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Abstract
In this paper we address the nonlinear and non-Gaussian filtering problem. It is typically
crucial to process data on-line as it arrives, both from the point of view of storage costs
as well as for rapid adaptation to changing signal characteristics. Hereafter, we review both
optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems,
with a focus on particle filters. Particle filters are sequential Monte Carlo methods based on
point mass (or “particle”) representations of probability densities, which can be applied to
any state-space model and which generalize the traditional Kalman filtering methods. Several
variants of the particle filter such as SIR are introduced within a generic framework of the
sequential importance sampling (SIS) algorithm. For the sake of completeness we present some
mathematical preliminaries and different implementations of particle filters. Moreover, related
theoretical and practical issues are addressed in detail, and we end this paper we some new
results using Malliavin calculus.

Keywords: Stochastic filtering, Bayesian filtering, Sequential Monte Carlo methods, Particle
Filters, Malliavin Calculus

Contents

1 Introduction 1

1.1 Initial proposal 1

1.2 Monte Carlo Methods and Monte Carlo Filtering 1

1.3 Outline of Paper 2

2 Mathematical Preliminaries and Problem
Formulation 2

2.1 Preliminaries 2

2.2 Notations 2

2.3 Stochastic Filtering Problem 2

2.4 Stochastic Differential Equations and Filtering 3

3 Bayesian Statistics and Bayesian Estimation 4

3.1 Bayesian Statistics 4

3.2 Recursive Bayesian Estimation 4

4 Bayesian Optimal Filtering 5

4.1 Optimal Filtering 5

4.2 Kalman Filter 5

4.3 Optimum Nonlinear Filtering 5

5 Numerical Approximation Methods 5

? Support for this research was provided by the Fundação para
a Ciência e a Tecnologia (Portuguese Foundation for Science and
Technology) through the Carnegie Mellon Portugal Program under
Grant SFRH / BD / 33779 / 2009

5.1 Multigrid Method and Point-Mass Approximation 5

5.2 Monte Carlo Sampling Approximation 6

6 Sequential Monte Carlo Estimation: Particle Filters 9

6.1 Sequential Importance Sampling (SIS) Filter 10

6.2 Bootstrap/SIR filter 10

7 Theoretical and Practical Issues 11

7.1 Choices of Proposal Distribution 11

7.2 Convergence and Asymptotic Results 11

7.3 Bias-Variance 12

7.4 Robustness 13

7.5 Evaluation and Implementation 13

8 Other Forms of Bayesian Filtering: Malliavin
Estimator 13

8.1 Extended Abstract 13

9 Simulation Results 14

9.1 Discussion of results 15

10 Conclusions and Further Research 15



1. INTRODUCTION

This paper is the final report to the course of Detection,
Estimation and Filtering.

1.1 Initial proposal

New tools and Techniques in Particle Filters

�Optimal estimation problems for non-linear non-Gaussian
state-space models do not typically admit analytic solu-
tions. Since their introduction in 1993, particle filtering
methods have become a very popular class of algorithms
to solve these estimation problems numerically in an online
manner, i.e recursively as observations become available,
and are now routinely used in fields as diverse as computer
vision, econometrics, robotics and navigation. The objec-
tive of this tutorial is to provide a complete, up-to-date
survey of this field as of 2008. Basic and advanced particle
methods for filtering as well as smoothing are presented.�

In order to better understand the motivation behind the
choice of the topic, here is some of the motivation intro-
ductory text

1.2 Monte Carlo Methods and Monte Carlo Filtering

In recent decades, Monte Carlo techniques have been re-
discovered independently in statistics, physics, and engi-
neering. Roughly speaking, Monte Carlo technique is a
kind of stochastic sampling approach aiming to tackle the
complex systems which are analytically intractable. The
power of Monte Carlo methods is that they can attack
the difficult numerical integration problems. One of the
attractive merits of sequential Monte Carlo approaches
lies in the fact that they allow on-line estimation by
combining the powerful Monte Carlo sampling methods
with Bayesian inference, at an expense of reasonable com-
putational cost. In particular, the sequential Monte Carlo
approach has been used in parameter estimation and state
estimation, for the latter of which it is sometimes called
particle filter. The basic idea of particle filter is to use a
number of independent random variables called particles,
sampled directly from the state space, to represent the pos-
terior probability, and update the posterior by involving
the new observations; the “particle system” is properly
located, weighted, and propagated recursively according
to the Bayesian rule. In retrospect, the earliest idea of
Monte Carlo method used in statistical inference but the
formal establishment of particle filter seems fair to be due
to Gordon, Salmond and Smith [Gordon et al. (1993)],
who introduced certain novel resampling technique to the
formulation. Almost in the meantime, a number of statis-
ticians also independently rediscovered and developed the
sampling-importance-resampling (SIR). The rediscovery
and renaissance of particle filters in the mid-1990s after
a long dominant period, partially thanks to the ever in-
creasing computing power. Recently, a lot of work has been
done to improve the performance of particle filters. Some
potential future directions, will be considering combining
these methods with Monte Carlo sampling techniques, as
we will discuss later in the paper. The attention of this
paper, however, is still on the Monte Carlo methods and
particularly sequential Monte Carlo estimation.

1.3 Outline of Paper

In the section 2 we introduce some elementary mathemat-
ical background do cope with future concepts. In section
3 we tackle some of the basic concepts and we do the
problem formulation in section 4 as well as the theoretical
solution. In order to be able implement a solution we
need to introduce some appropriate numerical scheme, for
that we address the different possibilities in the section 5
where we give special focus to Monte Carlo methods and
how to reduce the variance. Gathering everything referred
previously we end up with the main topic of this paper, the
particle filters, explored in section 6. For the sake of com-
pleteness we also present some of the theorectical results
and issues and how to cope with some in section 7. Finally,
we show some brief introduction in section 8 to extend
the results using Malliavin calculus, that will originate a
paper to be submitted to American Control Conference
2011. At last, we present some of the preliminary results
in section 9 and conclude with conclusions and further
research directions in section 10.

2. MATHEMATICAL PRELIMINARIES AND
PROBLEM FORMULATION

2.1 Preliminaries

Definition 1. Let S be a set and F be a family of subsets
of S. F is a σ−algebra if

(1) ∈ F ;
(2) A ∈ F implies Ac ∈ F ;
(3) A1, A2, ... ∈ F implies

⋃∞
i=1Ai ∈ F .

This means that a σ−algebra is closed under the comple-
ment and union of countably infinitely many sets. �
Definition 2. A probability space is defined by the ele-
ments {Ω,F , P} where F is a σ−algebra of Ω and P is
a complete, σ−additive probability measure of all F . In
other words, P is a set function whose arguments are ran-
dom events (element of F) such that axioms of probability
hold. �
Definition 3. Let p(x) = dP (x)

dµ denote Radon-Nikodym

density of probability distribution P (x) w.r.t. a measure µ.
When x ∈ X is discrete and µ is a counting measure µ, p(x)
is a probability mass function (pmf); when x is continuous
and µ is a Lebesgue measure, p(x) is a probability density
function (p.d.f.). �

Intuitively, the true distribution P (x) can be replaced by
empirical distribution given the simulated samples

P̂ (x) =
1

Np

Np∑
i=1

δ
(
x− x(i)

)
(1)

where δ(.) is a Radon-Nikodym density w.r.t. µ of the
point-mass distribution concentrated at the point x. When
x ∈ X is discrete, δ(x − x(i) is 1 for x = x(i) and 0
elsewhere. When x ∈ X is continuous, δ(x − x(i) is a
Dirac-delta function, δ(x − x(i) = 0 for all x 6= x(i), and∫
X
dP̂ (x) =

∫
X
p̂(x)dx = 1

2.2 Notations

• p.d.f. - probability density function



• pmf - probability mass function
• E[.] - expected value
• Var[.] - variance
• Cov[.] - covariance

...

2.3 Stochastic Filtering Problem

Before we run into the mathematical formulation of
stochastic filtering problem, it is necessary to clarify some
basic concepts[Jazwinski (1970)]:

• Filtering is an operation that involves the extraction
of information about a quantity of interest at time t
by using data measured up to and including t.

Now, let us consider the following generic stochastic filter-
ing problem in a dynamic state-space form

ẋt = f (t, xt, ut, wt) , (2)

yt = g (t, xt, ut, vt) , (3)

where equations (2) and (3) are called state equation
and measurement equation, respectively; xt represents the
state ector, yt is the measurement vector, ut represents
the system input vector (as driving force) in a controlled
environment: f : RNx 7→ RNx and g : RNx 7→ RNy

are two vector-valued functions, which are potentially
time-varying; wt and vt represent the process (dynamical)
noise and measurement noise respectively, with appropri-
ate dimensions. The above formulation is discussed in the
continuous-time domain, in practice however, we are more
concerned about the discrete-time filtering. In this context,
the following practical filtering problem is concerned:

xn+1 = f(xn, wn), (4)

yn = g(xn, vn), (5)

where wn and vn can be viewed as white noise random
sequences with unknown statistics in the discrete-time
domain. The state equation (4) characterizes the state
transition probability p(xn+1|xn), whereas the measure-
ment equation (5) describes the probability p(yn|xn) which
is further related to the measurement noise model.

