
 Abstract: A nonlinear filter is associated to the 
estimation of the state of a dynamical system from noisy 
measurements when either the system dynamics is a 
nonlinear function of the state and/or the disturbances 
do not follow normality conditions. Until now, there is 
no closed-form solution to the nonlinear estimation 
problem and one is forced to use approximation 
techniques. The Gaussian Sum filter (GSF) is a density-
based approximation technique which involves a 
weighted average process over a collection of Extended 
Kalman filters (EKF). Since its introduction in the early 
70’s, the GSF has been widely applied in many 
dynamical stochastic problems but still with no overall 
convergence results accepted. 
 In this paper, one derives the theoretical 
calculations behind the GSF, taking as starting point the 
Bayes’ theory. Then, some numerical examples are 
provided that test the performance of the GSF. In the 
end, a discussion about the merits and drawbacks of the 
GSF is also presented.  

 Keywords: Nonlinear Estimation, Stochastic  
Dynamical Systems, Bayesian Framework, Density-
based Estimates, Gaussian Sum Filter. 

 Introduction

 In estimation theory, some sort of estimator 
is used to obtain the state of a stochastic dynamical 
system from noisy measurements. This is so, 
because it  is assumed that the desired information 
is, somehow, embedded in a noisy signal: noise 
adds uncertainty without which the problem would 
become deterministic and the estimation process 
would not be needed.
 The system’s dynamics in the estimation 
procedure can be modelled as linear if both 
transition and measurement  equations are linear 
functions of the state-variables involved or 
nonlinear otherwise, while the noise can be 
modelled by any probability density function, being 
the normal or gaussian one the most  used  due to 
the simpler statistics involved [1].
 The Bayes‘ theory has been used ever since 
in the estimation process by providing a systematic 
method on how to include prior knowledge to the 
system being modelled [6]. From this point on, a 
separation has been made on the bayes’ framework 
for handling linear and nonlinear estimation 
problems. In the linear case, the optimal solution 
can be explicitly written down, resulting in the 
celebrated Kalman-Bucy filter (1960) [2]. 

However, for the nonlinear case, no closed-form 
solution has been yet  purposed and one is forced to 
seek approximation techniques. 
 The function-based techniques generally 
approximate the nonlinear model by a linear one 
(us ing 1st o r 2nd o rder Tay lor ’s se r ies 
approximation) and then use the optimal Kalman 
filter for the linearized model. This works well if 
the nonlinearities are not too severe but, if one 
looks deeply in the derived system, one will realise 
that is solving the wrong problem: by keeping the 
original nonlinear model, then only this way can 
one pose the optimal solution even if it  does not 
exist  or it  is impossible to solve the equations 
analytically.
 The dens i ty -based approx ima t ion 
techniques had emerged to tackle the difficulties 
encountered in the function-based approximations 
in order to obtain less biased filtering estimates of 
the state-variables. Within this approach, several 
methods have been proposed: the density 
approximation as a sum of a gaussian distribution, 
the density approximation through numerical 
integration, the simulation-based density 
approximation using Monte-Carlo integration with 
importance sampling and a recursive algorithm of 
random draws with use of rejection sampling.
 The first publications to pose a general 
solution to the nonlinear estimation problem date 
back to 1970 by Jazwinski [2]. By its turn, the main 
references to the Gaussian Sum filter are presented 
by Sorenson and Alspach (1971), Alspach and 
Sorenson (1972) and Anderson and Moore (1979).

