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Description of the system:

xk+1 = fk+1(xk ,uk ) + wk , k = 0,1,2,...
zk = hk (xk ) + vk , k = 0,1,2,...

Filtering:
The aim is to find the probability density function (pdf) of the state   conditioned by the 
measurements                         :  

xk
zk = z0 , z1,..., zk[ ]

p(xk | z
k ) = ?

p(xk+1 | z
k ) = ?

One-step prediction:
The aim is to find the pdf of the state at the next time instant k+1 conditioned by the 
measurements                         and the evolution of the plant dynamics:zk = z0 , z1,..., zk[ ]
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The solution of filtering/one-step prediction problem is given by the bayesian recursive 
relations:

p(xk | z
k ) = p(xk | z

k−1)p(zk | xk )
p(xk | z

k−1)p(zk | xk )dxk∫
p(xk+1 | z

k ) = p(xk | z
k )p(xk+1 | xk )dxk∫

where p(x0 | z
−1) = p(x0 )

(proof)

p(xk | z
k ) = p(zk | xk )p(xk | z

k−1)
p(zk | z

k−1)
Bayes’ Rule

p(xk | z
k−1, zk−2 ,..., z−1) = p(xk | z

k−1)
Markov Property
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(proof)

p(xk | z
k ) = p(zk | xk )p(xk )

p(zk )
=
p(zk , z

k−1 | xk )p(xk )
p(zk | z

k−1)
=
p(zk | z

k−1, xk )p(z
k−1 | xk )p(xk )

p(zk | z
k−1)p(zk−1)

=

=
p(zk | xk )p(xk | z

k−1)p(zk−1)p(xk )
p(zk | z

k−1)p(zk−1)p(xk )
=
p(zk | xk )p(xk | z

k−1)
p(zk | z

k−1)

1)  p(zk , xk | z
k−1) = p(zk | xk , z

k−1)p(xk | z
k−1) = p(zk | xk )p(xk | z

k−1)

p(zk | z
k−1) = p(zk | xk )p(xk | z

k−1)dxk∫

2) time update:   p(xk+1, xk | z
k ) = p(xk+1 | xk , z

k )p(xk | z
k ) = p(xk+1 | xk )p(xk | z

k )

p(xk+1 | z
k ) = p(xk+1 | xk )p(xk | z

k )dxk∫
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Facts:

.             gives the most complete description possible of    , i.e., no more complete description is 
possible. 
p(xk | z

k ) xk

. The introduction of an estimation criterion reduces the state information to a finite collection 
of numbers, yielding an incomplete/inadequate description of    . xk

. The EXCEPTION occurs when the system is linear and gaussian.

is also gaussian, so    is completely defined by 2 parameters:p(xk | z
k ) xk

E xk | z
k⎡⎣ ⎤⎦

E (xk − x
^
k |k )(xk − x

^
k |k )T | zk⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎪

⎩⎪

. Except when the system dynamics is linear and the a piori distributions are gaussian, it is 
generally impossible to determine               in a closed form. p(xk | z

k )

Suboptimal State Estimation
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Gaussian Sum Approximations

. Originally proposed by Sorenson and Alspach [1971].

. The goal was to overcome the performance shortcomings and possible divergence of the 
Extended Kalman Filter.

Fact: EKF performs well if the initial state-vector covariance is small so the true-state is 
“near” its mean.

2

The EKF May Diverge!

• In general, the EKF will “work” if the 

initial state-vector covariance is “small” 
x0k
-

so that true-state is “near” its assumed 

mean

• If the covariance is “large,” then the 

EKF may diverge

• The reason for the divergence is due to 

the fact that the EKF linearizations, 

about the state-estimate, are poor

.

0k

!0k

!0

.

x0
-

.