The equations (4) and (5) reduce to the following special
case where a linear Gaussian dynamic system is consid-
ered:

xn+1 = Fn+1,nxn + wn,
yn = Gnxn + vn,

(6)

for which the analytic filtering solution is given by the
Kalman filter, in which the sufficient statistics of mean
and state-error correlation matrix are calculated and prop-
agated. In equations (6), Fn+1,n, Gn are called transition
matrix and measurement matrix, respectively.

Given the initial density p(x0), transition probability
p(xn+1|xn), and likelihood p(yn|xn), the objective of the
filtering is to estimate the optimal current state at time
n given the observations up to time n, which is in essence
the amount to estimating the posterior density p(xn|y0:n)
or p(x0:n|y0:n). Although the posterior density provides a

complete solution of the stochastic filtering problem still
remains intractable since the density is a function rather
than a finite-dimensional point estimate. We should also
keep in mind that most of physical system are not finite
dimensional, thus the infinite-dimensional system can only
be modeled approximately by a finite-dimensional filter, in
other words, the filter can only be suboptimal in this sense.
Nevertheless, in the context of nonlinear filtering, it is still
possible to formulate the exact finite-dimensional filtering
solution[Arulampalam et al. (2002)].

2.4 Stochastic Differential Equations and Filtering

In the following, we will formulate the continuous-time
stochastic filtering problem by Stochastic Differential
Equation (SDE) theory. Suppose {xt} is a Markov pro-
cess with an infinitesimal generator, rewriting state-space
equations (2)-(3) in the following form:

dxt = f(t, xt)dt+ σ(t, xt)dwt,
dyt = g(t, xt)dt+ dvt

(7)

where f(t, xt) is often called nonlinear drift and σ(t, xt)
called volatility or diffusion coefficient. Again, the noise
processes {wt, vt, t ≥ 0} are two Wiener processes. xt ∈
RNx , yt ∈ RNx . First, let’s look at the state equation (aka
diffusion equation). For all t ≥ 0, we define a backward
diffusion operator Lt as

Lt =

Nx∑
i=1

f it
∂

∂xi
+

1

2

Nx∑
i,j=1

aijt
∂2

∂xi∂xj

where aijt = σi (t, xt)σ
j (t, xt). Operator L corresponds

to an infinitesimal generator of the diffusion process
{xt, t ≥ 0}. The goal now is to deduce conditions under
which one can find a recursive and finite-dimensional (close
form) scheme to compute the conditional probability dis-
tribution p(xt|Yt), given the filtration Yt produced by the
observation process. Let’s define an innovations process

et = yt −
t∫

0

E [g(s, xs)|y0:n] ds

where E [g(s, xs)|Yt] is described as

ĝ (xt) = E [g(t, xt)|Yt] =

=

∞∫
−∞

g (xt) p (xt|Ys) dx.

For any test function φ ∈ RNx , the forward diffusion
operator L̃ is defined as

L̃tφ = −
Nx∑
i=1

f it
∂φ

∂xi
+

1

2

Nx∑
i,j=1

aijt
∂2φ

∂xi∂xj

which essentially is the Fokker-Planck operator. Given
initial condition p(x0) at t = 0 as boundary condition it
turns out that the p.d.f. of diffusion process satisfies the
Fokker-Planck-Kolmogorov equation (FPK; aka Komolgo-
rov forward equation)



∂p (xt)

∂t
= L̃tp (xt) .

By involving the innovation process and assuming E [vt] =
Σv,t, we have the following Kushner’s equation

dp (xt|Yt) = L̃tp (xt|Yt) dt+p (xt|Yt) etΣ−1
v,tdt, (t ≥ 0) (8)

which reduces to the FPK equation when there are no
observations or filtration Yt. Integrating (8), we have

p (xt|Yt) = p (x0)+

t∫
0

p (xs|Ys) ds+
t∫

0

L̃sp (xs|Ys) esΣ−1
v,sds.

(9)
Given the conditional p.d.f. (9), suppose we want to

calculate φ̂ (xt) = E [φ(xt)|Yt] for any nonlinear function
φ ∈ RNx . By interchanging the order of integrations, we
have

φ̂ (xt) =

∞∫
−∞

φ (x) p (xt|Yt) dx

=

∞∫
−∞

φ (x) p (x0) dx

+

t∫
0

∞∫
−∞

φ (x) L̃sp (xs|Ys) dxds

+

t∫
0

∞∫
−∞

φ (x) p (xs|Ys) esΣ−1
v,sdxds =

= E [φ (x0)] +

t∫
0

∞∫
−∞

p (xs|Ys)Lsφ (x) dxds

+

t∫
0

 ∞∫
−∞

φ (x) g (s, x) p (xs|Ys) dx

−ĝ (xs)

∞∫
−∞

φ (x) p (xs|Ys) dx

Σ−1
v,sds.

The Kushner equation lends itself a recursive form of
filtering solution, but the conditional mean requests all
of higher-order conditional moments and thus leads to
an infinite-dimensional system. On the other hand, under
some mild conditions, the unnormalized conditional den-
sity of xt given Ys, denoted as π(xt|Yt), is the unique solu-
tion of the following stochastic partial differential equation
(PDE) the so-called Zakai equation

dπ (xt|Yt) = L̃π (xt|Yt) dt+ g (t, xt)π (xt|Yt) dyt

with the same L̃ defined before. Zakai equation and
Kushner equation have a one-to-one correspondence, but
Zakai equation is much simpler, hence we are usually
turned to solve the Zakai equation instead of Kushner
equation.In the early history of nonlinear filtering, the
common way is to discretize the Zakai equation to seek
the numerical solution.

3. BAYESIAN STATISTICS AND BAYESIAN
ESTIMATION

3.1 Bayesian Statistics

Bayesian theory is a branch of mathematical probability
theory that allows people to model the uncertainty about
the world and the outcomes of interest by incorporat-
ing prior knowledge and observational evidence. Bayesian
analysis, interpreting the probability as a conditional mea-
sure of uncertainty, is one of the popular methods to
solve the inverse problems. Before running into Bayesian
inference and Bayesian estimation, we first introduce some
fundamental Bayesian statistics.

Definition 4. (Bayesian Sufficient Statistics). Let p(x,Y)
denote the probability density of x conditioned on mea-
surements Y. A statistics, Ψ (x), is said to be sufficient if
the distribution of x conditionally on Ψ does not depend
on Y. In other words, p (x,Y) = p (x,Y ′) for any two sets
Y and Y ′ s.t. Ψ (Y) = Ψ (Y ′). �

The sufficient statistics Ψ(x) contains all of information
brought by x about Y. Sufficiency principle and likelihood
principle are two axiomatic principles in the Bayesian in-
ference. Among different intractable problems in Bayesian
inference, we are concerned with the following one:

• Expectation: Given the conditional p.d.f., some aver-
aged statistics of interest can be calculated

Ep(x|y) [f (x)] =

∫
X

f (x) p (x|y) dx

In Bayesian inference, all of uncertainties (including states,
parameters which are either time-varying or fixed but
unknown priors) are treated as random variables. The
inference is performed within the Bayesian framework
given all of available information. And the objective of
Bayesian inference is to use priors and causal knowledge,
quantitatively and qualitatively, to infer the conditional
probability, given finite observations.

3.2 Recursive Bayesian Estimation

In the following, we present a detailed derivation of recur-
sive Bayesian estimation, which underlies the principle of
sequential Bayesian filtering. Two assumptions are used to
derive the recursive Bayesian filter:

(1) The states follow a first-order Markov process

p(xn|x0:n−1) = p(xn|xn−1).

(2) the observations are independent of the given states.

For notation simplicity, we denote Yn as a set of ob-
servations y0:n := {y0, ..., yn}; let p(xn|Yn) denote the
conditional p.d.f. of xn. From Bayes rule we have



p (xn|Yn) =
p (Yn|xn) p (xn)

p (Yn)

=
p (yn,Yn−1|xn) p (xn)

p (yn,Yn−1)

=
p (yn|Yn−1, xn) p (Yn−1|xn) p (xn)

p (yn|Yn−1) p (Yn−1)

=
p (yn|Yn−1, xn) p (xn|Yn−1) p (Yn−1) p (xn)

p (yn|Yn−1) p (Yn−1) p (xn)

=
p (yn|Yn−1, xn) p (xn|Yn−1)

p (yn|Yn−1)

(10)

As shown in (10), the posterior density p(xn|Yn) is de-
scribed by three terms:

• Prior: The prior p(xn|Yn−1) defines the knowledge
of the model

p (xn|Yn−1) =

∫
p (xn|xn−1) p (xn−1|Yn−1) dxn−1

where p(xn|xn−1) is the transition density of the
state.
• Likelihood: the likelihood p(yn|xn) essentially deter-

mines the measurement noise model in the measure-
ment equation.

