

Nonlinear trajectory tracking control based on adaptive backstepping

David Cabecinhas

Dynamic Stochastic Filtering, Prediction, and Smoothing Instituto Superior Técnico

July 7th, 2010

ヘロト ヘワト ヘビト ヘビト

Outline

Desired trajectory traj

- Desired trajectory tracking controller
- Quadrotor model
- 2 Trajectory tracking controller
 - Problem statement
 - Controller design
- 3 Simulation results

4 Conclusions

イロト 不得 とくほと くほう

Desired trajectory tracking controller Quadrotor model

Trajectory tracking for quadrotors

Quadrotor - underactuated vehicle, nonlinear dynamics

Desired controller properties

Guarantee asymptotic stability of the tracking error at the origin

- with actuation bounded in tracking error
- in the presence of constant force disturbances

Design methodology

- Dynamic model handled in its natural space $SE(3) = \mathbb{R}^3 \times SO(3)$
- Nonlinear Lyapunov-based techniques
 - Adaptive backstepping
- Dynamic augmentation of the actuation

Desired trajectory tracking controller Quadrotor model

Trajectory tracking for quadrotors

Quadrotor - underactuated vehicle, nonlinear dynamics

Desired controller properties

Guarantee asymptotic stability of the tracking error at the origin

- with actuation bounded in tracking error
- in the presence of constant force disturbances

Design methodology

- Dynamic model handled in its natural space $SE(3) = \mathbb{R}^3 \times SO(3)$
- Nonlinear Lyapunov-based techniques
 - Adaptive backstepping
- Dynamic augmentation of the actuation

Desired trajectory tracking controller Quadrotor model

Quadrotor model – Actuation

- 2 pairs of counter-rotating rotors (F_1, F_3) and (F_2, F_4)
- Input transformation

$$T = \sum_{i=1}^{4} F_i$$

$$\mathbf{n} = \begin{bmatrix} \alpha_1(F_1 - F_3) \\ \alpha_2(F_2 - F_4) \\ \alpha_3(F_1 - F_2 + F_3 - F_4) \end{bmatrix}$$

Underactuated vehicle

- One-directional thrust T
- Full torque control $\mathbf{n} = [n_1 \ n_2 \ n_3]^T$
- 1 force + 3 torques vs. 6 DoF

・ロット (雪) ・ (目)

Desired trajectory tracking controller Quadrotor model

Quadrotor Model – Equations of motion

Kinematics $\dot{\mathbf{p}} = R\mathbf{v}$ $\dot{R} = -S(\boldsymbol{\omega})R$ Dynamics

$$\dot{\mathbf{v}} = -S(\boldsymbol{\omega})\mathbf{v} + \frac{1}{m}\mathbf{f} \dot{\boldsymbol{\omega}} = -\mathbb{J}^{-1}S(\boldsymbol{\omega})\mathbb{J}\boldsymbol{\omega} + \mathbb{J}^{-1}\mathbf{n}$$

・ロト ・ 理 ト ・ ヨ ト ・

 External force includes thrust and gravitational contributions

$$\mathbf{f} = -T\mathbf{u}_3 + mgR^T\mathbf{u}_3 + R^T\mathbf{b}, \quad \mathbf{u}_3 = [0 \ 0 \ 1]^T$$

- External force disturbance: $\mathbf{b} \in \mathbb{R}^3$
- Using input transformation $\mathbf{n} = \mathbb{J} \boldsymbol{\tau} + S(\boldsymbol{\omega}) \mathbb{J} \boldsymbol{\omega}$, Euler equations are reduced to integrator form

$$\dot{\boldsymbol{\omega}} = \boldsymbol{\tau} = [\tau_1 \ \tau_2 \ \tau_3]^T$$

Problem statement Controller design

Trajectory tracking – Sketch of problem

- Solution Enforce position tracking only (define desired position $\mathbf{p}_d(t)$)

Orientation automatically constrained to direct T(desired rotation matrix $R_d = [\mathbf{r}_{1d} \ \mathbf{r}_{2d} \ \mathbf{r}_{3d}]$ satisfies $\mathbf{r}_{3d}T_d = mg\mathbf{u}_3 + \mathbf{b} - m\ddot{\mathbf{p}}_d$)

Problem statement Controller design

Trajectory tracking – Problem statement

Assumption Desired trajectory $\mathbf{p}_d(t)$ is a class C^4 function

Control objective

Design a control law for *T* and τ such that $\mathbf{p} \to \mathbf{p}_d$ with the largest possible basin of attraction.

