Kalman State Estimation over
Lossy, asynchronous and randomly
Delayed Sensor networks
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Minimum variance estimator
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We are considering a network with
asynchronous random delays and losses!
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To be able to solve the problem, we
make all the 'usual' assumptions

» Assume that the plant & and measurement
noise X follow a zero mean Gaussian
distribution (N(O,R, ),N(O,R, )

* The initial state vector also follows follows

a Gaussian distribution with mean Ea and
variance Raa

* The transmission delays are independent
of the initial state and of the noise and
have and upper bound, o

» The transmission delays are bounded by a
a maximum value \sigma — (all the ones
with greater delays are considered lost)

» At each time t, the controller only has
access to the control at t-1, and for the
state estimation problem we assume that
this value is always available

x(t+1) = A(t)x(t) + B(t)u(t) + £(t),
Y (t) = Cuz(t) + xu(t), the sensors output
x(0) = a is the initial condition

u(t) 1is the control - which we now at t+1

Y(t) = (9v(9)) (0)es) ©Observations arriving at t
St)=4{(v,0):0+T1, =t}

the state vector
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And we want the minimum variance
estimator for the state vector

T=0 | 1| 2| 3] 4| 5 |

P=0 | - | 2| 1| 3| 4,5 |
Idea: use Kalman filter over all - fgii}g’g’%l’o)
the observation in the interval -

- X(t=3[3,2,1,0),x(t=4/3,2,1)
t,t+0
> x(t=22,1,0),x(t=3|2,1,0)
> x(t=2]2,0)
» x(t=1|0)

However, this would be very time consuming, and in this case we are
interested in an online estimator, which could then be used for control
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By augmenting the state vector to a
whole interval [t,t+0] we can re-use the KF

The augmented state vector dynamics
is described by an extended state model

The augmented state vector
and observations
X(t+1)=[z(t),zt—1),...2@t—0)]"
Y(t) = (2,,5) €C
Y= { yo(t — it (v, t—7) € S(t)
" 0, otherwize

The state model
X(t+1)=U@)X () +CER)

And we can plug this state model in a
Kalman Filter to obtain a MVUE

Predict step:

X(t+1[t) = U)X (1t)

P(t+ 1|t) = UPUT + nt, S(t)]

Update step:

X(E+1t+1) = X(tt) +KE+ 1YL, SH)] - Y (t+1]t))
P(t+1jt+1) = P(t+ 1|t) — K(t + 1)CP(t + 1|t)

Kt+1)=Pt+1t)CTSt+1)*
St+1)=CP(t+1|t)CT + pu

Since our problem is essentially
sparse, we can rewrite and
COMPUTE all of this is a much
efficient way
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The final expression looks more
complex, but highlights the online nature of

the estimator

The prediction stage is identical

2(t + 1)) = A()2(t]t) + B(t)u(?t)
Poo(t+1|t) = A(t)Poo(t|t)A(t) + Ree(t),
But the update is cumbersome

B[t + 1) = 2(j[t) + K757 (¢ + 1)l (O)yv(0]0)
j=t+1,t. .t+1—0
v (9|t) Cy(0)2(0]t)

K 4( Z Pjio(t (O) AT (t )30
v,0€S(t)

AT@) =DIAT(),

except for all the empty rows and columns

() AR . AL

L) AZ(@) . AL
A(t) = . A

ML) AB() . AN

Aiz (t) — CVl (01)Pt_91,t—9201/2 (02)T + vzf’

Vif _ { Rg’lg(@), lf S1 = S9

0 otherwise
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Pj=Pi— Y E"(t)C,(0)Pis,;(0)
(v,0)€S(t)
PO,O ,lf Z_O,j:O
p_ ) AP @) Lif i=0,j>1
J Pij1()A®)"T if i>1,j=0
P; 1 if i>1,5>1

It is possible to use delayed
“measurements in the online
situations required by control!

No need to order them,



This estimator Is stable under 'natural’
assumptions

‘Natural' assumptions are similar to But we also require that the system is
those we saw previously either stable or observable
Time invariant ORIGINAL system A system with det A != 0 is observable via
At)= A4, C,t) =0, the communication system in the interval
’ [t,.t,] iff M(t-0,t)>0
All the process disturbances are statistically t1 l
stationary and non singular M(to,t1) := Z Z (Ae—to)T CTC, A%t > g
Rie(t) =Ry, >0, Ree=Ree>0 (1,0)€S (to,t1) v=1

In this case the system is stable in the
Lyaponov sense

L(t)=EBPL)E®) >0
AL <—(VE)"'PTHHOV(EH)" +

Z e(8|t)TCLe(9]t) (R ,)) where:
(v,0)€S(t)
V(t)= (PP (t) —I)UE(t — 1)
E(t+1)=UER) +V(E+1)

The problem in establishing stability, arises from the non-invariance of the
observations equation of the system we are solving

07/07/10 Susana Brandao - IST-CMU 7



Simulations
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We simulated a car moving at
constant velocity

Matrices for of the state model

11 Raq=10""1
A:(o 1) Ree=10""
B=0 Ry, =1077

Ea = (0,0)"

Delays histograms
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Results show the covariance matrix Is
bounded when we have no loss of data
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(c) Variance for the position
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And also show that the system with
many losses Is not observable, but it is

stable

Observability

Estimation of the covariancs far the walocity aslimatian
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Stability

Covariance of the position estimator with

respect to changes in the initial position
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(a) Verification of the observability conditions: (b) Stability of the position estimator with re- (c) Stability of the velocity estimator with re
minimum eigen values of M (t.t + o)

The third system is not

observable via the

communication channels
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spect to the initial position

spect to the initial position

However, after some struggling it Is able to
converge, since our system is stable!
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Conclusions

The main advantage is the fastest
way to integrate new observations

*We can incorporate information of
delayed observations online,

* The delayed observations still
contribute to decrease the
covariance!

e Can be introduced without
sorting

*Is stable provided some basic
assumptions

Main disadvantage are the naive
considerations on the delays distribution

In real case systems, we rarely can
assume the delays,

* One of the few examples is when
the delay is caused by physical
process which we may be able to
estimate

If we lose the delays, this system
Is useless and a new approach
should be provided
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