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DETECTION, ESTIMATION, AND FILTERING COURSE 



•  Motivation 
•  Problem definition 
•  Bounds for error convergence 
•  Adding heavy tails to the picture 
•  Simulation results 
•  Conclusions 
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•  Wide range of applications of wireless sensor 
networks:  
o  environmental and industrial monitoring, military 

surveillance, object tracking 
•  Observed data may be used to estimate the state of 

a controlled system- estimate later used for control 
o  In control- critical that data arrives in time 

•  In large multi-hop networks, unreliable wireless 
channels: 
o  loss & delay 
o  significant delay- from the aspect of controls- same as loss 
•  How to perform estimation when some of the 

observations are missing? 
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•  Start with standard Kalman filter 
•  Model arrival of observations as random Bernoulli 

variable 
•  State and error covariance now random variables 
•  What are statistical convergence properties of the 

expected estimation error covariance? 
•  Existence of critical value 
•  Upper and lower bounds on the expected value of 

the state error covariance 

4 



•  Start with discrete-time linear system with Gaussian noise 

•  Kalman filter is an optimal estimator 
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•  Arrival of the observation at time t : 
o  binary random variable     with probability distribution  

•  Measurement noise      defined: 

o  The absence of observations corresponds to the case of 

•  Modified Kalman equations: 
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•   The critical value      cannot be directly calculated, however its upper 
and lower bound can 
•   When            , upper and lower bound for the expected value of 
state error covariance matrix exist 



Critical value of arrival probability 

•  Lower bound  

•  Upper bound –using bisection for the optimization problem 
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Bounds on the expected value of error covariance 

•  Lower bound 

•  Upper bound solving optimization problem 
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•  Discrete unstable system with parameters 

•  Critical value of arrival probability 0.36 
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•  With Bernoulli distribution burstiness of network 
traffic loss is not modeled appropriately 

•  Bit errors on telephone channels and losses in 
Ethernet and wireless networks all show heavy tail 
properties 

•  Heavy tailed distributions decay more slowly than 
exponential distribution 

•  Example: Pareto distribution:  
 shape parameter α, location parameter xm and pdf: 
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•  Model observation inter-arrival periods with Pareto 

•  Find average arrival probability λa 

•  Apply previous results and bounds using λa as λ  
•  Verify that the expected value of covariance matrix is bounded if 
λ> λc 
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•  Kalman filter with intermittent observations, arrival of 
observations can be modeled as Bernoulli random variables 

•  There exists a critical value of arrival probability of observations, 
above which state covariance remains bounded for all initial 
conditions 

•  Arrival of distributions can also be modeled with heavy tailed 
distribution 

•  If average arrival probability of Pareto modeled observations is 
above the critical value of arrival, error covariance stays finite  
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