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Abstract

In large wireless sensor networks, data can expe-
rience loss and significant delay which from the
aspect of control purposes, has the same effect as
the loss. This paper reviews results achieved for
Kalman filtering with intermittent observations. It
has been shown that by modeling the arrival of ob-
servations as random Bernoulli process, there are
conditions under which the state error covariance
remains bounded. We show that if we model the
arrivals with heavy tailed distribution, often used to
characterize network traffic, theoretical bounds for
error covariance and critical value of observation
arrival still apply.

I Introduction

Applications of wireless sensor networks are numer-
ous and they range from environmental and indus-
trial monitoring to military surveillance and object
tracking. For many of these applications, observed
data is used to estimate the state of a controlled
system and this estimate is later used for control.
Thus, it is critical that data arrives in time. How-
ever, in large multi-hop networks, loss and delay
can occur along unreliable wireless channels. Sig-
nificant delay under these conditions is treated the
same as the data loss. Estimation with some of the
observation missing represents a topic of interest
dating from the seventies. [1] [2]

For a Kalman filter estimation with intermittent
observations, in a discrete system, observations can
be modeled as Bernoulli random process with pa-
rameter 0 < λ < 1. If the probability of arrival of
an observation at time t is λ > λc then the expecta-
tion of the estimation error covariance is bounded.
The value of λc depends on the eigenvalues of the
state matrix A and on the structure of output ma-
trix C. If λ ≤ λc then the expectation of error
covariance is not finite. This critical value of the

probability of arrival of an observation λc cannot be
directly calculated, but there exist upper and lower
bounds for it. For some systems, the bounds coin-
cide and exact value of λc can be evaluated. For
λ > λc, upper and lower bound for the mean error
covariance can be derived. These results represent
the work published in [1].

Heavy-tailed distribution have been widely used
to model traffic in wired and wireless networks. [4]
[3] [5] Burstiness of data loss can be reflected by
modeling the data inter-arrival as a random Pareto
process. By evaluating λa, the average probability
of arrival of observation that obeys heavy tailed
distribution, we can apply results for convergence
of error covariance for the case of λa > λc.

The rest of the paper is organized as follows. In
section II, the formulation of problem of Kalman fil-
tering with intermittent observations is presented.
Section III presents the conditions under which the
error remains bounded. Overview of heavy tailed
distributions is given in section IV. In section V
simulation results are presented, while in section
VI conclusions are stated and future work is dis-
cussed.

II Problem statement

Discrete-time linear system with Gaussian noise as-
sumptions has the following representation:

xt+1 = Axt + wt

yt = Cxt + vt (1)

where xt ∈ <n is the state vector, yt ∈ <m the out-
put vector, wt ∈ <p the plant noise and vt ∈ <m
the measurement noise. Both plant and measure-
ment noise are independent Gaussian random vec-
tors with zero mean and covariance matrices Q and
R, respectively. With the initial state x0 being zero
mean Gaussian with covariance Σ0, Kalman filter
is an optimal estimator.
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Kalman filter predict and update equations can
be modified for the case of intermittent observa-
tions as follows. The arrival of the observation
at time t is modeled as a binary random variable
γt with probability distribution pγt (1) = λt. The
measurement noise vt is defined:

p (vt | γt) =

{
N (0, R) , γt = 1
N
(
0, σ2I

)
, γt = 0

The absence of observations corresponds to the case
of σ →∞. First, the following is defined:

x̂t|t
4
= E [xt| yt, γt]

Pt|t
4
= E

[
(xt − x̂t) (xt − x̂t)′ | yt, γt

]
x̂t+1|t

4
= E [xt+1 | yt, γt]

Pt+1|t
4
= E

[
(xt+1 − x̂t+1) (xt+1 − x̂t+1)

′ | yt, γt
]

ŷt+1|t
4
= E [yt+1 | yt, γt]

The Kalman filter equations are modified into fol-
lowing:

x̂t+1|t = Ax̂t|t

Pt+1|t = APt|tA
′ +Q (2)

x̂t+1|t+1 = x̂t+1|t + Pt+1|tC
′

×
(
CPt+1|tC

′ + γt+1R+ (1− γt+1)σ2I
)−1

×
(
yt+1 − Cx̂t+1|t

)
(3)

Pxt+1|t+1 = Pt+1|t − Pt+1|tC
′

×
(
CPt+1|tC

′ + γt+1R+ (1− γt+1)σ2I
)−1

× CPt+1|t (4)

