slitghly different objective:

Given a nonlinear system, with nonlinear measurements of its
state available, find a nonlinear state transformation that
renders the observer error dynamics linear!!!

(except for a nonlinear output injection term)

Consider the class of autonomous nonlinear systems
{x=f@)
y=h(x)
where f : R"— R", h: R" — R" are analytic vector fields.
The origin x = 0 is an equilibrium point, 7(0)= 0, and /(0)= 0.

(2)



Kazantzis and Kravaris @ 1997
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Motivated by Luenberger's original ideas on the linear observer

design problem, the proposed approach will try to reconstruct a

nonlinear invertible function 2z = O(x).

with time derivative that verifies

. _0d0dx 90 . 3
Z_Bx dt_axx_AZ ,B(y)

Using the definition of the system (2) and for theintended

dynamics, the following PDE must be verified

() ()= 460)- BUC)=4z-BGY O



TTTTTTTTT
RRRRRRRR
TECNICO

Kazantzis and Kravaris @ 1997

Assump tion A1 : The Jacobian F of the vector field f (x)
evaluated at x = 0 has eigenvalues k, i =1,..., n with

0¢ ConvexHulllk,, .k, }

T T
Assumption A2 : Denoting the m X n matrix # = & ©0) .. as—;” 0)

1t 1s assumed that the m x » matrix

H

HF
0= , has rank ».

H Fn-l

A2 essecially states that (3) 1s locally stable.



Kazantzis and Kravaris @ 1997
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Lyapunov's Auxiliary Theorem: Consider the first- order system

0
of quasi - linear differental equations a—w (D(X, w)= l//(x, W) (4)
X

with ¢(0,0)=0,(0,0)=0, and 3—¢ (0,0)= 0, where wis the
w

unknown. Under assumptions A1, A2, and independence of the

eigenvalues of g—(p (0,0) relative to the ones of aa—w (0,0), then
X w

the above system of PDEs admits a unique analytic solution, in the

neighborhood of x = 0.

The novelty in [4] was the use of this result app to (3) to guarantee
the existence and uniqueness of solutions. 9



Kazantzis and Kravaris @ 1997
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Solution for the system of PDEs ?}—0 x) f (x)= A H(x)— B (y)
X

ow . .
Linear Method : ora— (D(X, W)z l//(x, w), consider the linear case
X

(p(x, w)= Fx
v (x,w)= Aw— BHx
with F', A, B = Ba_,B (0), and H constant matrices. Then the unique
X
solution of (3)1s w=Tx, where T is the solution of

TF + AT = BH. (5)

Unique solution when /' and 4 do not have common eigenvalues.
10



Kazantzis and Kravaris @ 1997
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Theorem: Consider that for thedynamicsystem (2) A7 and 42

hold and the n - th order dynamic system of the form
z=4z-B(y)
: : df .
where 4 1s Hurwitz, B = o (0), and (4,B)1s controlable.
X
Then there exists a locally invertible nonlinear map z = 6(x)

that makes the dynamic system above a full order observer.
Why is this method or structure acttractive?...

11
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Kazantzis and Kravaris @ 1997

Theorem: Let z = H(x)be an invertible solution of (3). The system

= sG] 2 @)}kzs(y)—ﬁ(h(f)» 5

ox

1s an asymptotic full- order observer for (2) such that

4 - 2)= 4 06)-0)= 46()-0(:))= G -2)

Proof (brief) :

L locey-ac)-25- 22 (oo T worsoen) 2 ) -

a0() - o ) )- (B( ) -B(h( 5) ))- 46(x) + p(») = alo( 5)-6( +) )

12
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Kazantzis and Kravaris @ 1997

Observer design

{x _ f(x) lpornelcooinates ) [a? ()%)}1( B()-B(())

y :h(x) ox

2 =6(x) £=6(%)

Observer in new coordinates

s=dz- B(y) < > Z=4:-B()

- o —

Linear error dynamics

13
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Visualization of the Filter

: A y(t)
ﬁ D ; ]
1) REAL
o) NLO
>

14



Krener and Xiao @ 2002 [5]
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Converse Theorem: Consider the class of nonlinear systems
z2=g(2)

y=h(z)
where g and 4 are continuous vector fieldsand g(0)=A4(0)=0.

If there exists a nonlinear observer Z = &(2, y)such that the error

dynamics z =z-z 1s linear,1.e. Z = Az, then there exists a

continuous vector field 5. RP — R" such that
g(z)=Az-B(h(z))
g)=42-p()

15
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3. Examples. As discussed in the introduction, there are distinct advantages to
considering nonlinear output injection 3(y). It is desirable that # be a diffeomorphism
over as large a range as possible, for this is the domain of convergence of the observer.
Nonlinear output injection can make 6 a global diffeomorphism.

To illustrate this, we consider a Duffing oscillator

;'l..' = r — I

y = J‘.*.
which is equivalent to the planar system

i.' 1 0
1

1 L 0
O £L f

v}
|
~

Yy = L.