• Evidence: The denominator involves an integral

p (yn|Yn−1) =

∫
p (yn|xn) p (xn|Yn−1) dxn

Calculation or approximation of these three terms are the
essences of the Bayesian filtering.

4. BAYESIAN OPTIMAL FILTERING

Bayesian filtering is aimed to apply the Bayesian statistics
and Bayes rule to probabilistic inference problems, and
specifically the stochastic filtering problem. In the past few
decades, numerous authors have investigated the Bayesian
filtering in a dynamic state space framework [Arnaud et al.
(2008)].

4.1 Optimal Filtering

An optimal filter is said “optimal” only in some specific
sense, in other other words, one should define a criterion
which measures the optimality. In the sequel, the criterium
that we are interested for measuring the optimality is:

• Minimum mean-squared error (MMSE): It can
be defined in terms of prediction or filtering error (or
equivalently the trace of state-error covariance)

E
[
‖xn − x̂n‖2 |y0:n

]
=

∫
‖xn − x̂n‖2p (xn|y0:n) dxn

which is aimed to find the conditional mean x̂n =
E [xn|y0:n] =

∫
xnp (xn|y0:n) dxn.

As a remark MMSE method require the estimation of
the posterior distribution (density), i.e. full knowledge
of the prior, likelihood and evidence. The criterion of
optimality used for Bayesian filtering is the Bayes risk
of MMSE. Bayesian filtering is optimal in a sense that
it seeks the posterior distribution which integrates and
uses all of available information expressed by probabilities
(assuming they are quantitatively correct). However, as
time proceeds, one needs infinite computing power and

unlimited memory to calculate the “optimal” solution,
except in some special cases (e.g. linear Gaussian or
conjugate family case). Hence in general, we can only seek
a suboptimal or locally optimal solution.

4.2 Kalman Filter

Kalman filter, or Kalman-Bucy filter , consists of an iter-
ative prediction-correction process. In the prediction step,
the time update is taken where the one-step ahead pre-
diction of observation is calculated; in the correction step,
the measurement update is taken where the correction to
the estimate of current state is calculated. In a stationary
situation, the matrices An, Bn, Cn, Dn in (4) and (5) are
constant, Kalman filter is precisely the Wiener filter for
stationary least-squares smoothing.

Kalman filter is also optimal in the sense that it is unbiased
E[x̂n] = E[xn] and is a minimum variance estimate.
Kalman filter has a very nice Bayesian interpretation
[Chen (2003)].

4.3 Optimum Nonlinear Filtering

In practice, the use of Kalman filter is limited by the ubiq-
uitous nonlinearity and non-Gaussianity of physical world.
Hence since the publication of Kalman filter, numerous
efforts have been devoted to the generic filtering problem,
mostly in the Kalman filtering framework.

In general, the nonlinear filtering problem per si consists
in finding the conditional probability distribution (or den-
sity) of the state given the observations up to current
time. Strictly speaking, the number of variables replacing
the density function is infinite, but not all of them are
of equal importance. Thus it is advisable to select the
important ones and reject the remainder. The solutions
of nonlinear filtering problem have two categories: global
method and local method. In the global approach, one
attempts to solve a PDE instead of an ODE in linear
case, e.g. Zakai equation, Kushner-Stratonovich equation,
which are mostly analytically intractable. Hence the nu-
merical approximation techniques are needed to solve the
equation. In special scenarios (e.g. exponential family)
with some assumptions, the nonlinear filtering can admit
the tractable solutions. In the local approach, finite sum
approximation (e.g. Gaussian sum filter) or linearization
techniques (i.e. EKF) are usually used. In the EKF, by
defining

F̂n+1,n =
df(x)

dx

∣∣∣∣
x=x̂n

, Ĝn =
dg(x)

dx

∣∣∣∣
x=x̂n|n−1

,

the equations (2)-(3) can be linearized into (4)-(5), and
the conventional Kalman filtering technique is further em-
ployed. Because EKF always approximates the posterior
p(xn|y0:n) as a Gaussian, it works well for some types
of nonlinear problems, but it may provide a poor per-
formance in some cases when the true posterior is non-
Gaussian (e.g. heavily skewed or multimodal). Gelb [Gelb
(1974)] provided an early overview of the uses of EKF. It
is noted that the estimate given by EKF is usually biased
since in general E[f(x)] 6= f(E[x]).

In summary, a number of methods have been developed
for nonlinear filtering problems:



• Linearization methods: first-order Taylor series ex-
pansion (i.e. EKF), and higher-order filter.
• Numerical approximation methods, as to be discussed

hereafter.

Among many other that can easily found in the litera-
ture[Chen (2003)].

5. NUMERICAL APPROXIMATION METHODS

5.1 Multigrid Method and Point-Mass Approximation

If the state is discrete and finite (or it can be discretized
and approximated as finite), grid-based methods can pro-
vide a good solution and optimal way to update the filtered
density p(zn|y0:n) (To discriminate from the continuous
valued state x, we denote the discrete-valued state as z
from now on). Suppose the discrete state z ∈ N consists of
a finite number of distinct discrete states {1, 2, ..., Nz}. For
the state space zn−1, let win−1|n−1 denote the conditional

probability of each zin−1 given measurement up to n − 1,

i.e. p(zn−1 = zi|y0:n−1) = win−1|n−1. Then the posterior

p.d.f. at n− 1 can be represented as

p (zn−1|y0:n−1) =

Nz∑
i=1

win|n−1δ
(
zn − zin

)
,

p (zn|y0:n) =

Nz∑
i=1

win|nδ
(
zn − zin

)
,

where

win|n−1 =

Nz∑
j=1

wjn−1|n−1p
(
zin|z

j
n−1

)
win|n =

win|n−1p
(
yn|zin

)
Nz∑
j=1

wjn|n−1p
(
yn|z

j
n

)
If the state space is continuous, the approximate-grid
based method can be similarly derived. Namely, we can al-
ways discretized the state space into Nz discrete cell states,
then a grid-based method can be further used to approx-
imate the posterior density. The grid must be sufficient
dense to obtain a good approximation, especially when
the dimensionality of Nx is high, however the increase of
Nz will increase the computational burden dramatically.
If the state space is not finite, then the accuracy of grid-
based method is not guaranteed.The disadvantage of grid-
based method is that it requires the state space cannot be
partitioned unevenly to give a great resolution to the state
with high density. For further details the reader is referred
to [Arulampalam et al. (2002)].

5.2 Monte Carlo Sampling Approximation

Monte Carlo methods use statistical sampling and estima-
tion techniques to evaluate the solutions to mathematical
problems. Only Monte Carlo sampling methods are dis-
cussed hereafter. A detailed background of Monte Carlo
methods can refer to the book [Arnaud Doucet and Gor-
don (2001)] and survey papers [Arnaud et al. (2008)and

Arulampalam et al. (2002)]. The underlying mathematical
concept of Monte Carlo approximation is simple. Consider
a statistical problem estimating a Lebesque-Stieltjes inte-
gral: ∫

X

f (x) dP (x),

where f(x) is an integrable function in a measurable space.
As a brute force technique, Monte Carlo sampling uses
a number of (independent) random variables in a prob-
ability space (Ω,F , P ) to approximate the true integral.
Provided one draws a sequence of Np i.i.d. random samples

{x(1), ..., x(Np)} from probability distribution P (x), then
the Monte Carlo estimate of f(x) is given by

f̂Np =
1

Np

Np∑
i=1

f
(
x(i)
)

for which E
[
f̂Np

]
= E [f ] and V ar

[
f̂Np

]
= 1

Np
V ar [f ] =

σ2

Np
. By the Kolmogorov Strong Law of Large Numbers

(under some mild regularity conditions), f̂Np(x) converges
to E[f(x)] almost surely (a.s.) and its convergence rate is
assessed by the Central Limit Theorem√

Np

(
f̂Np − E [f ]

)
∼ N

(
0, σ2

)
where σ2 is the variance of f(x). Namely, the error rate is

of order O(N
−1/2
p ), which is slower than the order O(N−1

p
for deterministic quadrature in one-dimensional case. One
crucial property of Monte Carlo approximation is the
estimation accuracy is independent of the dimensionality
of the state space, as opposed to most deterministic
numerical methods. The variance of estimate is inversely
proportional to the number of samples. There are two
fundamental problems arising in Monte Carlo sampling
methods:

(1) How to draw random samples {x(i)} from a probabil-
ity distribution P (x)?;

(2) How to estimate the expectation of a function w.r.t.
the distribution or density, i.e. E[f(x)] = f(x)dP (x)?