3

• Approach: approximate the “large” 

uncertainty with a set of “smaller” ones, 

each characterized by a pdf having a 

different mean and covariance

• Reason: one of the EKFs with its mean 

close to the true state should “work”

x01
-

!01

The Facts of Life

• FACT:  It is nice to have gaussian conditional pdf’s for the state, 

because we can update them using a finite number of 

parameters, i.e. the conditional mean and conditional p ,

covariance that are generated by the Kalman filter

• FACT:  If the conditional pdf for the state is (strongly) non-

gaussian, it is not technologically feasible to propagate the true 

conditional pdf

• for example, the non-gaussian pdf may have several distinct 

peaks

• The engineer must be able to do suboptimal state estimation for

4

The engineer must be able to do suboptimal state estimation for 

non-gaussian pdf’s

• the EKF tries do that but it may diverge

• In the Gaussian Sum (GS) method we approximate the non-

gaussian pdf with a finite set of distinct gaussian pdf’s, each 

having a different mean and covariance, and we use the 

algorithm for suboptimal state estimation

Approach: GS approximate the “large” uncertainty of the 
system with a set of EKFs, each characterised by a pdf having a 
different mean and a “small” covariance. 

One expects that one of the EKFs with its mean close to the 
true state should “work”.

This approximation makes     more tractable since it is impossible to obtain exact 
representations of the a posteriori density for nonlinear systems.

p(xk | z
k )
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Gaussian Sum Approximations

The gaussian sum     of a density function   associated with a vector-valued random 
variable    is defined as:

pA

pA (x) = α iN(x − ai ,Pi )
i=1

L

∑

α i = 1
i=1

L

∑ , α i ≥ 0 ∀i

p
x

with

lim
l→∞
Pi→0

pA.              converges uniformly to any density function of practical concern;

Properties of GS: 

x
_
= E x{ } = xp(x)dx

−∞

+∞

∫ ≈ x α iN(x − ai ,Pi )dx =
i=1

L

∑
−∞

+∞

∫ α i xN(x − ai ,Pi )dx = α iai
i=1

L

∑
−∞

+∞

∫
i=1

L

∑.    

Σ = α i Pi + (x
_
− ai )(x

_
− ai )

'⎡
⎣⎢

⎤
⎦⎥i=1

L

∑.    
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Gaussian Sum Filter for Nonlinear Systems

Basic Idea: to use the GS representation of the a posteriori density function in conjunction with 
the linearization procedure that has proven so effective in Kalman filter applications. 

p(xk | z
k−1) = α ki

' N(xk − aki ,Pki
' )

i=1

εk
'

∑

p(xk | z
k ) = ck α ki

' N(xk − aki ,Pki
' )

i=1

εk
'

∑ p(zk − hk (xk ))
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(from BRRs)

(from measurement equation)

As in the EKF, one linearizes     relative to    , so that               can be approximated by a 
gaussian in the region around     :

hk aki p(zk − hk (xk ))
aki

p(xk | z
k ) = ck α ki

' N(xk − aki ,Pki
' )

i=1

εk
'

∑ N(ξi ,Rk )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

where ξi = zk − hk (aki ) − Hki xk − aki( )
Hki =

∂hk
∂xk aki

(from sensor disturbances ~ N(0,Rk))
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Gaussian Sum Filter for Nonlinear Systems

Last expression reduces to:

p(xk | z
k ) = α kiN(xk − yki ,Pki )

i=1

εk

∑

with yki = aki + Kki zk − hk (aki )( )
Pki = Pki

' − KkiHkiPki
'

Kki = Pki
' Hki

T HkiPki
' Hki

T + Rk⎡⎣ ⎤⎦
−1

α ki =
α ki
' βki

α kj
' βkj

j=1

εk
'

∑

βkj = N(zk − hk (aki ),HkiPki
' Hki

T + Rk )

(filter gains)

The parameters above are obtaining using the Extended Kalman Filter equations.