16
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This system is trivially transformed into a linear system with output injection (1.2)
‘:1 _ -2 1 1 B —2y
Z9 -2 0 Z9 —3y +

by

3( —2y
Ply) = By +y* |’

Notice that & is nonlinear and # is trivially a global diffeomorphism. The observer

(1.4) 1s
'é"l . -2 1 ;i.‘l _QU

and the error dynamics
;i‘l -2 1 T
.‘N,‘Q o —2 0 T

is linear and exponentially stable with poles at —1 + i.

-~
N

8
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The example is trivial but illustrates two important facts. The first is the advan-
tage of allowing nonlinear 3. We could take it to be linear,

| —2

and still solve the PDE (1.3) for #. But the solution might be hard to find, it could
have an infinite power series expansion, and it might not be a global diffeomorphism.
The second point is that the Duffing oscillator is truly nonlinear; it has three
equilibria and two homoclinic orbits, and the rest of the trajectories are limit cycles.
Yet it is possible to build a globally convergent error with linear error dynamics.

Run demo!

18
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a

Next we consider a Van der Pol oscillator,

i = —(z
y =,

which is equivalent to the planar system

i’l . i 0 1 I 0
To | -1 1 ro | ;1?%;1.‘2 '

v=[1 01| 3]

Now we have

[ D) .
flz) = i —171+;1‘-3—;17f;1r2 ] f(z) =1
0 1
P-| 1] Ho[1 0]

19
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Example Il from [5]

We look for a nonlinear coordinate transformation z = #(z) such that in the new
coordinates z, the system can be described in the form

Let us choose A and /3 to be

3

bl 1 ] bl‘l/ -+ £

A= L B =| YT
[ by -1 1 boy + &

where by. by are constants such that 1 +b; < 0, by — ba +1 > 0. Clearly, A is stable
since trace(A) = 14+ b; < 0 and det(A) = by — by +1 > 0. Moreover A = F + BH
with B = [by, bs]". The solution of (1.3) in this case is given by

Note that @ is polynomial and globally invertible on R%. This is because we chose a
nonlinear 3. The resulting observer is again globally convergent with exponentially
stable linear error dynamics in z coordinates despite the nonlinearities of the Van der
Pol oscillator. See Figure 1.
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Example Il from [5]

Observation of the state of van der Pol equation, x1

I 1
— actual state
— — estimated

solution x1

timet

Observation of the state of van der Pol equation, x2
I 1

solution x2

—— actual state
°| — — estimated T

15

timet

F1G. 1. Observation of Van der Pol oscillator.

Both these examples could be treated by the method of Krener and Respondek [8].

21
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Krener and Xiao @ 2002 [5]

Consider the class of non - autonomous nonlinear systems

x=f (x, u)

y=h(x,u)
where f: R"— R", h: R" — R" are analytic vector fields.
The origin x = 0 is an equilibrium point, 7(0)=0, and #(0)= 0.
Assume that the followingrelations are verified

fu)= fo )+ £ Gru)

h(x,u): h, (x)+ h, (x,u)
where £,(x,0)= 0,4 (x,0)=0and £,(0)=#,(0)=0.
Let 7= 20 )i = 2 (0) and 5= 22 (0)

ox ox ox

22



Krener and Xiao @ 2002 [5]
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Applying the previous results, under the same technical
conditions to the pair f,,/4,, and for the nonlinear coodinate

transformation z = go(x), i.e

0

92 (4)1, ()= o)~ B0 ()
requires the solution of the equation

TF =TA—- BHT.

The following nonlinear observer is obtained

= 7G| 2 } BO)-BHE.a)

23



Krener and Xiao @ 2002 [5]
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Let e = ¢(% Jo(x ) Then e verifies the differential equation
6= (G )-( By~ Bl )]~ SL 1)
= (7, G- By )~ Bl )|~ 22 (e o)

Given the relations verified for the pairs f,,4, in PDE form,1.e
J 0P (N, [ A A
L= 49)-BEEN L6 G)=496)- B ()

é=Ae+ N(%,u)—N(x,u)

where N (x)= 22 (5 )£ (5, 00)+ B, 1)~ By ()

1



Krener and Xiao @ 2002 [5]

TTTTTTTTT
uuuuuuuu
TECNICO

If we further assume that f, is locally Lipschitz then
HN(xl,u)— N(xz,u]‘ < L(u}‘xl — x2H

A design similar to the ones introduced in the previous lesson is

possible, 1.e. for 4 Hurwitz, then forany O = 0 then there exista P >0
such that

A"P+PA=-20
And for the Lyapunov candidate function V(e) = ¢’ Pe we have that

V(€)< (- 221y (O)+ 2L Vi (P))e]

Hence if . > L\u
o (p)” 1)

then e = 01s locally asymptotically stable. o



Krener and Xiao @ 2002 [5]
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Other methods to solve the PDE could be used [5]
Design method easier to be accomplished than [3]

The authors of [4] claim “to be able to do so for all linearly
observable, real analytic systems whose spectrum of the linear
part lies wholly in the right half complex plane”.

Krener and Xiao extended the method to arbitrary specta [5]
(the Siegel domain) and showed that the sufficient conditions
were also necessary.

Discrete time [6] and state and disturbance estimation design [7]
versions became available
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