・ロト ・ 理 ト ・ ヨ ト ・

Problem statement Controller design

Controller design

- Position error $\mathbf{e}_1 = \mathbf{p} \mathbf{p}_d$
- Initial candidate Lyapunov function $V_1 = \frac{1}{2} \mathbf{e}_1^T \mathbf{e}_1$
- Go through backstepping procedure until actuation is available

$$\dot{V}_{1} = \mathbf{e}_{1}^{T} \dot{\mathbf{e}}_{1}$$

$$\dot{V}_{1} = -k_{1} \mathbf{e}_{1}^{T} \sigma(\mathbf{e}_{1}) + k_{1} \mathbf{e}_{1}^{T} (\sigma(\mathbf{e}_{1}) + \frac{1}{k_{1}} \dot{\mathbf{e}}_{1})$$

$$\dot{V}_{1} = -W_{1}(\mathbf{e}_{1}) + k_{1} \mathbf{e}_{1}^{T} \underbrace{(\sigma(\mathbf{e}_{1}) + \frac{1}{k_{1}} (R\mathbf{v} - \dot{\mathbf{p}}_{d}))}_{\mathbf{e}_{2}}$$

$$\overset{p_{\max}}{\longrightarrow} \overset{\sigma(\mathbf{x})}{\longrightarrow} \overset{p_{\max}}{\longrightarrow} \overset{p_{\max}}{\longrightarrow} \overset{\sigma(\mathbf{x})}{\longrightarrow} \overset{p_{\max}}{\longrightarrow} \overset{\sigma(\mathbf{x})}{\longrightarrow} \overset{p_{\max}}{\longrightarrow} \overset{\sigma(\mathbf{x})}{\longrightarrow} \overset{p_{\max}}{\longrightarrow} \overset{\sigma(\mathbf{x})}{\longrightarrow} \overset{p_{\max}}{\longrightarrow} \overset{\sigma(\mathbf{x})}{\longrightarrow} \overset{p_{\max}}{\longrightarrow} \overset{p_{$$

ヘロト ヘワト ヘビト ヘビト

э

Problem statement Controller design

Controller design

- Position error $\mathbf{e}_1 = \mathbf{p} \mathbf{p}_d$
- Initial candidate Lyapunov function $V_1 = \frac{1}{2} \mathbf{e}_1^T \mathbf{e}_1$
- Go through backstepping procedure until actuation is available

$$\dot{V}_{1} = \mathbf{e}_{1}^{T} \dot{\mathbf{e}}_{1}$$

$$\dot{V}_{1} = -k_{1} \mathbf{e}_{1}^{T} \sigma(\mathbf{e}_{1}) + k_{1} \mathbf{e}_{1}^{T} (\sigma(\mathbf{e}_{1}) + \frac{1}{k_{1}} \dot{\mathbf{e}}_{1})$$

$$\dot{V}_{1} = -W_{1}(\mathbf{e}_{1}) + k_{1} \mathbf{e}_{1}^{T} \underbrace{(\sigma(\mathbf{e}_{1}) + \frac{1}{k_{1}} (R\mathbf{v} - \dot{\mathbf{p}}_{d}))}_{\mathbf{e}_{2}}$$

$$\overset{p_{\max}}{\underbrace{\qquad}} \overset{\sigma(\mathbf{x})}{\underbrace{\qquad}}$$

ヘロト ヘワト ヘビト ヘビト

Problem statement Controller design

Controller design

• New Lyapunov function candidate

$$\begin{aligned} V_2 &= V_1 + \frac{1}{2} \mathbf{e}_2^T \mathbf{e}_2 \\ \dot{V}_2 &= -W_2(\mathbf{e}_1, \mathbf{e}_2) + k_1 k_2 \mathbf{e}_2^T (\mathbf{e}_2 + \frac{1}{k_1^2 k_2} (\frac{1}{m} R \mathbf{f} - \ddot{\mathbf{p}}_d)) \end{aligned}$$