This way, GS representation is formed as the convex combination of the output of several 
Kalman filters operating in parallel. 
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... and now, how to obtain                   for GS filter?p(xk+1 | z
k )

Two possible scenarios:

1) when there is little or no plant noise: 

wk ~ N(0,Qk ) , Qk ≤ Pki

2) when there is a significant amount of plant noise: 

p(wk ) = γ kN(wk −ω kl ,Qkl )
l=1

qk

∑

p(xk+1 | z
k ) = p(xk | z

k )p(xk+1 | xk )dxk∫
xk+1 = fk+1(xk ,uk ) + wk

(non-normal disturbances included)
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1st scenario:

. Covariance of the plant noise comparable to     Pki

. So, linearize the plant equation       relative to the mean values of the gaussian sum     :fk+1 yki

p(xk+1 | z
k ) = α (k+1)i

' N(xk+1 − a(k+1)i ,P(k+1)i )
i=1

ε( k+1)
'

∑

with a(k+1)i = fk+1(yki )

P(k+1)i
' = F(k+1)iPkiF(k+1)i

T +Qk

α (k+1)i
' = α ki

ε(k+1)
' = εk

F(k+1)
' =

∂fk+1
∂xk yki

. Important remark: the number of terms in the sum do not increase.  

p(xk+1 | xk ) = N(xk+1 − fk+1(yki ) − F(k+1)i (xk − yki ),Qk )
i=1

εk

∑
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2nd scenario:

The large plant noise will increase the variance of each term in the GS, creating conditions for 
the overlap of the individual terms.  

p(wk ) = γ kN(wk −ω kl ,Qkl )
l=1

qk

∑

p(xk+1 | z
k ) = α (k+1)i

' N(xk+1 − a(k+1)i ,P(k+1)i )
i=1

ε( k+1)
'

∑

p(xk+1 | xk ) = N(xk+1 − fk+1(yki ) − F(k+1)i (xk − yki ) −ω kl ,Qkl )
i=1

qk

∑

Consequences:
. linearizations are no longer valid;
. the next measurement will cause the various terms to have nearly the same mean.

Solution:
.           is approximated by a gaussian sum;
. recalculate the term                                 
p(wk )

p(xk+1 | z
k )

α (k+1)i
' = α kiγ kl

ε(k+1)
' = εkqk

a(k+1)i = fk+1(yki ) + wkl

P(k+1)i
' = F(k+1)iPkiF(k+1)i

T +Qkl

with 

the number of terms in the sum has increased  
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Example I

Consider the following nonlinear system:

xk+1 = 0,5xk +1+ sin(0,04π xk ) + wk , w ~ N(0;10−3)
zk = xk

2 + vk , v ~ N(0;10−3)
⎧
⎨
⎩

p(x0 | z
−1) = 0,2N(1,2;0,02) + 0,3N(0, 7;0,01) + 0,1N(3, 4;0,02) + 0,1N(2, 3;0,04) + 0,3N(1,9;0,01)
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Example II

xk+1 = 0,5xk +1+ sin(0,04π xk ) + wk

zk = xk
2 + vk

⎧
⎨
⎩

p(x0 | z
−1) = 0,2N(1,2;0,02) + 0,3N(0, 7;0,01) + 0,1N(3, 4;0,02) + 0,1N(2, 3;0,04) + 0,3N(1,9;0,01)

p(wk ) = 0,29N(2,14;0,72) + 0,18N(7, 45;8,05) + 0,53N(4, 31;2,29)

p(vk ) = N(0;10
−5 )

The same system with a Gaussian sum for the noise plant:
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Conclusions

. GSF results in the parallel operation of several EKF: there are as many individual filters as there 
are terms in the Gaussian sum.    

. The computational overhead of the GSF can be significantly greater than those of the EKF.   

. Nonetheless, the filtering estimates of the GSF are still less biased than those of the EKF.   

. There are some theoretical bounds on the errors for the approximations made in   
and              .    . However, they are hard to apply to a specific case.p(xk+1 | z

k )
p(xk | z

k )

One needs to rely on some ad hoc rules to keep the 
measurement residual consistent with its theoretical properties.   

. When inconsistency occurs, one proceeds by reinitialising the filter parameters (↓    or extra 
terms in the sum)

Pki
'
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