 Methods

 A. Recursive Bayesian Estimation
 The objective of the estimation problem is 
to gather information about the parameter x given 
an observation of an experimental outcome z. In the 
Bayesian framework, both vectors x and z are 
treated as random variables [7]. The vector x is 
assumed having a known prior density function 
p(x) that  encompasses everything known (and 

unknown) about  the parameters before the 
experimental outcome. By its turn, the observation 
vector is assumed to have a probability density 
function belonging to a class indexed by the 
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parameters, p(z | x) .
 After observing the event, the knowledge 
about the parameter is altered, so that, its new value 
it’s now given, in accordance to the Bayes’ rule, by:

 A purely bayesian view on the estimation 
problem states that the a posteriori density function 
p(x | z) describes everything about  the parameter x 
after the experimental outcome has been obtained 
[6, 7]. The denominator of expression (1) is just  a 
scalar positive constant  and it  can be found by 
marginalization as,

and one needs only to specify the product inside the 
integral. 
 In many applications of estimation theory, 
the parameters admit some dynamical properties 
that make them change with time (or the estimate 
of the parameters is needed online) so, the 
information about the parameters needs to be 
updated with each measurement. This is true in 
recursive estimation problems, where the 
parameters of a dynamical system working in a 
closed-loop are tracked using measurements of 
system input and output. 
 Let  xk denote the state at time index k 
( k ∈ ). Recursive estimation is about obtaining 
an estimate of the current  state given information 
about the last  est imate and the current 
measurement, zk . A useful notation is zk which 
denotes all measurements up to time index k, i.e., 
zi{ }i=0

k = {z1, z2 ,...zk} . Hence, conditioned on the 

present  state, no additional information about the 
future states should be available in past 
observations. This implies that  the states evolve in 
time according to a Markov process with an initial 
state x0 ~ p(x0 ) and transition kernel of the form:

     

 
 The measurement observed at  the time 
instant  k is conditionally independent of the 
previously observed measurements given the 
current state value:

 

p(x | z) = p(z | x)p(x)
p(z)

 

p(z) = p(z | x)p(x)dx

n
∫

p(xk+1 | x0 , x1,..., xk ) = p(xk+1 | xk )

p(zk | x0 , x1,..., xk ) = p(zk | xk )

 A recursive estimation problem is uniquely defined 
when the prior p(x0 ) , the transition kernel 
p(xk+1 | xk )  and the likelihood p(zk | xk )  are 
given. One is interested on how to update the a 
posteriori or filtering density function as new 
measurements arrive. Resorting to the Jazwinski’s 
work (1970), this density is recursively computed 
from the following relations, where the 
aforementioned Bayes’ rule and Markov property 
have been used:

 

 Moreover, the denominator of the a 
posteriori density function can be expressed in the 
same way as relation (2), i.e., by marginalization, 
one gets:

 The filtering density function p(xk | z
k )

just  derived is used to obtain the one-step 
prediction or time-update p(xk+1 | z

k )  as:

 The integrals on the previous expressions 
only permit an analytical solution in a few special 
cases. The most important special case is when the 
dynamical model is linear and the initial conditions 
and noises are normally distributed. One of the 
attempts to apply the Bayesian framework to  more 
general models is presented next, where the 
nonlinearities are tackled by using Gaussian sum 
approximations. 

 

p(zk | z
k−1) = p(zk | xk )p(xk | z

k−1)dxk

n
∫

 

p(xk+1 | z
k ) = p(xk+1, xk | z

k )dxk

n
∫ =

2

(1)

(2)

(3)

(4)

p(xk | z
k ) = p(zk | xk )p(xk )

p(zk )
=
p(zk , z

k−1 | xk )p(xk )
p(zk | z

k−1)
=

=
p(zk | z

k−1, xk )p(z
k−1 | xk )p(xk )

p(zk | z
k−1)p(zk−1)

=

=
p(zk | xk )p(xk | z

k−1)p(zk−1)p(xk )
p(zk | z

k−1)p(zk−1)p(xk )
=

=
p(zk | xk )p(xk | z

k−1)
p(zk | z

k−1) (5)

(6)

 

= p(xk+1 | xk , z
k )p(xk | z

k )dxk

n
∫ =

 

= p(xk+1 | xk )p(xk | z
k )dxk


n
∫ (7)