- With full force control in **f**, we could obtain $\dot{V}_2 = -W_2(\mathbf{e}_1, \mathbf{e}_2) < 0$ However $\mathbf{f} = -T\mathbf{u}_3 + mgR^T\mathbf{u}_3 + R^T\mathbf{b}$ and **b** is unknown!
- Define new error as

$$\mathbf{e}_3 \triangleq \mathbf{e}_2 + \frac{1}{k_1^2 k_2} \left(\frac{1}{m} (-\mathbf{RT} \mathbf{u}_3 + mg \mathbf{u}_3 + \widehat{\mathbf{b}}) - \ddot{\mathbf{p}}_d \right)$$
$$\dot{V}_2 = -W_2(\mathbf{e}_1, \mathbf{e}_2) + k_1 k_2 \mathbf{e}_2^T \mathbf{e}_3 + \frac{1}{mk_1} \mathbf{e}_2^T \widetilde{\mathbf{b}}$$

and iterate backstepping process twice more

Problem statement Controller design

Controller design

• New Lyapunov function candidate

$$V_{2} = V_{1} + \frac{1}{2}\mathbf{e}_{2}^{T}\mathbf{e}_{2}$$

$$\dot{V}_{2} = -W_{2}(\mathbf{e}_{1}, \mathbf{e}_{2}) + k_{1}k_{2}\mathbf{e}_{2}^{T}(\mathbf{e}_{2} + \frac{1}{k_{1}^{2}k_{2}}(\frac{1}{m}R\mathbf{f} - \ddot{\mathbf{p}}_{d}))$$

• With full force control in **f**, we could obtain $\dot{V}_2 = -W_2(\mathbf{e}_1, \mathbf{e}_2) < 0$ However $\mathbf{f} = -T\mathbf{u}_3 + mgR^T\mathbf{u}_3 + R^T\mathbf{b}$ and **b** is unknown!

Define new error as

$$\mathbf{e}_{3} \triangleq \mathbf{e}_{2} + \frac{1}{k_{1}^{2}k_{2}} \left(\frac{1}{m} \left(-RT\mathbf{u}_{3} + mg\mathbf{u}_{3} + \widehat{\mathbf{b}} \right) - \ddot{\mathbf{p}}_{d} \right)$$
$$\dot{V}_{2} = -W_{2}(\mathbf{e}_{1}, \mathbf{e}_{2}) + k_{1}k_{2}\mathbf{e}_{2}^{T}\mathbf{e}_{3} + \frac{1}{mk_{1}}\mathbf{e}_{2}^{T}\widetilde{\mathbf{b}}$$

and iterate backstepping process twice more

Problem statement Controller design

Controller design

New Lyapunov function candidate

$$V_{2} = V_{1} + \frac{1}{2}\mathbf{e}_{2}^{T}\mathbf{e}_{2}$$

$$\dot{V}_{2} = -W_{2}(\mathbf{e}_{1}, \mathbf{e}_{2}) + k_{1}k_{2}\mathbf{e}_{2}^{T}(\mathbf{e}_{2} + \frac{1}{k_{1}^{2}k_{2}}(\frac{1}{m}R\mathbf{f} - \ddot{\mathbf{p}}_{d}))$$

- With full force control in **f**, we could obtain $\dot{V}_2 = -W_2(\mathbf{e}_1, \mathbf{e}_2) < 0$ However $\mathbf{f} = -T\mathbf{u}_3 + mgR^T\mathbf{u}_3 + R^T\mathbf{b}$ and **b** is unknown!
- Define new error as

$$\mathbf{e}_{3} \triangleq \mathbf{e}_{2} + \frac{1}{k_{1}^{2}k_{2}} \left(\frac{1}{m} \left(-\mathbf{RT}\mathbf{u}_{3} + mg\mathbf{u}_{3} + \widehat{\mathbf{b}}\right) - \ddot{\mathbf{p}}_{d}\right)$$
$$\dot{V}_{2} = -W_{2}(\mathbf{e}_{1}, \mathbf{e}_{2}) + k_{1}k_{2}\mathbf{e}_{2}^{T}\mathbf{e}_{3} + \frac{1}{mk_{1}}\mathbf{e}_{2}^{T}\widetilde{\mathbf{b}}$$