Now, taking the limit as σ →∞, the update equa-
tions (3) and (4) become:

x̂t+1|t+1 = x̂t+1|t + γt+1Kt+1

(
yt+1 − Cx̂t+1|t

)
Pt+1|t+1 = Pt+1|t − γt+1Kt+1CPt+1

Kt+1 = Pt+1|tC
′ (CPt+1|tC

′ +R
)−1

(5)

The predict cycle remains the same as in standard
case. Updated state estimate and covariance are
now a a function of a random variable γt+1 and
therefore are also a random variable. Equations (5)
mean that an update at time t occurs only if γt = 1,
i.e. the observation has arrived. For the other case,
when observation is missing, γt = 0, the updated
value is equal to the predicted value. Given the

Figure 1: Kalman filter with intermittent observa-
tions

observations {yt} and their arrival sequence {γt},
update equations (5) give the minimum state er-
ror covariance. Overview of the system is given on
Figure 1.

Under the assumption that the arrival process
of the observation is time-independent λt = λ for
all t, there exist upper and lower bound on the
expectation of the state error covariance. These
bounds are a function of the arrival probability of
the observation λ.

III Bounds for convergence

The Riccati equation of the state error covariance
using (2) and (5) can be written in the following
form:

Pt+1 = APtA
′+Q−λAPtC ′ (CPtC ′ +R)

−1
CPtA

′

(6)
where Pt = Pt|t−1.

The following theorem states the existence of a
critical value for the observation arrival rate below
which the state error covariance may diverge for
some initial condition.

Theorem 1. If
(
A,Q

1
2

)
is controllable, (A,C)

is observable and A is unstable, there exists a
λc ∈ (0, 1] such that:

lim
t→∞

E [Pt] = +∞, for 0 ≤ λ ≤ λc and ∃P0 ≥ 0

E [Pt] ≤MP0
∀t for λc < λ ≤ 1 and ∀P0 ≥ 0

where MP0
> 0 depends on the initial condition

P0 > 0.
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The critical value cannot be directly calculated,
however its upper λ and lower bound λ can be de-
rived: λ ≤ λc ≤ λ.

Lower bound can easily be calculated:

λ = 1− 1

α2
(7)

where α = maxi |σi| and σi are the eigenvalues of
A.

The upper bound λ is obtained by solving the
following optimization problem:

λ = argminΦλ (Y,Z) > 0, 0 ≤ Y ≤ I

where function Φλ (Y, Z) is defined:

Φ(Y,Z)=

 Y
√
λ(Y A+ZC)

√
1−λY A

√
λ(Y A′+C′Z′) Y 0
√

1−λA′Y 0 Y


>0 (8)

This problem can be solved using bisection for λ
whose upper and lower bound are known, 0 and 1,
and solving convex feasibility problem with fixed λ
for each iteration.

The following theorem states an estimate of
the limit of the expected value E [Ptc, when it is
bounded.

Theorem 1. If
(
A,Q

1
2

)
is controllable, (A,C) is

observable and λ ≥ λ then the following applies:

0 < St ≤ E [Pt] ≤ Vt, ∀E [P0] ≥ 0 (9)

with limt→∞ St = S and limt→∞ Vt = V , where S
and V are the solutions of algebraic equations:

S = (1− λ)ASA′

V = gλ
(
V
)

= AV A′ +Q− λAV C ′
(
CV C ′ +R

)−1
CV A′

The solution to V = gλ
(
V
)

is also given by the
following optimization problem:

argmaxV Trace (V )

subject to[
AV A′ − V

√
λAV C ′√

λCV A′ CV C ′ +R

]
≥ 0,

V ≥ 0. (10)

Figure 2: Pareto and exponential probability den-
sity functions plotted on a log scale

Figure 3: Pareto probability density function for
various α

IV Modeling with Pareto dis-
tribution

Modeling arrival of observed data as Bernoulli vari-
able does not take into account the burstiness of
network traffic loss. Whether or not the data is lost
depends only on average probability of arrival λ and
not directly on whether the previous observation
was lost or not. However, studies of network traf-
fic have shown that if the previous packet was lost,
then the probability that the next packet is lost is
higher, meaning that data loss happens in bursts.
This behavior can be modeled with heavy tailed
distribution, where inter-error gaps follow Pareto
distribution. Although causes for loss are differ-
ent, bit errors on telephone channels and losses in
Ethernet and wireless networks all show heavy tail
properties.[5] [6] [7]
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Figure 4: Average probability of arrival for Pareto
distribution

Heavy tailed distributions are considered those
that decay more slowly than exponential distribu-
tion, as illustrated for Pareto distribution on Fig-
ure 2. This makes larger values more probable than
in exponential distribution, i.e. gives a heavier tail.
Pareto distribution is characterized by shape pa-
rameter α and location parameter xm. It’s proba-
bility density function is given by:

fX (x) =

{
α xm

α

xα+1 for x > xm
0 for x < xm

Figure 3 shows probability density function of
Pareto distribution for various α. For α ≤ 1 the
expected value does not exist and for α ≤ 2 the
variance does not exist.