 B. Gaussian Sum Approximations
 The Gaussian sum filter is a nonlinear 
algorithm that  involves computing collections of 
extended Kalman filters. Since it  is impossible to 
obtain exact representations of the a posteriori 
density for nonlinear systems, it is reasonable to 
seek approximations that will make expression (5) 
more tractable [3].
 One begins by writing down the general 
expression for the nonlinear dynamical systems. It 
is composed by the plant  and measurement 
equations as,

where wk and vk are both Gaussian white-noise 
sequences with zero means and covariances Qk  

and Rk , respectively. Then, a filtering procedure 
based on the bayesian framework is developed in 
order to obtain p(xk | z

k ) in conjunction with the 
linearization step that has been used in some 
Kalman filter incursions into the nonlinear model 
field. The development starts before acquiring the 
new measurement  so that, the density function is 
given by a weighted sum of gaussian terms with 
small covariance matrix involved:

where,

           N(xk − aki ,Pki
' ) =  

= (2π )−n /2 Pki
' −1/2

exp −
1
2
(xk − aki )

T Pki
'( )−1 (xk − aki )⎛

⎝⎜
⎞
⎠⎟

           α ki
' = 1

i=1

εk
'

∑ , α ki
' ≥ 0 ∀i

 
 It  can be shown that  expression (9) 
converges uniformly to any density function of 
practical interest as the number of terms in the sum 
increases and the covariance approaches the zero 
matrix. Inserting expression (9) into (5), one gets 
the following general relation for the a posteriori 
density function that one seeks:

 

xk+1 = fk+1(xk ) + wk

zk = hk (xk ) + vk
⎧
⎨
⎩

with ck being a scalar positive quantity obtained in  
a similar way as expression (2). 
 As in the of the Extended Kalman filter, the 
linearization of hk relative to aki allows that the 

term p(zk − hk (xk )) can be approximated by a 
Gaussian in the relative small region nearby aki . 
Hence, last expression can be rewritten as:
     

where,
 ξi = zk − hk (aki ) − Hki xk − aki[ ]

              Hki =
∂hk
∂xk aki

 
 Expression (11) is reduced to a more 
compact way in order to resemble the relations 
derived for the extended Kalman filter in what 
concerns gain and updated covariances:

with,

       yki = aki + Kki (zk − hk (aki ))       (mean values)

       Pki = Pki

' − KkiHkiPki
'          (covariance matrix)

       Kki = Pki
' Hki

T HkiPki
' Hki

T + Rk⎡⎣ ⎤⎦
−1

  (filter gains)

         α ki
' =

α ki
' βki

α ki
' βkj

j=1

εk
'

∑
         βkj = N(zk − hk (aki ),HkiPki

' Hki
T + Rk )

 Hence, the Gaussian sum representation is 
formed as the convex combination of the output of 
several extended Kalman filters in parallel [4].
 Now, let’s focus attention in the problem of 
obtaining the Gaussian sum of the one-step 
prediction density, p(xk+1 | z

k ) . According to [4], 
two cases must be considered: firstly, when there is 
little plant noise corrupting the system dynamics 
and, secondly, when there is a significant amount  of 
noise.  

p(xk | z
k ) = α kiN(xk − yki ,Pki )

i=1

εk

∑
(12)
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(9)

p(xk | z
k ) = ck α ki

' N(xk − aki ,Pki
' )p(zk − hk (xk ))

i=1

εk
'

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(10)

(8)
(11)

p(xk | z
k ) = ck α ki

' N(xk − aki ,Pki
' )N(ξi ,Rk )

i=1

εk
'

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

p(xk | z
k−1) = α ki

' N(xk − aki ,Pki
' )

i=1

εk
'

∑



 In the first  case, the covariance of the plant 
noise is comparable to that  of Pki . So, proceeding 
as previously, one must  linearize the plant  equation 
fk+1 relative to the mean values of the Gaussian 

sum, yki . It follows that,

with,
        a(k+1)i = fk+1(yki )

        P(k+1)i
' = F(k+1)iPkiF(k+1)i

T +Qk

        α (k+1)i
' = α ki

        εk+1
' = εk

       F(k+1)i
' =

∂fk+1
∂xk yki

 The effect of the plant nonlinearity is to 
modify the parameter of the Gaussian sum terms. 
The mean values yki become equal to a(k+1)i and the 

covariances Pki are modified to P(k+1)i
' .

