DETECTION, ESTIMATION, AND FILTERING COURSE

Kalman filtering with intermittent heavy tailed observations

 Sabina Zejnilović
Outline

- Motivation
- Problem definition
- Bounds for error convergence
- Adding heavy tails to the picture
- Simulation results
- Conclusions

Motivation

- Wide range of applications of wireless sensor networks:
environmental and industrial monitoring, military surveillance, object tracking
- Observed data may be used to estimate the state of a controlled system- estimate later used for control
- In control- critical that data arrives in time
- In large multi-hop networks, unreliable wireless channels:
- loss \& delay
- significant delay- from the aspect of controls- same as loss
- How to perform estimation when some of the observations are missing?

Approach to the problem

- Start with standard Kalman filter
- Model arrival of observations as random Bernoulli variable
- State and error covariance now random variables
- What are statistical convergence properties of the expected estimation error covariance?
- Existence of critical value
- Upper and lower bounds on the expected value of the state error covariance

Problem definition

- Start with discrete-time linear system with Gaussian noise

$$
\begin{aligned}
x_{t+1} & =A x_{t}+w_{t} \\
y_{t} & =C x_{t}+v_{t}
\end{aligned}
$$

$x_{t} \in \Re^{n}$ state vector
$y_{t} \in \Re^{m}$ output vector
$w_{t} \in \Re^{p}$ plant noise
$v_{t} \in \Re^{m}$ measurement noise
independent Gaussian - zero mean and covariance Q and R
initial state x_{0}-zero mean Gaussian, covariance Σ_{0}

- Kalman filter is an optimal estimator

Problem definition

- Arrival of the observation at time t:
- binary random variable γ_{t} with probability distribution $p_{\gamma}(1)=\lambda_{t}$
- Measurement noise v_{t} defined:

$$
p\left(v_{t} \mid \gamma_{t}\right)=\left\{\begin{array}{cl}
\mathcal{N}(0, R), & \gamma_{t}=1 \\
\mathcal{N}\left(0, \sigma^{2} I\right), & \gamma_{t}=0
\end{array}\right.
$$

The absence of observations corresponds to the case of $\sigma \rightarrow \infty$

- Modified Kalman equations:

$$
\begin{aligned}
\hat{x}_{t+1 \mid t} & =A \hat{x}_{t \mid t} \\
P_{t+1 \mid t} & =A P_{t \mid t} A^{\prime}+Q \\
\hat{x}_{t+1 \mid t+1} & =\hat{x}_{t+1 \mid t}+\gamma_{t+1} K_{t+1}\left(y_{t+1}-C \hat{x}_{t+1 \mid t}\right) \\
P_{t+1 \mid t+1} & =P_{t+1 \mid t}-\gamma_{t+1} K_{t+1} C P_{t+1} \\
K_{t+1} & =P_{t+1 \mid t} C^{\prime}\left(C P_{t+1 \mid t} C^{\prime}+R\right)^{-1}
\end{aligned}
$$

Bounds for error convergence

Theorem 1. If $\left(A, Q^{\frac{1}{2}}\right)$ is controllable, (A, C) is observable and A is unstable, there exists a $\lambda_{c} \in(0,1]$ such that:

$$
\begin{array}{ll}
\lim _{t \rightarrow \infty} \mathbb{E}\left[P_{t}\right]=+\infty, & \text { for } 0 \leq \lambda \leq \lambda_{c} \text { and } \exists P_{0} \geq 0 \\
\mathbb{E}\left[P_{t}\right] \leq M_{P_{0}} \forall t & \text { for } \lambda_{c}<\lambda \leq 1 \text { and } \forall P_{0} \geq 0
\end{array}
$$

where $M_{P_{0}}>0$ depends on the initial condition $P_{0}>0$.

- The critical value λ_{c} cannot be directly calculated, however its upper and lower bound can
- When $\lambda>\lambda_{c}$, upper and lower bound for the expected value of state error covariance matrix exist

Bounds for error convergence

Critical value of arrival probability

- Lower bound

$$
\underline{\lambda}=1-\frac{1}{\alpha^{2}}
$$

where $\alpha=\max _{i}\left|\sigma_{i}\right|$ and σ_{i} are the eigenvalues of A .