The first problem is a design problem, and the second
one is an inference problem invoking integration. Besides,
several central issues are concerned in the Monte Carlo
sampling:

• Consistency: An estimator is consistent if the esti-
mator converges to the true value almost surely as
the number of observations approaches infinity.

• Unbiasedness: An estimator is unbiased if its ex-
pected value is equal to the true value.

• Efficiency: An estimator is efficient if it produces
the smallest error covariance matrix among all unbi-
ased estimators, it is also regarded optimally using
the information in the measurements. A well-known
efficiency criterion is the Cramér-Rao bound.

• Robustness: An estimator is robust if it is insensi-
tive to the gross measurement errors and the uncer-
tainties of the model.

• Minimal variance: Variance reduction is the central
issue of various Monte Carlo approximation methods,



most improvement techniques are variance-reduction
oriented.

In the rest of this subsection, we will provide a brief intro-
duction of many popular Monte Carlo method relevant to
our paper. No attempt is made here to present a complete
and rigorous theory. For more theoretical details or appli-
cations, reader is referred to the book [Arnaud Doucet and
Gordon (2001)].

Importance Sampling The objective of importance sam-
pling is aimed to sample the distribution in the region of
“importance” in order to achieve computational efficiency.
This is important especially for the high-dimensional space
where the data are usually sparse, and the region of inter-
est where the target lies in is relatively small in the whole
data space. The idea of importance sampling is to choose a
proposal distribution q(x) in place of the true probability
distribution p(x), which is hard-to-sample. The support
of q(x) is assumed to cover that of p(x). Rewriting the
integration problem as

∫
f(x)p(x)dx =

∫
f(x)

p(x)

q(x)
q(x)dx. (11)

Monte Carlo importance sampling is to use a number of
(say Np) independent samples drawn from q(x) to obtain
a weighted sum to approximate (11):

f̂ =
1

Np

Np∑
i=1

W
(
x(i)
)
f
(
x(i)
)

where W
(
x(i)
)

=
p(x(i))
q(x(i))

are called the importance weights

(or importance ratios). If the normalizing factor of p(x) is
not known, the importance weights can be only evaluated

up to a normalizing constant, hence W
(
x(i)
)
∝ p(x(i))

q(x(i))
. To

ensure that
Np∑
i=1

W
(
x(i)
)

= 1, we normalize the importance

weights to obtain

f̂ =

1
Np

Np∑
i=1

W
(
x(i)
)
f
(
x(i)
)

1
Np

Np∑
i=1

W
(
x(i)
) =

1

Np

Np∑
i=1

W̃
(
x(i)
)
f
(
x(i)
)

where W̃
(
x(i)
)

=
W(x(i))

Np∑
j=1

W(x(j))

are called the normalized im-

portance weights. The variance of the importance sampler
estimate (11) is given by

V arq

[
f̂
]

=
1

Np
V arq [f(x)W (x)]

=
1

Np
V arq [f(x)p(x)/q(x)]

=
1

Np

∫ (
f(x)p(x)

q(x)
− Ep [f (x)]

)2

q(x)dx

=
1

Np

∫ ((
f(x)p(x)

q(x)

)2

− 2p(x)f (x)Ep [f (x)]

)
dx

+
(Ep [f (x)])

2

Np

=
1

Np

∫ (
f(x)p(x)

q(x)

)2

dx+
(Ep [f (x)])

2

Np

The variance can be reduced when an appropriate q(x) is
chosen to

• match the shape of p(x) so as to approximate the true
variance;

• match the shape of |f(x)|p(x) so as to further reduce
the true variance.

Importance sampling estimate given by f̂ is biased (thus
a.k.a. biased sampling) but consistent, namely the bias
vanishes rapidly at a rate O(Np). Provided q is appropri-
ately chosen, as Np → ∞, from the Weak Law of Large
Numbers, we know

f̂ → Eq [W (x) f (x)]

Eq [W (x)]

It was also shown that if E
[
W̃ (x)

]
<∞ and

E
[
W̃ (x) f2 (x)

]
<∞,

then f̂ → Ep [f ] a.s. and the Lindeberg-Levy Central Limit
Theorem still holds

√
Np

(
f̂ − Ep [f ]

)
∼ N (0,Σf )

where

Σf = V arq

[
W̃ (x)

(
f (x)−

(
f̂ − Ep [f (x)]

))]
.

Remarks:

• Importance sampling is useful in two ways: (i) it
provides an elegant way to reduce the variance of the
estimator (possibly even less than the true variance);
and (ii) it can be used when encountering the diffi-
culty to sample from the true probability distribution
directly.
• As shown in many empirical experiments, importance

sampler (proposal distribution) should have a heavy
tail so as to be insensitive to the outliers. The super-
Gaussian distributions usually have long tails, with
kurtosis bigger than 3.
• Although theoretically the bias of importance sam-

pler vanishes at a rate O(Np), the accuracy of es-
timate is not guaranteed even with a large Np. If
q(·) is not close to p(·), it can be imagined that the
weights are very uneven, thus many samples are al-
most useless because of their negligible contributions.
In a highdimensional space, the importance sampling



estimate is likely dominated by a few samples with
large importance weights.

For a nice/elementary introduction to this subject the
reader is referred to [Anderson (1999)].

Control Variates Suppose we want to approximate E [f ]
using a simple Monte Carlo average f̄ . If there is another
payoff g for which we know E [g], can use ḡ−E [g] to reduce
error in f̄ − E [f (X)]. This is achieved by defining a new
estimator

f̂ = f̄ − λ (ḡ − E [g]) ,

that is unbiased since

E
[
f̂
]

= E
[
f̄
]

= E [f ] .

On the other hand, for a single sample we have the
following variance

V ar [f − λ (ḡ − E [g])] = V ar [f ]−2λCov [f, g]+λ2V ar [g] ,

and for a average of N samples we end up with

V ar [f − λ (ḡ − E [g])] =
N−1

(
V ar [f ]− 2λCov [f, g] + λ2V ar [g]

)
.

(12)

To minimize this, the optimum value for λ is

λ =
Cov [f, g]

V ar [g]
. (13)

And the resulting variance is when we replace (13) in (12)
we have

N−1V ar [f ]

(
1− (Cov [f, g])

2

V ar [f ]V ar [g]

)
= N−1V ar [f ]

(
1− ρ2

)
Where ρ is the correlation between f and g. The challenge
is the choose a good g which is well correlated with f -
the covariance, and hence the optimal ρ, can be estimated
from the data.

Sequential Importance Sampling A good proposal distri-
bution is essential to the efficiency of importance sampling,
hence how to choose an appropriate proposal distribution
q(x) is the key to apply a successful importance sampling.
However, it is usually difficult to find a good proposal dis-
tribution especially in a high-dimensional space. A natural
way to alleviate this problem is to construct the proposal
distribution sequentially, which is the basic idea of se-
quential importance sampling (SIS) Arnaud Doucet and
Gordon (2001). In particular, if the proposal distribution
is chosen in a factorized form

q (x0:n|y0:n) = q (x0)

n∏
i=1

q (xt|x0:t−1, y0:t),

then the importance sampling can be performed recur-
sively. At this moment, we consider a simplified (uncondi-
tional p.d.f.) case for the ease of understanding. According
to the “telescope” law of probability, we have the following:

p (x0:n) = p (x0) p (x1|x0) ...p (xn|x0, ..., xn−1) ,
q (x0:n) = q (x0) q (x1|x0) ...q (xn|x0, ..., xn−1) .

Hence the importance weight W (x0:n) can be written as

W (x0:n) =
p (x0) p (x1|x0) ...p (xn|x0, ..., xn−1)

q (x0) q (x1|x0) ...q (xn|x0, ..., xn−1)

which can be recursively calculated as

Wn (x0:n) = Wn−1 (x0:n−1)
p (xn|x0:n−1)

qn (xn|x0:n−1)

Remarks:

• The advantage of SIS is that it doesn’t rely on the
underlying Markov chain. Instead, many i.i.d. repli-
cates are run to create an importance sampler, which
consequently improves the efficiency. The disadvan-
tage of SIS is that the importance weights may have
large variances, resulting in inaccurate estimate

• SIS method can be also used in a non-Bayesian
computation, such as evaluation of the likelihood
function in the missing-data problem

• It was shown in that the unconditional variance of
the importance weights increases over time, which
is the so-called weight degeneracy problem: Namely,
after a few iterations of algorithm, only few or one
of W (x(i)) will be nonzero. This is disadvantageous
since a lot of computing effort is wasted to update
those trivial weight coefficients. In order to cope with
this situation, resampling step is suggested to be used
after weight normalization.