and iterate backstepping process twice more

Problem statement Controller design

Controller design – Adaptive backstepping

$$\begin{split} V_{4} &= \frac{1}{2}\mathbf{e}^{T}\mathbf{e} \qquad \mathbf{e} = [\mathbf{e}_{1}^{T} \ \mathbf{e}_{2}^{T} \ \mathbf{e}_{3}^{T} \ \mathbf{e}_{4}^{T}]^{T} \in \mathbb{R}^{12} \\ \dot{V}_{4} &= -W_{4}(\mathbf{e}) + \mathbf{e}_{4}^{T} \left(\mathbf{h}(\mathbf{e}, T, \dot{T}, R, \boldsymbol{\omega}, \mathbf{p}_{d}^{(4)}) + RM(T)\mathbf{\bar{u}} + \frac{1}{k_{1}^{2}k_{2}}\dot{\mathbf{b}}\right) \\ &+ \frac{1}{k_{1}^{2}k_{2}}\mathbf{e}_{3}^{T}\dot{\mathbf{b}} + \frac{1}{k_{1}}\mathbf{\tilde{b}}^{T} (\mathbf{e}_{2} + \mathbf{e}_{3} + \mathbf{e}_{4})) \\ \mathbf{\bar{u}} &= \begin{bmatrix} \ddot{T} & \tau_{1} & \tau_{2} \end{bmatrix}^{T}, M(T) = \frac{c_{1}}{m} \begin{bmatrix} 0 & 0 & -T \\ 0 & T & 0 \\ 1 & 0 & 0 \end{bmatrix}, \text{ nonsingular if } T \neq 0 \\ \text{Add estimation error to the Lyapunov function} \\ V_{4} &= \frac{1}{2}\mathbf{e}^{T}\mathbf{e} + \frac{1}{2k_{1}}\mathbf{\tilde{b}}^{T}\Gamma^{-1}\mathbf{\tilde{b}} \qquad \mathbf{e} = [\mathbf{e}_{1}^{T} \ \mathbf{e}_{2}^{T} \ \mathbf{e}_{3}^{T} \ \mathbf{e}_{4}^{T}]^{T} \in \mathbb{R}^{12} \\ \dot{V}_{4} &= -W_{4}(\mathbf{e}) + \mathbf{e}_{4}^{T} \left(\mathbf{h}(\mathbf{e}, T, \dot{T}, R, \boldsymbol{\omega}, \mathbf{p}_{d}^{(4)}) + RM(T)\mathbf{\bar{u}} + \frac{1}{k_{1}^{2}k_{2}}\mathbf{\hat{b}}\right) \\ &+ \frac{1}{k_{1}^{2}k_{2}}\mathbf{e}_{3}^{T}\mathbf{\hat{b}} + \frac{1}{k_{1}}\mathbf{\tilde{b}}^{T} \left(-\Gamma^{-1}\mathbf{\hat{b}} + (\mathbf{e}_{2} + \mathbf{e}_{3} + \mathbf{e}_{4})\right) \end{split}$$

Problem statement Controller design

Controller design – Adaptive backstepping

$$\begin{split} V_{4} &= \frac{1}{2}\mathbf{e}^{T}\mathbf{e} \qquad \mathbf{e} = [\mathbf{e}_{1}^{T} \ \mathbf{e}_{2}^{T} \ \mathbf{e}_{3}^{T} \ \mathbf{e}_{4}^{T}]^{T} \in \mathbb{R}^{12} \\ \dot{V}_{4} &= -W_{4}(\mathbf{e}) + \mathbf{e}_{4}^{T} \left(\mathbf{h}(\mathbf{e}, T, \dot{T}, R, \boldsymbol{\omega}, \mathbf{p}_{d}^{(4)}) + R\boldsymbol{M}(T)\mathbf{\bar{u}} + \frac{1}{k_{1}^{2}k_{2}}\mathbf{\hat{b}}\right) \\ &+ \frac{1}{k_{1}^{2}k_{2}}\mathbf{e}_{3}^{T}\mathbf{\hat{b}} + \frac{1}{k_{1}}\mathbf{\tilde{b}}^{T} \left(\mathbf{e}_{2} + \mathbf{e}_{3} + \mathbf{e}_{4}\right)) \\ \mathbf{\bar{u}} = \begin{bmatrix} \ddot{T} & \tau_{1} & \tau_{2} \end{bmatrix}^{T}, \ \boldsymbol{M}(T) = \frac{c_{1}}{m} \begin{bmatrix} 0 & 0 & -T \\ 0 & T & 0 \\ 1 & 0 & 0 \end{bmatrix}, \text{ nonsingular if } T \neq 0 \\ \text{Add estimation error to the Lyapunov function} \\ V_{4} &= \frac{1}{2}\mathbf{e}^{T}\mathbf{e} + \frac{1}{2k_{1}}\mathbf{\tilde{b}}^{T}\Gamma^{-1}\mathbf{\tilde{b}} \qquad \mathbf{e} = [\mathbf{e}_{1}^{T} \ \mathbf{e}_{2}^{T} \ \mathbf{e}_{3}^{T} \ \mathbf{e}_{4}^{T}]^{T} \in \mathbb{R}^{12} \\ \dot{V}_{4} &= -W_{4}(\mathbf{e}) + \mathbf{e}_{4}^{T} \left(\mathbf{h}(\mathbf{e}, T, \dot{T}, R, \boldsymbol{\omega}, \mathbf{p}_{d}^{(4)}) + R\boldsymbol{M}(T)\mathbf{\bar{u}} + \frac{1}{k_{1}^{2}k_{2}}\mathbf{\hat{b}}\right) \\ &+ \frac{1}{k_{1}^{2}k_{2}}\mathbf{e}_{3}^{T}\mathbf{\hat{b}} + \frac{1}{k_{1}}\mathbf{\tilde{b}}^{T} \left(-\Gamma^{-1}\mathbf{\hat{b}} + (\mathbf{e}_{2} + \mathbf{e}_{3} + \mathbf{e}_{4})\right) \end{split}$$

