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Guidelines 

■ Mo(va(on 

■ Monte Carlo Methods 
■ Importance Sampling 
■ Control Variates 

■ Par(cle filters 
■ Malliavin Es(mator 

■ Example 



Mo(va(on ‐ Barely relevant sampling 



Monte Carlo Methods 



Importance sampling 

Importance sampling involves a change of probability measure. 
Instead of taking X from a distribution with pdf           , we instead  
take it from a different distribution with pdf  

where                        is the Radon-Nikodym derivative. 



Importance sampling 

We want the new variance                         to be smaller than  
the old variance 

How to achieve this? By making          small where           is large,  
and making              large when            is small. 

Small              large relative to           so more random samples in  
region where           is large 

Particularly important for rare event simulation where            is  
zero almost everywhere 



Control Variates 

Suppose we want to approximate          using a simple  
Monte Carlo average 

If there is another payoff         for which we know           ,  
can use               to reduce error in  

How? By defining a new estimator 

Unbiased since  



Control Variates 

For a single sample 

For a average of N samples 

To minimize this, the optimum value for      is  



Control Variates 

The resulting variance is 

Where      is the correlation between      and     . 

The challenge is the choose a good       which is well  
correlated with       - the covariance, and hence the  
optimal     , can be estimated from the data. 



Remarks 

Importance sampling – very useful for applications with rare 
events, but again needs to be fine-tuned for each application 

Control variates – easy to implement and can be very effective 
But requires careful choice of control variate in each case 

Overall, a tradeoff between simplicity and generality on one 
hand, and efficiency and programming effort on the other. 



Par(cle filters 



Bayes’ Theorem 



Nonlinear Filtering 

■  State evolu(on 
■  discrete 4me stochas4c model (Markovian) 

■ Measurement equa(on 

■ Model predic(on given past measurements 



Nonlinear Filtering 

■  Predic(on update using current measurement 

likelihood dynamic prior 

posterior 



t 

P(x) 

x 

tk tk+1 

x 
actual state value 
measured state value 
state particle value 
state pdf (belief) 

actual state trajectory 
estimated state trajectory 
particle propagation 
particle weight 

Par(cle Filtering 
■  represent state as a pdf 

■  sample  the state pdf as 
a  set  of  par(cles  and 
associated weights 

■  propagate  par(cle 
values  according  to 
model 

■  update  weights  based 
on measurement 



■ Predic(on step: use the state update model 

■ Update step: with measurement, update the 
prior using Bayes’ rule: 

Par(cle Filtering 



■ A  par(cle  filter  itera(vely  approximates  the 
posterior pdf as a set: 

where:  

xki  is a point in the state space 
wki is an importance weight associated with the point 

Par(cle Filtering 



■  Implementa(on steps 

■  propose x0i and propagate par4cles 

■  compute likelihood of measurement w.r.t. each par4cle 

■  update par4cle weights based on likelihood  

■  normalize weights 

Par(cle Filtering 



Resampling 

■ Par(cle weights degenerate over (me 
■ measure of degeneracy: effec4ve sample size 

■  resample whenever 
■  new set of par4cles have same sta4s4cal 
proper4es 

use normalized weights 



PF Flowchart 
Initialize PF 
Parameters 

Propose Initial Population , <x0,w0> 

Propagate Particles using State 
Model , xk-1xk 

Update Weights, wk-1wk  
Measuremen

t 
zk 

Weights degenerated? 

Resample 

Yes 

No 



Malliavin Es(mator 



Malliavin Es(mator 

Particle Filter “Grid based method” 



Malliavin Es(mator 



Malliavin Es(mator 



Malliavin Es(mator 

If Hörmander hypothesis is satisfied then       density exists and is smooth 

Use Malliavin calculus to develop an expression  for H(X,1) that can be 
Simulated. So we get a Monte Carlo for (with variance reduction)  

Where        are independent Euler approximations of      . 

For us                     then                         (pdf of X) 



Malliavin Es(mator 

The same simulated paths give good estimates for densities at any point. 
That is, one can compute the density over the whole real line with the  
same number of paths. 

Let                                  a localization function and      a  parameter and 
   a “control variate”. 

The density function 

where 



Malliavin Es(mator 

The variance of             is minimized for 

where 

and 



Malliavin Es(mator 

For the numerical implementation one have to discretize the following 
By “Euler” scheme 

Moreover 



Malliavin Es(mator 



Example 



Malliavin Es(mator 

are W.G.N. 



N=1000 particles 



1000 runs!!! 

N=20 particles 

Brownian Paths: 
50 



Conclusion and Further Research 

■ Different  SMC  method  with  variance 
reduc(on (no need to calibra(on) 

■ Possibility  to extend  to nonlinear  case and 
extend to higher dimensions 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