Sampling-Importance Resampling The Sampling Impor-
tance Resampling (SIR) is motivated from the Bootstrap
and jackknife techniques. Bootstrap technique is referred
to a collection of computationally intensive methods that
are based on resampling from the observed data. The
intuition of bootstrapping is to evaluate the properties of
an estimator through the empirical cumulative distribu-
tion function (c.d.f.) of the samples instead of the true
c.d.f.. In the statistics literature, Rubin first applied SIR
technique to Monte Carlo inference, in which the resam-
pling is inserted between two importance sampling steps.
The resampling step is aimed to eliminate the samples
with small importance weights and duplicate the samples
with big weights. The generic principle of SIR proceeds as
follows:

• Draw Np random samples {x(i)}i=1
Np

from proposal

distribution q(x);
• Calculate importance weights W (i) ∝ p(x)/q(x) for

each sample x(i);
• Normalize the importance weights to obtain W̃ (i)

• Resample with replacement N times from the discrete
set {x(i)}i=1

Np
, where the probability of resampling

from each x(i) is proportional to W̃ (i)

Remarks (on features):

• Resampling usually (but not necessarily) occurs be-
tween two importance sampling steps. In resampling
step, the particles and associated importance weights
{x(i), W̃ (i)} are replaced by the new samples with

equal importance weights (i.e. W̃ (i) = 1/Np). Re-
sampling can be taken at every step or only taken
if regarded necessary.

• Resampling step plays an critical role in importance
sampling since (i) if importance weights are un-
even distributed, propagating the “trivial” weights
through the dynamic system is a waste of comput-



ing power; (ii) when the importance weights are
skewed, resampling can provide chances for selecting
important samples and rejuvenate the sampler for
the future use, though resampling doesn’t necessarily
improve the current state estimate because it also
introduces extra Monte Carlo variation.
• Resampling schedule can be deterministic or dy-

namic. In deterministic framework, resampling is
taken at every k time step (usually k = 1). In a dy-
namic schedule, a sequence of thresholds (that can be
constant or time-varying) are set up and the variance
of the importance weights are monitored; resampling
is taken only when the variance is over the threshold.

The validity of inserting a resampling step in SIS algo-
rithm has been justified, since resampling step also brings
extra variation, some special schemes are needed. There
are many types of resampling methods available in the
literature:

(1) Multinomial resampling: the procedure reads as fol-
lows
• Produce a uniform distribution u ∼ U(0, 1), con-

struct a c.d.f. for importance weights, calculate

si =
∑i
j=1 W̃

(j)

• Find si s.t. si−1 ≤ u < si, the particle with index
i is chosen;

• Given {x(i), W̃ (i)}, for j = 1, ..., Np, generate new

samples x(j) by duplicationg x(i) according to the
associated W̃ (i);

• Reset W (i) = 1/Np.
Multinomial resampling uniformly generates Np

new independent particles from the old particle set.
Each particle is replicated Ni times (Ni can be zero),
namely each x(i) produces Ni children. Note that

here
∑Np

i=1Ni = Np, E [Ni] = NpW̃
(i), V ar[Ni] =

NpW̃
(i)(1− W̃ (i)).

(2) Residual resampling: suggests a partially determinis-
tic resampling method. The two-step selection proce-
dure is as follows:

• For each i = 1, ..., Np retain ki =
⌊
NpW̃

(i)
⌋

copies of x
(i)
n ;

• Let Nr = Np − k1 − ... − KNp
, obtain Nr i.i.d.

draws from {x(i)
n } with probabilities proportional

to NpW̃
(i) − ki (i = 1, ..., Np)

• Reset W (i) = 1/Np.
Residual resampling procedure is computationally
cheaper than the conventional SIR and achieves a
lower sampler variance, and it doesn’t introduce ad-
ditional bias. Every particle in residual resampling is
replicated.

(3) Systematic resampling (or Minimum variance sam-
pling)the procedure proceeds as follows:
u ∼ U (0, 1) /Np; j = 1; l = 0; i = 0;

do while u < 1
if l > u then
u = u+ 1/Np; output x(i)

else
pick k in {j, ..., Np} i = x(k), l = l +W (i)

switch (x(k),W (k)) with (x(j),W (j))
j = j + 1
end if
end do

The systematic resampling treats the weights as
continuous random variables in the interval (0, 1),
which are randomly ordered. The number of grid
points {u+ k/Np} in each interval is counted. Every
particle is replicated and the new particle set is
chosen to minimize V ar[Ni] = E[(Ni−E[Ni])

2]. The
complexity of systematic resampling is O(Np).

Remarks (on weakness):

• SIR only achieves approximate draws from the pos-
terior as Np →∞.

• Although resampling can alleviate the weight de-
generacy problem, it unfortunately introduces other
problems: after one resampling step, the simulated
trajectories are not statistically independent any
more, thus the convergence result due to the original
central limit theorem is invalid; resampling causes
the samples that have high importance weights to be
statistically selected many times, thus the algorithm
suffers from the loss of diversity.

• Resampling step also limits the opportunity to par-
allelize since all of the particles need to be combined
for selection.

6. SEQUENTIAL MONTE CARLO ESTIMATION:
PARTICLE FILTERS

With the background knowledge of stochastic filtering,
Bayesian statistics, and Monte Carlo techniques, we are
now in a good position to discuss the theory and paradigms
of particle filters. In this section, we focus the attention
on the sequential Monte Carlo approach for sequential
state estimation. Sequential Monte Carlo technique is a
kind of recursive Bayesian filter based on Monte Carlo
simulation, it is also called bootstrap filter. The working
mechanism of particle filters is following: The state space
is partitioned as many parts, in which the particles are
filled according to some probability measure. The higher
probability, the denser the particles are concentrated. The
particle system evolves along the time according to the
state equation, with evolving p.d.f. determined by the
FPK equation. Since the p.d.f. can be approximated by
the point-mass histogram, by random sampling of the
state space, we get a number of particles representing the
evolving p.d.f.. However, since the posterior density model
is unknown or hard to sample, we would rather choose
another distribution for the sake of efficient sampling. To
avoid intractable integration in the Bayesian statistics the
posterior distribution or density is empirically represented
by a weighted sum of Np samples drawn from the posterior
distribution

p (xn|Yn) ≈ 1

Np

Np∑
n=1

δ
(
xn − x(i)

n

)
≡ p̂ (xn|Yn)

where x(i) are assumed to be i.i.d. drawn from p (xn|Yn).
When Np is sufficiently large, p̂ (xn|Yn) approximates the



true posterior p (xn|Yn). By this approximation, we can
estimate the mean of a nonlinear function

E [f (xn)] ≈
∫
f (xn)p̂ (xn|Yn) dxn

=
1

Np

Np∑
n=1

∫
f (xn) δ

(
xn − x(i)

n

)
dxn

=
1

Np

Np∑
n=1

f
(
x(i)
n

)
≡ f̂Np

(x) .

Since it is usually impossible to sample from the true pos-
terior, it is common to sample from an easy-to-implement
distribution, the so called proposal distribution denoted
by q (xn|Yn), hence

E [f (xn)] =

∫
f (xn)

p (xn|Yn)

q (xn|Yn)
q (xn|Yn) dxn

=

∫
f (xn)

W (xn)

p (Yn)
q (xn|Yn) dxn

=
1

p (Yn)

∫
f (xn)Wn (xn) q (xn|Yn) dxn

(14)

where

Wn (xn) =
p (Yn|xn) p (xn)

q (xn|Yn)
.

Finally (14) can be rewritten as

E [f (xn)] =

∫
f (xn)Wn (xn) q (xn|Yn) dxn∫

Wn (xn) q (xn|Yn) dxn

=
Eq(xn|Yn) [Wn (xn) f (xn)]

Eq(xn|Yn) [Wn (xn)]
.

(15)

By drawing the i.i.d. samples {x(i)
n } from q (xn|Yn), we can

approximate (15) by

E [f (xn)] ≈

1
Np

Np∑
i=1

Wn

(
x

(i)
n

)
f
(
x

(i)
n

)
1
Np

Np∑
i=1

Wn

(
x

(i)
n

)
=

Np∑
i=1

W̃n

(
x(i)
n

)
f
(
x(i)
n

)
= f̂ (x) ,

where

W̃n

(
x(i)
n

)
=

Wn

(
x

(i)
n

)
Np∑
j=1

Wn

(
x

(j)
n

) .
Suppose the proposal distribution has the following fac-
torized form

q (x0:n|y0:n) = q (xn|x0:n−1, y0:n) q (x0:n−1|y0:n−1)

= q (x0)

n∏
t=1

q (xt|x0:t−1, y0:t).