Problem statement Controller design

Controller design – Closing the loop

Feedback laws

- Estimator update law: $\widehat{\mathbf{b}} = \Gamma(\mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4)$
- Control law: $\bar{\mathbf{u}} = -M(T)^{-1}R^T \left(\mathbf{h}(.) + \frac{1}{k_1^2 k_2} \hat{\mathbf{b}} \right)$
- Combines torque actuation $[\tau_1 \ \tau_2]$ with the 2nd order derivative of the thrust \ddot{T}
- τ_3 plays no part in providing trajectory tracking

Closed-loop system

$$\dot{\mathbf{e}} = -K_b \mathbf{e} + [0 \ I_3 \ I_3 \ I_3]^T \frac{1}{k_1} \tilde{\mathbf{b}}$$
$$\dot{\tilde{\mathbf{b}}} = -\Gamma[0 \ I_3 \ I_3 \ I_3] \mathbf{e}$$

Problem statement Controller design

Controller design – Closing the loop

Feedback laws

- Estimator update law: $\hat{\mathbf{b}} = \Gamma(\mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4)$
- Control law: $\bar{\mathbf{u}} = -M(T)^{-1}R^T \left(\mathbf{h}(.) + \frac{1}{k_1^2 k_2} \hat{\mathbf{b}} \right)$
- Combines torque actuation $[\tau_1 \ \tau_2]$ with the 2nd order derivative of the thrust \ddot{T}
- τ_3 plays no part in providing trajectory tracking

Closed-loop system $\dot{\mathbf{e}} = -K_b \mathbf{e} + [0 \ I_3 \ I_3 \ I_3]^T \frac{1}{k_1} \widetilde{\mathbf{b}}$ $\dot{\widetilde{\mathbf{b}}} = -\Gamma[0 \ I_3 \ I_3 \ I_3] \mathbf{e}$

Problem statement Controller design

Controller design – Closing the loop

Feedback laws

- Estimator update law: $\hat{\mathbf{b}} = \Gamma(\mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4)$
- Control law: $\bar{\mathbf{u}} = -M(T)^{-1}R^T \left(\mathbf{h}(.) + \frac{1}{k_1^2 k_2} \hat{\mathbf{b}} \right)$
- Combines torque actuation $[\tau_1 \ \tau_2]$ with the 2nd order derivative of the thrust \ddot{T}
- τ_3 plays no part in providing trajectory tracking

Closed-loop system

$$\dot{\mathbf{e}} = -K_b \mathbf{e} + [0 \ I_3 \ I_3 \ I_3]^T \frac{1}{k_1} \widetilde{\mathbf{b}}$$

 $\dot{\widetilde{\mathbf{b}}} = -\Gamma[0 \ I_3 \ I_3 \ I_3]\mathbf{e}$

Problem statement Controller design

Controller design – Stability analysis

Small position error ($\|\mathbf{e}_1\| < p_{\mathsf{max}}$)

Asymptotic stability of the error system origin is proven by Barbalat's Lemma

Large position error ($\|\mathbf{e}_1\| > p_{\mathsf{max}}$)