 In the second case, when the covariance 
Qk is large, then it may be necessary to change the 

calculation of p(xk+1 | z
k ) since the large plant 

noise will increase the covariance of each term in 
the Gaussian sum, creating conditions for a large 
overlap of the individual terms. In that situation, 
the linearizations are no longer valid as previous 
and the next measurement will cause the several 
terms to have nearly the same mean values.
 The approach to follow is to approximate 
the probability density function for the plant noise, 
i.e., p(wk ) , by a Gaussian sum approximation also 
and, therefore, it no longer matters to impose 
imperatively that wk must be normality distributed. 
It follows that, now, p(wk ) is of the form:

 Then, the transition kernel must be 
linearized relative to yki , yielding:

p(xk+1 | z
k ) = α (k+1)i

' N(xk+1 − a(k+1)i ,P(k+1)i )
i=1

εk+1
'

∑

p(wk ) = γ kN(wk −ω kl ,Qkl )
l=1

qk

∑

p(xk+1 | xk ) =

 
 Finally, the one-step prediction is rewritten 
as:

with,
        εk+1

' = εkqk
        α (k+1)i

' = α kiγ kl

        a(k+1)i
' = fk+1(ykl ) + wkl

        P(k+1)i
' = F(k+1)iPklF(k+1)i

T +Qkl

 The growth of terms could seriously reduce 
the performance of the Gaussian sum filter. One 
can alleviate the number of terms by combining 
some of them together or neglecting the ones 
whose weight approaches zero.
 With all the relations derived above, it is 
only necessary that the probability density function 
prescribed for the initial state be also represented 
by a Gaussian sum approximation as,

then, ones uses expressions (12) and (13) or (14) to 
recursively compute the filtering and one-step 
prediction estimates.

 Results

 To test  the Gaussian sum filter just derived, 
one considers a stochastic dynamical system whose 
plant and measurement equations are not linear 
functions of the state-variable as follows:   

 For the first set of experiments, one sets the 
plant and measurement  noise distributions as 
wk ~ N(0;10

−3) and vk ~ N(0;10
−3) .

 For the initial state, one chooses a mixture 
of five Gaussians whose statistics and weighting 
factors have been established as: 

= N(xk+1 − fk+1(yki ) − F(k+1)i (xk − yki ) −ω kl ,Qkl )
l=1

qk

∑

p(xk+1 | z
k ) = α (k+1)i

' N(xk+1 − a(k+1)i ,P(k+1)
' )

i=1

εk+1
'

∑

p(x0 | z
−1) = α0

' N(x0 − a0i
' ,P0i

' )
i=1

ε0
'

∑

xk+1 = 0,5xk +1+ sin(0,04π xk ) + wk

zk = xk
2 + vk

⎧
⎨
⎩
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(13)

(14)

(15)

(16)

(17)



 p(x0 | z
−1) = 0,2N(1,2;0,02) + 0,3N(0, 7;0,01) +

 The results obtained are plotted in fig. 1. 
From the curves, one can see that the mean 
estimate is predicting well the evolution of the 
system dynamics whereas the est imated 
covariances are bounded and they present small 
magnitude.      

Figure 1 - Evolution of the state-variable and estimates along 
the iterations of the GSF algorithm.

 The relative low level of uncertainty found 
in this experiment  can be attributed to the good 
performance of the GSF, although the nonlinearities 
in the plant  equation are not too severe and the 
magnitude of the disturbances are kept  at  minimum 
levels. 
 To see the evolution of the individual 
means belonging to each term in the Gaussian sum, 
one plots each tracing in fig. 2.   

