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Motivation

- Wide range of applications of wireless sensor
networks:
- environmental and industrial monitoring, military
surveillance, object tracking

- Observed data may be used to estimate the state of
a controlled system- estimate later used for control

- In control- critical that data arrives in time

 In large multi-hop networks, unreliable wireless
channels:

- loss & delay
- significant delay- from the aspect of controls- same as loss

* How to perform estimation when some of the
observations are missing?




Approach to the problem

. Start with standard Kalman filter

- Model arrival of observations as random Bernoulli
variable

. State and error covariance now random variables

- What are statistical convergence properties of the
expected estimation error covariance?

- Existence of critical value

- Upper and lower bounds on the expected value of
the state error covariance




Problem definition

Start with discrete-time linear system with Gaussian noise
Tip1 = Axy + wy

yr = Cxy + vy

rs € R" state vector

y; € R™ output vector

w; € RP plant noise

v; € ™ measurement noise

independent Gaussian - zero mean and covariance () and R
initial state xg -zero mean Gaussian, covariance >

Kalman filter is an optimal estimator




Problem definition

Arrival of the observation at time t :
- binary random variable 7t with probability distribution P~ (1) =X\
Measurement noise v: defined:

N (0,R), =1
p(vt|'7t):{j\/‘((()702;)’ 3::0

. The absence of observations corresponds to the case of 7 =7

- Modified Kalman equations:
Z%t—|—1|t — Aﬁ?tn
Pt—|—1|t — APt|tA/ +Q
Tip1)e+1 = Tog1)e T Vi1 K11 <yt+1 — Cf%t—|—1|t>
Pt—|—1|t—|—1 = Pt—|—1|t — Y41 K110 Py
Kiy1 = Py pC (CPt-|—1|tC/ T R>_1




Bounds for error convergence

Theorem 1. If (A, Q%) is controllable, (A, C) is observable and A is unstable,
there ezists a A. € (0,1] such that:

tlim E[P] = +o0, for 0 <A< A, and 3Py >0
— 00
E[P] < Mp, Vt for Ae <A <1 andVPy >0

where Mp, > 0 depends on the initial condition Py > 0.

« The critical value A: cannot be directly calculated, however its upper
and lower bound can

« When A > A., upper and lower bound for the expected value of
state error covariance matrix exist




Bounds for error convergence

Critical value of arrival probability

Lower bound N=1— 1

where o = max; |o;| and o; are the eigenvalues of A.

Upper bound -using bisection for the optimization problem
A =argmin®, (Y, Z) >0, 0<Y <I

where function @ (Y, Z) is defined:

Y VAYA+ZC) VI=AY A
(Y, Z)= | VA(YA'+C'Z") Y 0

V1I-MA'Y 0 Y



Bounds for error convergence

Bounds on the expected value of error covariance

- Lower bound
S=(1-))ASA

- Upper bound solving optimization problem
argmazxy Trace (V)

subject to

AVA —V  VAAVC! -
VICVA CVC'+R | =7

V > 0.



Example
Discrete unstable system with parameters

A=-125C=1
vy and w; zero mean and variance R = 2.5 and QQ =1

Critical value of arrival probability 0.36

estimation error for lambda = 0.3 consecutive missed obs 19
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Example
Discrete unstable system with parameters

A=-125C=1
vy and w; zero mean and variance R = 2.5 and QQ =1

Critical value of arrival probability 0.36

estimation error for lambda = 0.4 consecutive missed obs B
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Example

Discrete unstable system with parameters
A=-125C=1

vy and w; zero mean and variance R = 2.5 and QQ =1

Critical value of arrival probability 0.36

vatiance with bernoulli distr. for lambda 0.3
max number of consecutive missed observations 16
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Example

Discrete unstable system with parameters

A=-125C=1

vy and w; zero mean and variance R = 2.5 and QQ =1

Critical value of arrival probability 0.36
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variance with bernoulli distr. for lambda 0.4
max humber of consecutive missed observations B

updated variance

expected value of updated variance
upper bound for expected value of variance
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Heavy tailed distribution

- With Bernoulli distribution burstiness of network
traffic loss is not modeled appropriately

- Bit errors on telephone channels and losses in
Ethernet and wireless networks all show heavy tail
properties

- Heavy tailed distributions decay more slowly than
exponential distribution

- Example: Pareto distribution:
shape parameter «, location parameter x,, and pdf:

forx > x,,
forx < xp,
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Heavy tailed distribution

Model observation inter-arrival periods with Pareto
Find average arrival probability A,

Apply previous results and bounds using A as A

Verify that the expected value of covariance matrix is bounded if
A> A,

average probability of observation arriving for pareto distribution
averaged over 1000 simulations
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Heavy tailed distribution

Model observation inter-arrival periods with Pareto

Find average arrival probability A,
Apply previous results and bounds using A as A

Verify that the expected value of covariance matrix is bounded if
A> A,

erage probsitify of atrieraitn ariving for pireto delrbuion
ayaraged over 1000 "

o L
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Example

Discrete unstable system with parameters

A=-125C=1

vy and w; zero mean and variance R = 2.5 and QQ =1

Critical value of arrival probability 0.36
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estimation error for pareto distr with x =1 and o. = 1.35

average probability of arrival 0.33937
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Example

Discrete unstable system with parameters
A=-125C=1

vy and w; zero mean and variance R = 2.5 and QQ =1

Critical value of arrival probability 0.36

average absolute estimation error for pareto distr with x =1 and .= 1.6

average probability of arrival 0.40172
max no of consecutive missed obs 11
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Example

Discrete unstable system with parameters
A=-125C=1

vy and w; zero mean and variance R = 2.5 and QQ =1

Critical value of arrival probability 0.36

variance for heavy tails forx =1 and o= 1.35

average probability of observation arriving 0.31185
max no of consecutive missed obs 31
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Example

Discrete unstable system with parameters
A=-125C=1

vy and w; zero mean and variance R = 2.5 and QQ =1

Critical value of arrival probability 0.36

variance for heavy tails forx =1 and o= 1.6

average probability of observation arriving 0.40469
max no of consecutive missed obs 14
18 T T

average updated variance for multiple simulations X

mean value of Z in time
upper bound for expected value of variance
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Conclusions

Kalman filter with intermittent observations, arrival of
observations can be modeled as Bernoulli random variables

There exists a critical value of arrival probability of observations,
above which state covariance remains bounded for all initial
conditions

Arrival of distributions can also be modeled with heavy tailed
distribution

If average arrival probability of Pareto modeled observations is
above the critical value of arrival, error covariance stays finite
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