Using an auxiliar Lyapunov function

$$V_{\sigma} = \frac{1}{2} \sum_{i=2}^{4} \mathbf{e}_{i}^{T} \mathbf{e}_{i} + \frac{1}{2} \widetilde{\mathbf{b}}^{T} \Gamma^{-1} \widetilde{\mathbf{b}}$$

it can be proven that there is a time T such that for all t > T

$$\|\mathbf{e}_1(t)\| < p_{\mathsf{max}}.$$

Problem statement Controller design

Controller design – Stability analysis

Small position error ($\|\mathbf{e}_1\| < p_{\mathsf{max}}$)

Asymptotic stability of the error system origin is proven by Barbalat's Lemma

Large position error ($\|\mathbf{e}_1\| > p_{\max}$)

Using an auxiliar Lyapunov function

$$V_{\sigma} = \frac{1}{2} \sum_{i=2}^{4} \mathbf{e}_{i}^{T} \mathbf{e}_{i} + \frac{1}{2} \widetilde{\mathbf{b}}^{T} \Gamma^{-1} \widetilde{\mathbf{b}}$$

it can be proven that there is a time T such that for all t > T

$$\|\mathbf{e}_1(t)\| < p_{\max}.$$

Problem statement Controller design

Controller design – Exploring the extra DoF

Control law for trajectory tracking leaves $\tau_3 = \dot{\omega}_3$ free.

1st approach

Apply $\tau_3 = -k_3\omega_3$ to stabilize angular velocity ω_3 at zero.

2nd approach

Enforce zero sideslip angle $\Leftrightarrow v_y = [0 \ 1 \ 0] \mathbf{v} \to 0$

1 Consider $R_d = [\mathbf{r}_{1d} \ \mathbf{r}_{2d} \ \mathbf{r}_{3d}] \in SO(3)$ Thrust direction \mathbf{r}_{3d} already prescribed by trajectory tracking requirements.

2 Define
$$\mathbf{r}_{2d}$$
 so that $\mathbf{r}_2 \to \mathbf{r}_{2d} \Leftrightarrow \mathbf{r}_2^T \mathbf{r}_{2d} \to 1 \Rightarrow v_y \to 0$

・ロト ・ 理 ト ・ ヨ ト ・

Problem statement Controller design

Controller design – Exploring the extra DoF

2nd approach

3 Apply PD-like control law

$$\tau_3 = -l_2(\omega_3 - \omega_{3d} + l_1 \mathbf{r}_{2d}^T \mathbf{r}_1) + \dot{\omega}_{3d} - l_1 \frac{d}{dt} (\mathbf{r}_{2d}^T \mathbf{r}_1)$$

 $-l_2 l_1 \mathbf{r}_{2d}^T \mathbf{r}_1$ opposes growth in angular distance between \mathbf{r}_2 and \mathbf{r}_{2d}

イロト 不得 とくほ とくほ とうほ

Simulation results

- Track an eight-shaped trajectory $\mathbf{p}_d(t) = \begin{bmatrix} 5\cos(0.2t) - 5\\ 2.5\sin(0.4t)\\ -10 \end{bmatrix}$
- Saturation active for initial position
- Constant lateral wind disturbance of 4.76 N
- 5 % uncertainty in gravitational acceleration

イロト イポト イヨト イヨ

Simulation results

- Bounded velocity rapidly acquired
- Convergence to desired velocity when saturation is no longer active
- v_y converges to zero

- $\bullet \ \widehat{\mathbf{b}}$ converges to \mathbf{b}
- b_z captures uncertainty in g

・ 同 ・ ・ ヨ ・ ・

• b_x, b_y captures wind disturbance

Trajectory tracking control of a quadrotor

Simulation results

David Cabecinhas

Trajectory tracking control of a quadrotor

Conclusions

Trajectory tracking control of quadrotors

Solution for underactuated vehicles based on dynamic augmentation of the actuation

- Resorts to
 - Nonlinear systems theory
 - Lyapunov-based stability analysis
 - Adaptive backstepping techniques
- Properties
 - Asymptotic stability in the presence of constant force disturbances
 - Bounded influence of the position error in force and torque actuation

イロト 不得 とくほと くほう

Nonlinear trajectory tracking control based on adaptive backstepping

David Cabecinhas

Dynamic Stochastic Filtering, Prediction, and Smoothing Instituto Superior Técnico

July 7th, 2010

イロト 不得 とくほと くほう