Figure 2 - Evolution of the five means belonging to each term 
in the Gaussian sum along the iterations.

 One sees that the individual means 
convergence to the same value after a small number 
of iterations. This also happens every time one 
changes the initial individual means of the terms 
and the initial individual weights. Such phenomena 
suggests that, for the particular dynamic system 

considered, the initial conditions are not so 
important  in the overall performance of the GSF 
algorithm and one can start with whatever values  
for initial means and weights one wishes, as long as 
one keeps the initial covariances small.
 For the second set  of experiments, one 
approximates the plant disturbances as a sum of 
G a u s s i a n t e r m s a s w e l l . B e s i d e s t h i s 
approximation, one also degrades the disturbances’ 
initial statistics making them harden. So now, one 
deals with a plant noise distribution of the form:

               +0,53N(4, 31;2,29)

 As previously mentioned, the new 
conditions will lead to the use of expressions (12) 
and (14), instead of (13), to recursively compute 
the filtering and one-step prediction estimates, 
respectively.  
 The results obtained are plotted in fig. 3. 
By analysing the tracings, one sees that the 
variations in amplitude of the state-variable has 
increased as a consequence of the high plant  noise 
but, the mean estimate continues to predict the 
evolution of the state-variable very closely. The 
estimated covariances have also increased in 
magnitude but, they are still bounded.   

Figure 3 - Evolution of the state-variable and estimates along 
the iterations for the new GSF algorithm.

 As a consequence of the new conditions for 
the second experiment, the number of terms in the 
Gaussian sum has increased along the iterations. 
This situation is depicted in fig. 4. 
 In the initial iterations, one sees a 
exponential growth in the number of the terms as 
expected, followed by a stabilisation around 35. 
This happens so because one has established a 
limitation criterion inside the GSF algorithm. If the 
weight  of a term in the Gaussian sum is below a 
predefined value (for instance less than 10-2), that 
term is automatically eliminated from the sum in 
the following iteration. If it  wasn’t  for this 

p(wk ) = 0,29N(2,14;0,72) + 0,18N(7, 45;8,05) +
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+0,1N(3, 4;0,02) + 0,1N(4, 37;0,04) + 0,3N(1,9;0,01)



criterion, the number of terms would continue to 
grow unbounded along the iterations, leading to an 
overload of the computation requirements.

Figure 4 - Evolution of the number of terms present in the 
Gaussian sum along the iterations.

 Within this approach, one can control the 
magnitude of the estimates by changing the value 
of the limitation criterion. If the criterion is too 
narrow one gets the EKF algorithm.
 For this second set of experiments, a 
number of around 35 terms in the Gaussian sum 
yielded the best results.          

 Conclusions

 A recursive procedure that performs the 
Gaussian sum filter of p(xk | z

k ) and p(xk+1 | z
k )  

has been presented. As seen throughout this report, 
the procedure results in the parallel operation of 
several Extended Kalman filters: there are as many 
individual filters as there are terms in the Gaussian 
sum. So, the computational overhead of the GSF 
can be significantly greater than those of the EKF.
 The nonlinear GSF requires as much as εk

'

nodes on the initial values of the mean values and 
covariances. In the case that  the number of nodes is 
equal to one, this algorithm reduces to the EKF. 
Nonetheless, the filtering estimates produced by the 
GSF are much less biased than those of the EKF. 
 In the literature, there are some theoretical 
bounds on the errors for the approximation made in 
the calculation of the a posteriori density function. 
However, these bounds are hard to apply to a 
specific problem. In opposition to the MMAE 
algorithm, in the GSF one needs to rely on some ad 
hoc rules to track the behaviour of the measurement 
residual and to keep it consistent with its theoretical 
properties. 
 When divergence or inconsistency is 
detected, one proceeds by reinitialising the filter 

parameters either by decreasing the magnitude of 
the covariance or adding extra terms to the sum.    
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