Pareto distribution can be used to model periods
between arrivals of observations. To apply previ-
ously reviewed results on convergence of error co-
variance, we need to use the average probability
of arrival of observation. This average probability
is not directly a parameter of Pareto distribution,
but it can be obtained during simulations. Figure 4
shows the obtained graphs of average probability
of arrival for various values of Pareto parameters α
and xm.

From previous results, it can be stated that the
expected value E [Ptc should be bounded for all ini-
tial conditions P0, if the average arrival probability
of the observations update is greater then critical
value λc, and it may diverge for some initial con-
dition if it is lower, and this can be verified with
Monte-Carlo simulations.

V Simulation results

Without loss of generality, we will use a scalar ver-
sion of unstable system with the following param-
eters: A = −1.25, C = 1, and vt and wt having
zero mean and variance R = 2.5 and Q = 1, respec-
tively. Using (7) and (8), lower and upper bound
for critical value can be calculated. In this case,
the bounds coincide and we can obtain a tight es-
timate of λc = 0.36. Figure 5(a) shows estimation
error for the case when λ is below and Figure 5(b)
when it is above λc. The error has dropped 14 times
for a small increase in λ. Similarly, there is signifi-
cant decrease in the value of error variance, once λ
increases a little over λc, as seen on Figure 6.

Now, we use Pareto distribution (rounded to
nearest integer) to model periods between arrivals
of observations for the same system. For each sim-
ulation run, we calculate the average arrival proba-
bility λ. Figure 7(a) shows estimation error for the
case when this average probability is below criti-
cal value of λc = 0.36, for a single simulation, with
Pareto parameters (xm = 1 and α = 1.35). Fig-
ure 7(b) shows the results when multiple simula-
tions where run with an average value of λ greater
than λc. Absolute error was averaged for 100 simu-
lations for the same system and the same Pareto pa-
rameters (xm = 1 and α = 1.6). Our results resem-
ble the case of modeling observations with Bernoulli
random variable where for λ < λc estimation error
can be higher couple of orders of magnitude than
in the case λ > λc, even if the change in λ is not
big.

Next, we compare the error covariance for the
two cases of λ. Figure 8(a) shows the value of
variance when average probability is below critical
value, for a single simulation. Next, as for estima-
tion error, we ran multiple simulations and aver-
aged the variance. Then we compared the mean
value in time of thus obtained variance. After solv-
ing (10) for λ equal to the average probability of
arrival, we obtained an upper bound for the error
variance. As it can be seen from Figure 8(b), the
expected value of the variance remains below the
upper bound. This bound does not apply to the
value that variance can take in time, only to its ex-
pected value, as the figure shows these values can
be much higher then the upper bound.
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(a) λ below λc (b) λ above λc

Figure 5: Estimation error-observations modeled as Bernoulli random variable

(a) λ below λc (b) λ above λc

Figure 6: State error variance-observations modeled as Bernoulli random variable

(a) λ below λc (b) λ above λc

Figure 7: Estimation error-observations modeled as Pareto random variable

VI Conclusions

In this paper, we have reviewed the results on
Kalman filtering when not all observation data is

available. Observations are modeled as Bernoulli
random variables. There exists a critical value of
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(a) λ below λc (b) λ above λc

Figure 8: State error variance-observations modeled as Pareto random variable

arrival probability of observations that depends on
the system dynamics, above which state covariance
remains bounded for all initial conditions.

When these results are applied for observations
that are modeled with Pareto distribution, which
is heavy tailed, simulations lead to the same con-
clusions. If average arrival probability of Pareto
modeled observations falls above the critical value
of arrival for the unstable system, error covariance
stays finite.

This experimental methodology is the first step
for deriving specific bounds for the critical value
of average arrival probability and error covariance
for heavy-tailed characterized intermittent observa-
tions.
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