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Abstract

We address the problem of recovering a matrix of tracked
features, based on partial observations of their trajectories.
Besides partial observability, we assume the existence of
gross, but sparse, noise on the known entries. Recently, a
spur of work in the optimization community has spun op-
timal methods for matrix completion when this matrix is
known to be low rank by minimizing the nuclear norm. Al-
beit exhibiting several optimality properties, there are no
incremental versions available.

This problem has obvious applications in real-time
tracking and structure from motion, where the observations
are usually plagued by self-occlusion and outliers in the
tracker process.

In this paper, we build upon the Nuclear Norm Robust
PCA method and SPectrally Optimal Completion to propose
a fast and incremental algorithm which is able to cope with
outliers.

We present experiments showing the competitive speed
of our method and show that we obtain this results while
maintaining performance comparable to the optimal ap-
proaches.

1. Introduction

We focus on the problem of recovering trajectories of a
rigid object along several pictures of it [?]. Inherent to this
problem are the difficulties created by self-occlusion and
outliers introduced by the feature tracking process [?]. We
deal with both of this issues by formulating an optimization
problem which seeks to minimize the rank of the resulting
measurement matrix, which we know beforehand to live on
the set of rank-4 matrices.

This problem has already been explored by Aguiar et
al. [2, 3] in the same context. Their method, SPectrally
Optimal Completion (SPOC), iteratively completes the ma-
trix such that the fifth singular value of the matrix is mini-
mized (thus enforcing the constraint that the resulting ma-

trix should be as close to rank-4 as possible). SPOC yields
an optimal solution, as long as the occlusion pattern follows
a Young diagram i.e., the number of occluded coordinates
are a monotonic function of the rows or columns and they
are not alternated with known coordinates (e.g., they occupy
the upper or lower triangular of the observation matrix). Be-
sides this, it requires that no gross outliers are present.

More recently, a spur of work in the optimization com-
munity has spun optimal methods for matrix completion
[4, 7, 5] when this matrix is known to be low rank by mini-
mizing the nuclear norm [6, 4, 7, 5, 8]. In contrast to SPOC,
these approaches are able to deal with arbitrary patterns
of occlusion and gross outliers. Albeit showing interest-
ing theoretical properties such as optimality and automatic
rank discovery, these methods are plagued by the need to
calculate the Singular Value Decompositions of the entire
currently estimate of the data matrix on every iteration for
each addition of a new frame. Therefore, these factors make
them improper for use in situations when the estimation is
to be done sequentially, i.e., by building up on the previous
iterations to calculate subsequent ones.

The method we propose assumes, instead, an initial sub-
set of frames is known. Then, for each frame, it alternates
between the use of nuclear norm minimization for outlier re-
moval on the known trajectories and SPOC for matrix com-
pletion. The combined use of these techniques allows the
completion for an arbitrary pattern of occlusion in an itera-
tive fashion, while keeping the number and size of Singular
Value Decompositions in the nuclear norm minimization to
a minimum, since they are only applied to smaller matrices,
thus resulting in a faster algorithm.

2. Proposed approach

The problem of recovering the full set of trajectories can
be formulated as estimating the incomplete entries of a ma-
trix W, while correcting a subset of known ones which have
been contamined by noise. For the case of a rigid object, it
has been shown [9, 1] that the matrix piling the trajectories
along the various frames can be obtained by the product of
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a matrix M comprising the camera motion matrices and the
3D shape matrix S, as

W = MS>. (1)

As such, the resulting measurement matrix W has, in ab-
sence of noise, a rank less or equal than 4.

Aguiar et al. [3] showed that for a matrix W with a sin-
gle entry x missing

W =
[

x v>

u A

]
, (2)

the completion such that its fifth singular value σ̂5 is min-
imized is, under broad conditions, unique. To obtain the
solution, they use the Cauchy Interlacing Theorem to place
a tight bound on σ̂5, as

σ̂5 ≈ max
{

σ5

([
v>

A

])
, σ5

([
u A

])}
. (3)

Then, they obtain the completion in closed form as the root
of the characteristic polynomial of the matrix WW>

p(x) = det(WW> − σ̂2
5I) = 0, (4)

which results in a quadratic equation

ax2 + bx + c = 0 (5)

where b2 = 4ac, the coefficients a, b, c are given by

a = det
[

0 u>

u B

]
(6)

b = 2det
[

0 v>A>

u B

]
(7)

c = det
[

0 v>A>

Av B

]
, (8)

and B = uu> + AA> − σ̂2
5I.