The posterior p (x0:n|y0:n) can be factorized as

p (x0:n|y0:n) = p (x0:n−1|y0:n−1)
p (yn|xn) p (xn|xn−1)

p (yn|y0:n−1)
.

Thus the importance weights W
(i)
n can be updated recur-

sively

W (i)
n =

p
(
x

(i)
0:n|y0:n

)
q
(
x

(i)
0:n|y0:n

)
∝
p
(
yn|x

(i)
n

)
p
(
x

(i)
n |x(i)

n−1

)
p
(
x

(i)
0:n−1|y0:n−1

)
q
(
x

(i)
n |x(i)

0:n−1, y0:n

)
q
(
x

(i)
0:n−1|, y0:n−1

)
= W

(i)
n−1

p
(
yn|x

(i)
n

)
p
(
x

(i)
n |x(i)

n−1

)
q
(
x

(i)
n |x(i)

0:n−1, y0:n

) .

(16)

6.1 Sequential Importance Sampling (SIS) Filter

In practice, we are more interested in the current fil-
tered estimate p(xn|y0:n) instead of p(x0:n|y0:n). Pro-

vided q(x
(i)
n |x(i)

0:n−1, y0:n) is assumed to be equivalent to

q(x
(i)
n |x(i)

0:n−1, yn), (16) can be simplified as

W (i)
n = W

(i)
n−1

p
(
yn|x

(i)
n

)
p
(
x

(i)
n |x(i)

n−1

)
q
(
x

(i)
n |x(i)

0:n−1, yn

) .

As discussed earlier, the problem of the SIS filter is that
the distribution of the importance weights become more
and more skewed as time increases. Hence, after some
iterations, only very few particles have non-zero impor-
tance weights. This phenomenon is often called weight
degenerancy or sample impoverishment. An intuitive so-
lution is to multiply the particles with high normalized
importance weights, and discard the particles with low
normalized importance weights, which can be be done in
the resampling step. To monitor how bad is the weight
degeneration, we need a measure. A suggested measure
for degeneracy, the so-called effective sample size, Neff ,
was introduced as

Neff =
Np

1 + V arq(.|y0:n)

[
W̃ (x0:n−1)

]
=

Np

Eq(.|y0:n)

[(
W̃ (x0:n−1)

)2
] ≤ Np

The second equality above follows from the facts that
V ar[ξ] = E[ξ2] − E[ξ]2 and Eq[W̃ ] = 1. In practice, the

true Neff is not available, thus its estimate, N̂eff , is
alternatively given:

N̂eff =
1

Np∑
i=1

(
W̃

(i)
n

)2

When N̂eff is below a predefined threshold NT (say Np/2
or Np/3), the resampling procedure is performed. The idea

is following: when the N̂eff < NT (where NT can be either
a predefined value or the median of the weights), then each

sample is accepted with probability min{1,W (i)
n /NT }; all

the accepted samples are given a new weight W
(j)
n =

max{NT ,W (i)
n }, and the rejected samples are restarted



and rechecked at the all previously violated thresholds. It
is obvious that this procedure is computational expensive
as n increases.

6.2 Bootstrap/SIR filter

The Bayesian bootstrap filter due to Gordon, Salmond
and Smith [Gordon et al. (1993)], is very close in spirit to
the sampling importance resampling (SIR) filter developed
independently in statistics by different researchers, with
a slight difference on the resampling scheme. Here we
treat them as the same class for discussion. The key
idea of SIR filter is to introduce the resampling step as
we have discussed. The resampling step is flexible and
varies from problems as well as the selection scheme and
schedule. It should be noted that resampling does not
really prevent the weight degeneracy problem, it just
saves further calculation time by discarding the particles
associated with insignificant weights. What it really does is
artificially concealing the impoverishment by replacing the
high important weights with many replicates of particles,
thereby introducing high correlation between particles. A
generic algorithm of Bayesian bootstrap/SIR filter using
transition prior density as proposal distribution, where the
resampling step is performed at each iteration using any
available resampling method discussed earlier.

Remarks

• Both SIS and SIR filters use importance sampling
scheme. The difference between them is that in SIR
filter, the resampling is always performed (usually be-
tween two importance sampling steps); whereas in SIS
filter, importance weights are calculated sequentially,
resampling is only taken whenever needed, thus SIS
filter is less computationally expensive.
• The choice of proposal distributions in SIS and SIR

filters plays an crucial role in their final performance
• Resampling step is suggested to be done after the fil-

tering, because resampling brings extra random vari-
ation to the current samples. Normally (eps.in off-line
processing), the posterior estimate (and its relevant
statistics) should be calculated before resampling.
• As suggested by some authors, in the resampling

stage, the new importance weights of the surviving
particles are not necessarily reset to 1/Np, but rather
abide certain procedures
• To alleviate the sample degeneracy in SIS filter, we

can change the weights update formula as

W (i)
n =

(
W

(i)
n−1

)α p(yn|x(i)
n

)
p
(
x

(i)
n |x(i)

n−1

)
q
(
x

(i)
n |x(i)

0:n−1, yn

)
where the scalar 0 < α < 1 plays a role as annealing
factor that controls the impact of previous impor-
tance weights.

7. THEORETICAL AND PRACTICAL ISSUES

7.1 Choices of Proposal Distribution

The potential criteria of choosing a good proposal distri-
bution should include:

• The support of proposal distribution should cover
that of posterior distribution, in other words, the
proposal should have a broader distribution

• The proposal distribution has a long-tailed behavior
to account for outliers.

• Ease of sampling implementation, preferably with
linear complexity

• Taking into account of transition prior and likelihood,
as well as most recent observation data.

• Achieving minimum variance.
• Being close (in shape) to the true posterior.

However, achieving either of these goals is not easy and
we don’t know what the posterior suppose to look like.
Theoretically, it was shown that the choice of proposal

distribution q
(
xn|x

(i)
0:n−1, y0:n

)
= p

(
xn|x

(i)
n−1, yn

)
min-

imizes the variance of importance weights W
(i)
n con-

ditional upon x
(i)
0:n−1 and y0:n. By this, the impor-

tance weights can be recursively calculated as W
(i)
n =

W
(i)
n−1p

(
yn|x

(i)
n

)
. However, this optimal proposal distri-

bution suffers from certain drawbacks: It requires sam-

pling from p
(
xn|x

(i)
n−1, yn

)
and evaluating the integral

p
(
yn|x

(i)
n−1

)
=
∫
p (yn|xn) p

(
xn|x

(i)
n−1

)
dxn. On the other

hand, it should be also pointed out that there is no uni-
versal choice for proposal distribution, which is usually
problem dependent. Choosing an appropriate proposal dis-
tribution requires a good understanding of the underlying
problem. In the following, we present some rules of thumb
available in the literature and discuss their features.

Prior Distribution Prior distribution was first used for
proposal distribution because of its intuitive simplicity. If
q
(
xn|x0:n−1, y0:n

)
= p

(
xn|xn−1

)
, the importance weights

are updated by

W (i)
n = W

(i)
n−1p

(
yn|x(i)

n

)
(17)

which essentially neglects the effect of the most recent ob-
servation yn. This kind of proposal distribution is easy to
implement, but usually results in a high variance because
the most recent observation yn is neglected in p(xn|xn−1).
The problem becomes more serious when the likelihood is
peaked and the predicted state is near the likelihood’s tail,
in other words, the measurement noise model is sensitive to
the outliers. From (17), we know that importance weights
are proportional to the likelihood model. It is obvious
that W (x) will be very uneven if the likelihood model
is not flat. In the Gaussian measurement noise situation,
the flatness will be determined by the variance. If Σv is
small, the distribution of the measurement noise is peaked,
hence W (x) will be peaked as well, which makes the the
sample impoverishment problem more severe. Hence we
can see that, choosing transition prior as proposal is really
a brute force approach whose result can be arbitrarily bad,
though it was widely used in the literature and sometimes
produced reasonably good results (really depending on the
noise statistics).

7.2 Convergence and Asymptotic Results

As discussed earlier, although the convergence of Monte
Carlo approximation is quite clear, the convergence be-



havior of sequential Monte Carlo method or particle filter
is different and deserves special attention. Many authors
have explored this issue from different perspectives, but
most results are available in the probability literature. A
review of convergence results on particle filtering methods
has been recently given by Crisan and Doucet from prac-
tical point of view [Chen (2003)]. We summarize the main
results from their survey paper.