- Upper bound -using bisection for the optimization problem

$$
\bar{\lambda}=\operatorname{argmin} \Phi_{\lambda}(Y, Z)>0, \quad 0 \leq Y \leq I
$$

where function $\Phi_{\lambda}(Y, Z)$ is defined:

$$
\Phi(Y, Z)=\left[\begin{array}{ccc}
Y & \sqrt{\lambda}(Y A+Z C) & \sqrt{1-\lambda} Y A \\
\sqrt{\lambda}\left(Y A^{\prime}+C^{\prime} Z^{\prime}\right) & Y & 0 \\
\sqrt{1-\lambda} A^{\prime} Y & 0 & Y
\end{array}\right]
$$

Bounds for error convergence

Bounds on the expected value of error covariance

- Lower bound

$$
\bar{S}=(1-\lambda) A \bar{S} A^{\prime}
$$

- Upper bound solving optimization problem

$$
\begin{gathered}
\operatorname{argmax}_{V} \operatorname{Trace}^{(V)} \\
\text { subject to } \\
{\left[\begin{array}{cc}
A V A^{\prime}-V & \sqrt{\lambda} A V C^{\prime} \\
\sqrt{\lambda} C V A^{\prime} & C V C^{\prime}+R
\end{array}\right] \geq 0} \\
V \geq 0
\end{gathered}
$$

Example

- Discrete unstable system with parameters
$A=-1.25, C=1$
v_{t} and w_{t} zero mean and variance $R=2.5$ and $Q=1$
- Critical value of arrival probability 0.36

Example

- Discrete unstable system with parameters
$A=-1.25, C=1$
v_{t} and w_{t} zero mean and variance $R=2.5$ and $Q=1$
- Critical value of arrival probability 0.36

Example

- Discrete unstable system with parameters
$A=-1.25, C=1$
v_{t} and w_{t} zero mean and variance $R=2.5$ and $Q=1$
- Critical value of arrival probability 0.36
variance with bernoulli distr. for lambda 0.3

Example

- Discrete unstable system with parameters
$A=-1.25, C=1$
v_{t} and w_{t} zero mean and variance $R=2.5$ and $Q=1$
- Critical value of arrival probability 0.36

Heavy tailed distribution

- With Bernoulli distribution burstiness of network traffic loss is not modeled appropriately
- Bit errors on telephone channels and losses in Ethernet and wireless networks all show heavy tail properties
- Heavy tailed distributions decay more slowly than exponential distribution
- Example: Pareto distribution: shape parameter α, location parameter x_{m} and $p d f$:

$$
f_{X}(x)=\left\{\begin{array}{cc}
\alpha \frac{x_{m}{ }^{\alpha}}{x^{x+1}} & \text { for } x>x_{m} \\
0 & \text { for } x<x_{m}
\end{array}\right.
$$

Heavy tailed distribution

- Model observation inter-arrival periods with Pareto
- Find average arrival probability λ_{a}
- Apply previous results and bounds using λ_{a} as λ
- Verify that the expected value of covariance matrix is bounded if $\lambda>\lambda_{c}$

Heavy tailed distribution

- Model observation inter-arrival periods with Pareto
- Find average arrival probability λ_{a}
- Apply previous results and bounds using λ_{a} as λ
- Verify that the expected value of covariance matrix is bounded if $\lambda>\lambda_{c}$

Example

- Discrete unstable system with parameters
$A=-1.25, C=1$
v_{t} and w_{t} zero mean and variance $R=2.5$ and $Q=1$
- Critical value of arrival probability 0.36
estimation error for pareto distr with $x_{m}=1$ and $\alpha=1.35$
average probability of arrival 0.33937 max no of consecutive missed obs 31

Example

- Discrete unstable system with parameters
$A=-1.25, C=1$
v_{t} and w_{t} zero mean and variance $R=2.5$ and $Q=1$
- Critical value of arrival probability 0.36
average absolute estimation error for pareto distr with $x_{m}=1$ and $\alpha=1.6$
average probability of arrival 0.40172
max no of consecutive missed obs 11

Example

- Discrete unstable system with parameters
$A=-1.25, C=1$
v_{t} and w_{t} zero mean and variance $R=2.5$ and $Q=1$
- Critical value of arrival probability 0.36

Example

- Discrete unstable system with parameters
$A=-1.25, C=1$
v_{t} and w_{t} zero mean and variance $R=2.5$ and $Q=1$
- Critical value of arrival probability 0.36

Conclusions

- Kalman filter with intermittent observations, arrival of observations can be modeled as Bernoulli random variables
- There exists a critical value of arrival probability of observations, above which state covariance remains bounded for all initial conditions
- Arrival of distributions can also be modeled with heavy tailed distribution
- If average arrival probability of Pareto modeled observations is above the critical value of arrival, error covariance stays finite