Almost Sure Convergence: If the the transition ker-
nel K(xt|xt−1) is Feller, importance weights are up-
per bounded, and the likelihood function is continuous,
bounded, and strictly positive, then with Np → ∞ the
filtered density given by particle filter converges asymp-
totically to the true posterior.

Mean Square Convergence: If likelihood function is bounded,
for any bounded function φ ∈ RNx , then for t ≥ 0, there
exists a Ct|t independent of Np s.t.

E

[((
P̂t|t, φ

)
−
(
Pt|t, φ

))2
]
≤ Ct|t

‖φ‖2

Np
, (18)

where
(
P̂t|t, φ

)
=
∫
φ (x0:n)P (dx0:t|y0:t), ‖φ‖ = sup

x0:t

|φ (x0:t)|.

It should be cautioned that, it seems at the first sight that
particle filtering method beats the curse of dimensionality,
as the rate of convergence, 1/Np, is independent on the
state dimension Nx. This is nevertheless not true because
in order to assure (18) holds, the number of particles
Np needs to increase over the time since it depends on
Ct|t, a term that further relies on Nx. As discussed in,
in order to assure the uniform convergence, both Ct|t and
the approximation error accumulates over the time. In a
high-dimensional space (order of tens or higher), particle
filters still suffer the problem of curse of dimensional-
ity. Empirically, we can estimate the requirement of the
number of particles, although this bound in practice is
loose and usually data/problem dependent. Suppose the
minimum number is determined by the effective volume
(variance) of the search space (proposal) against the target
space (posterior). If the proposal and posterior are uni-
form in two Nx-dimensional hyperspheres with radii r and
R (R > r) respectively, the effective particle number Neff
is approximately measured by the the volume ratio in the
proposal space against posterior space, namely

Neff ≈ Np × (r/R)
Nx

when the ration is low r << R, the effective number
decreases exponentially asNx increases; on the other hand,
if we want to keep the effective number as a constant,
we need to increase Np exponentially as Nx increases.
An important asymptotic result is the error bound of the
filter. According to the Cramér-Rao theorem, the expected
square error of an estimate is generally given by

E (x) = E
[
(x− x̂)

2
]

≥

[
1 + dE[x−x̂]

dx

]
J (x)

+ (E [x− x̂])
2

where J(x) is the Fisher information matrix defined by

J (x) = E

[(
∂

∂x
log p (x, y)

)(
∂

∂x
log p (x, y)

)T]
.

If the estimate is unbiased (namely E[x̂ − x] = 0), then
(x) is equal to the variance, and we have

E (x) = J−1 (x) (19)

and the estimate satisfying (19) is called Fisher efficient.
Kalman filter is Fisher-efficient under LQG circumstance
in which the state-error covariance matrix plays a similar
role as the inverse Fisher information matrix. Naturally,
the issue is also interesting within the particle filtering
framework. Recently, it has been established that under
some regularity conditions, the particle filters also satisfy
the Cramér-Rao bound

E
[
x̃nx̃

T
n

]
≥ Pn

E
[
‖x̃n‖2

]
≥ tr (Pn)

where x̃n = xn − x̂n|n is the one-step ahead prediction
error, and

Pn+1 = Fn
(
P−1
n +R−1

n

)−1
FTn +GnQnG

−1
n ,

P−1
0 = E

[
∂

∂x0x0
log p (x0)

]
,

Fn = E

[
∂

∂xn
f (xn, wn)

]
,

R−1
n = E

[
∂

∂xnxn
log p (yn|xn)

]
,

GTn = E

[
∂

∂wn
f (xn, wn)

]
,

Q−1
n = E

[
∂

∂wnwn
log p (wn)

]
.

The upper bound is time-varying and can be recursively
updated by replacing the expectation with Monte Carlo
average. For derivation details and discussions, see [Ar-
naud Doucet and Gordon (2001)] for more general unified
treatment (filtering, prediction, smoothing) and extended
situations.

7.3 Bias-Variance

Let’s first consider the exact Monte Carlo sampling. The
true and Monte Carlo state-error covariance matrices are
defined by

Σ = Ep

[
(x− µ) (x− µ)

T
]
,

Σµ̂ = Ep

[
(x− µ̂) (x− µ̂)

T
]
,

where µ = Ep [x], µ̂ = 1
Np

Np∑
i=1

x(i), where
{
x(i)
}

are i.i.d.

samples drawn from true p.d.f. p(x). It can be proved that

Σµ̂ =

(
1 +

1

Np

)
Σ

= Σ + V arp [µ̂] .

Hence, the uncertainty from the exact Monte Carlo sam-
pling part is the order of N−1

p . In practice,we usually
calculate the sample variance in place of true variance,
for Monte Carlo simulation, we have



Σµ̂ =
1

Np − 1

Np∑
i=1

(
x(i) − µ̂

)(
x(i) − µ̂

)T
.

It should be cautioned that Σ̂µ̂ is an unbiased esti-
mate of Σ instead of Σµ̂ is given by (1 + N−1

p )Σµ̂. Sec-
ond, we particularly consider the importance sampling
where the i.i.d. samples are drawn from the proposal
distribution. Recalling some notations defined earlier, it

must be cautioned again that although f̂Np
is unbiased

(i.e. Ep[f(x)] = Ep[f̂Np
(x)]), however, f̂ is biased (i.e.

Ep[f(x)] 6= Ep[f̂Np
(x)]. In practice, with moderate sample

size, it was shown that the bias is not negligible. The
bias accounts for the following sources: limited simulated
samples, limited computing power and limited memory
(calculation of posterior p(x0:n|y0:n) needs storing the data
up to n), not to mention the sampling inaccuracy as well as
the existence of noise. In the Monte Carlo filtering context,
suppose x̂n is an estimate given by the particle filter, by
writing

xn − x̂n = (xn − Eq [x̂n|y0:n]) + (Eq [x̂n|y0:n]− x̂n) ,

we may calculate the expected gross error

E = Eq

[
tr
(

(xn − x̂n) (xn − x̂n)
T
)
|y0:n

]
= tr

(
Eq

[
(xn − x̂n) (xn − x̂n)

T |y0:n

])
= tr

Eq [(x̂n − Eq [x̂n|y0:n]) (x̂n − Eq [x̂n|y0:n])
T |y0:n

]
︸ ︷︷ ︸

Covariance

+ (Eq [x̂n|y0:n]− xn) (Eq [x̂n|y0:n]− xn)
T︸ ︷︷ ︸

Bias2


(20)

where

Eq [xn|y0:n] =

∫
xnW (xn)q (xn|y0:n) dxn,

and

W (xn) =
p (xn|y0:n)

q (xn|y0:n)
.

If p = q, the bias vanishes to zero at a rate O(Np),
then E only accounts for variance, and the state-error
covariance is the true covariance. If p 6= q, E generally
consists of both bias and variance where the bias is a
nonzero constant. Hence, equation (20) represents the
bias-(co)variance dilemma. When the loss E is fixed, the
bias and variance is a trade-off. Generally, we can define
the bias and variance of importance sampling or MCMC
estimate as:

Bias = Eq

[
f̂ (x)

]
− Ep [f (x)] ,

V ar = Eq

[(
f̂ (x)− Ep

[
f̂ (x)

])2
]

where f̂(x) is given by the weighted importance sampling.
The quality of approximation is measured by a loss func-
tion E , as decomposed by

E = Eq

[(
f̂ (x)− Ep

[
f̂ (x)

])2
]

= Bias2 + V ar.

7.4 Robustness

Robustness (both algorithmic robustness and numerical
robustness) issue is important for the discrete-time fil-
tering. In many practical scenarios, the filter might en-
counter the possibility of divergence where the algorithmic
assumption is violated or the numerical problem is en-
countered (e.g., ill-conditioned matrix factorization). We
focus our attention on the particle filters. There are two
fundamental problems concerning the robustness in parti-
cle filters. First, when there is an outlier, the importance
weights will be very unevenly distributed and it usually
requires a large number of Np to assure the accuracy
of empirical density approximation. Hence the measure-
ment density p(yn|xn) is supposed to insensitive to the
xn. Second, the empirical distribution from the samples
often approximates poorly for the long-tailed distribution,
either for proposal distribution or for posterior. This is
imaginable because the probability sampling from the tail
part of distribution is very low, and resampling somehow
makes this problem more severe. Many results have shown
that even the mixture distribution can not well describe
the tail behavior of the target distribution. Hence, outliers
will possibly cause the divergence of filter or produce a
very bad performance. Recently, it has been shown that
the sample size estimate given by (89) is not robust, the
approximated expression might be infinitely wrong for
certain f(x), p(x) and q(x). It can be derived that

V arq

[
f̂
]

=
1

Np
V arq [f(x)W (x)]

=
1

Np
Eq

[
(f(x)− Ep [f(x)])

2
W 2(x)

]
+O

(
N−2
p

)
where W (x) = p(x)/q(x). For a large Np, the true effective
sample size is given as

N
′

eff =
V arp [f ]

V arq

[
f̂
]

≈
NpEp

[
(f(x)− Ep [f(x)])

2
]

Eq

[
(f(x)− Ep [f(x)])

2
W 2(x)

]
The expression of Neff (derived by using first two mo-
ments of W (x) and f(x)) can be very poor (for two simple

cases, one leads to
N
′
eff

Neff
→ 0 and the other

N
′
eff

Neff
→ ∞.

A more robust effective sample size estimate has been
proposed

Neff =

Np
Np∑
i=1

(
f(x(i))− Ep [f(x)]

)2
W (x(i))

Np∑
i=1

(
f(x(i))− Ep [f(x)]

)2
W 2(x(i))

.

Another critical issue is the estimate of the important
weights within the IS, SIS, SIR framework. Note that
W (x) = p(x)/q(x) is a function instead of a point es-
timatate. Being a function usually implies certain prior
knowledge, e.g. smoothness, non-negativeness, finite sup-
port. However, when we use a finite number of random
(uneven) samples to represent this function, the inaccu-
racy (both bias and variance) is significant. This problem
becomes more severe if the outliers come in.



7.5 Evaluation and Implementation

We should keep in mind that designing particular particle
filter is problem dependent. In other words, there is no
general rule or universal good particle filter. For instance,
there always a tradeoff between the fact that we prefer
to keep the spread of particles wide (to prevent missing
hypothesis), and the case like target tracking, where we
instead prefer to keep the support of particles bounded
(to improve the accuracy). To give another example, in
many cases we want the particle filter robust to the out-
liers, thereby an insensitive likelihood model is preferred,
however in some case where the cost is unaffordable even
the likelihood is low, a risk-sensitive model is needed. On
the other hand, one particle filter Algorithm A works well
(better than another particle filter Algorithm B) doesn’t
necessarily mean that it has the gain over Algorithm B on
the other problems. Hence it is not fair to conclude that
Algorithm A is superior to Algorithm B for only one partic-
ular problem being tested. Justification of the superiority
of certain algorithm over the others even on a specific prob-
lem is also unfair without Monte Carlo simulations. One
of the merits about particle filter is the implementation
complexity is O(Np), independent of the state dimension
Nx. As to the evaluation criteria of Monte Carlo or par-
ticle filters, a straightforward indicator of performance of
different algorithms can be seen from the MSE between
the estimate and true value. Due to the Monte Carlo
nature, variance is an important criterion, e.g. (co)variance
of estimate and variance of importance weights, both of
which are calculated based on Monte Carlo averaging re-
sults (say 100 or 1000 independent runs). This requirement
is deemed necessary when comparing different particle
filters performance, otherwise it is unfair to say one is
better than the others or the opposite. Other evaluation
issues include sampling and resampling efficiency, trade-
off between performance and computational complexity,
parallel architecture, ease of implementation, etc.

8. OTHER FORMS OF BAYESIAN FILTERING:
MALLIAVIN ESTIMATOR

8.1 Extended Abstract

In Malliavin Calculus [Nualart (2006)], suppose that ones
goal is to evaluate

E [f ′ (X)] =

∫
f ′ (x) p (x) dx

= −
∫
f (x)

p′ (x)

p (x)
p (x) dx = E

[
f (X)

p′ (x)

p (x)

]
= E

[
f (X)

p′ (x)

p (x)

]
= E [f (X)H (X, 1)] ,

where

H (X, 1) =
p′ (x)

p (x)
.

One of the main purposes is to evaluate this last quantity
in a efficient way. The main advantage of Malliavin calcu-
lus is that: The same simulated paths give good estimates
for densities at any point. That is, one can compute the
density over the whole real line with the same number
of paths. And allowing one to get efficient computational

methods. For more details, one is refered to [Mrad et al.
(2006); E. Fournié and N.Touzi (1999); E. Fournié (2001)]

Suppose that we have a diffusion process like in (7), the
solution is given by

Xt = X0 +

t∫
0

b (Xs) ds+

t∫
0

σ (Xs) dWs, t ∈ [0, T ] .

If Hörmander hypothesis is satisfied then XT density exists
and is smooth. Using Malliavin calculus to develop an
expression for H(X, 1) that can be simulated. So we get a
Monte Carlo for (with variance reduction - using control
variate).

E [f ′ (X)] =
1

N

∑
f
(
X̃i
)
H
(
X̃i, 1

)
,

where X̃i are independent Euler approximations of X.

For our purpose, we want to calculate the posterior,
leading to the choice of f ′ (X) = δ (X) then E [δ (X)] =
p (x) (p.d.f. of X).

Form this we can have the following theorem

Theorem 5. Let ϕ, dϕdx ∈ L2 (R) , ϕ (0) = 1 a localization

function and r a parameter and c ∈ L2 (R) a “control
variate”. The density function

p (x) = E [ξc,r (x)] ,

where

ξc,r (x) =
(
1{X≥x} − c (x)

)
H

(
X,ϕ

(
X − x
r

))
,

moreover,

H

(
X,ϕ

(
X − x
r

))
= ϕ

(
X − x
r

)
H (X, 1)−1

r
ϕ′
(
X − x
r

)
,

and

H (X, 1) =

T∫
0

dWt

T∫
0

DsXds

+

T∫
0

T∫
0

DtDsXdsdt(
T∫
0

DsXds

)2 .

The variance of ξc,r (x) is minimized for

c (x) =
E
[
1{X≥x}H

(
X,ϕ

(
X−x
r

))2]
E
[
H
(
X,ϕ

(
X−x
r

))2] ,

and

r =

√√√√√√√
∞∫
0

ϕ′ (z)
2
dz

E
[
H (X, 1)

2
] ∞∫

0

ϕ (z)
2
dz

,

with ϕ (x) = e−λ|x|, λ > 0. �

In the previous stated we still have to have in account the
need to discretize the following quantities [Bouchard et al.
(2002)]

DsXt =

 σe

t∫
s

b̄′(Xv)dv+

t∫
s

σ′(Xv)dWv

, s ≤ t
0 s > t



where b̄′ (Xv) = b′ (Xv)− 1
2σ
′ (Xv)

2
, and

DsDtXT = Ds (Xt)σ
′ (Xt) e

T∫
t

b̄′(Xv)dv+

T∫
t

σ′(Xv)dWv

+

σ′ (Xt) 1{t≤s} +

T∫
t

b̄′′ (Xv)DsXvdv

+

T∫
t

σ′′ (Xv)DsXvdWv

DtXT .

9. SIMULATION RESULTS

From the previous stated in section (8), we have now a tool
to compute the posterior density function p

(
xk|xik−1

)
. In

order to have a sanity check suppose that we have the
following diffusion process

dXt = σdWt

and with initial condition given by δ (x0 = 0). The solution
exists and is given by a closed formula as a Gaussian
with suitable parameters. Hereafter follows a graphic (Fig.
1) that shows for 1000 paths generation the approximate
result.

Figure 1. Sanity check example

Finally we explore the efficiency of the particle filter using
Malliavin calculus against the classical SIR and KF. For
this propose assume the following system

xk = 1 + sin
(
4 ∗ 10−2 ∗ π ∗ k

)
+ 0.5 ∗ xk−1 +

√
5 ∗ w

yk =


xk
5

+ v k ≤ 30

−2 +
xk
2

+ v k > 30

where w, v are assumed to be WGN.

Figure 2. PF with 1000 particles

Figure 3. Time and Variance of PF with 1000 particles

Figure 4. PFM with 20 particles and 50 Brownian paths

Figure 5. Time and variance of PFM with 20 particles and
50 Brownian paths

9.1 Discussion of results

Keeping in mind that we have a linear system we should
chose as a optimality criteria the variance and the time
consumed. For both, particle filter (PF) and particle filter
using Malliavin calculus (PMF) we did residual resampling
and the presented results in Fig. 3 and Fig. 5 says respect
to an average of 1000 runs. In these figures we can infere
that for the same computational time, PMF outperforms
the PF since the results of the variance are close to the
optimum given by the Kalman Filter (EKF). For visual
understanding of the performance, one is pointed to Fig.
2 and Fig. 4.

10. CONCLUSIONS AND FURTHER RESEARCH

In the present paper we try to survey the basics of
Sequential Monte Carlo methods, aka, Particle filters.
For that we introduce the problem statement and the
different Monte Carlo techniques and how to use those in
a sequential manner. We briefly explore the mathematical
issues of the method and briefly presented some different
approach for Monte Carlo methods, to be developed and
full presented in a paper to be submitted to American
Control Conference 2011.
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