Furthermore, to complete a matrix exhibiting a pattern
of occlusion that is a Young diagram such as

W =


? ? ? ? M1,5

? ? ? M2,4 M2,5

? ? M3,3 M3,4 M3,5

? ? M4,3 M4,4 M4,5

M5,1 M5,2 M5,3 M5,4 M5,5

 , (9)

they show that sequentially estimating the unknown values
from the left to the right and from the bottom to the top
yields the optimal reconstruction for W. This approach,
called SPectrally Optimal Completion (SPOC), has an over-
all complexity of O

(
N ×max {S, D}

)
, where S and D de-

note the complexities of performing the SVDs in (3) and the
determinants in (6).

This approach is naturally extensible to an incremental
version. In this case, we want to perform the spectrally op-
timal completion of the matrix

W(i+1) =
[

? Ŵ(i+1) ?
W(i)

]
(10)

that stacks a set of new measurements Ŵ(i+1) on top of the
matrix W(i) containing the reconstruction calculated on the
previous iteration.

Despite its speed and easy extension to the incremental
version, SPOC has two caveats: 1) It assumes the values
given for the estimation are not corrupted by noise and 2)
to be able to deal with arbitrary patterns, a permutation ma-
trix has to be determined to turn the matrix into the young
diagram format, something which is not always possible.
In the remainder of this section, we show how to deal with
these two shortcomings.

Finding Permutations Let us consider, without any loss
of generality, we have already access to a complete set of
trajectories Wi and are given a partial set of observations
Ŵ(i+1), where only estimates for partial entries are avail-
able

As already discussed, in order to estimate the trajecto-
ries of the new frame using SPOC, we have to permute
the whole observation matrix W(i+1) such that it obeys a
Young diagram. At this point, we should note that due to
the nature of the problem, we know that the (x, y) coordi-
nates for each point are either known or unknown together.
Therefore, the permutation obtained is optimal in the sense
that, for each new frame, it is always able to convert the
matrix to the form of a Young diagram.

Also, since we know the coordinates x and y are intrin-
sically related, we make a single pass through all points and
position them counting from the beginning or the end, if
they are (respectively) known or unknown entries. The re-
sulting algorithm (Alg. 1), has a linear complexity in the
number of points, therefore not raising the overall order of
complexity of the method.

After applying the permutation, the obtained matrix
W(i+1)P obeys a young diagram of the form

W(i+1)P =
[

? Ŵ(i+1)P2

W(i)P

]
, (11)

which allows the completion to be obtained by feeding the
matrix to SPOC.

Outlier removal The method as presented thus far is able
to do the trajectory estimation sequentially, but it still lies
on the assumption that the points known on the new frame
do not contain errors. In this paragraph, we let go of this



assumption to deal with the possible existence of gross, but
sparse, outliers in the tracked coordinates.

We first note that there are several algorithms [4, 7, 5, 8]
available for matrix completion, when cast as the optimiza-
tion problem of minimizing the nuclear norm (the sum of
singular values) of a matrix A that has a set of known en-
tries, as

minimize ||A||∗
subject to Dij = Aij , ∀(i, j) ∈ Ω.

(12)

It has already been shown [?] that this minimization, which
is the convex envelope of the optimization problem

minimize rank(A)
subject to Dij = Aij , ∀(i, j) ∈ Ω.

(13)

actually achieves the same minimizer, under broad condi-
tions. Therefore, this method yields the optimal reconstruc-
tion of the low rank matrix A.

The use of this technique would allow for solving the
problem as a whole. Its use of singular value decomposi-
tions of the entire matrix at each iteration, however, makes
this method impracticable for real time sequential estima-
tion.

Final Algorithm To get the best of both worlds, we pro-
pose the use of Robust PCA [7] on the sub-matrix W̃(i+1),
that stacks Ŵ(i+1)P2 in (11) with the respective columns
of W(i)P. This technique is intrinsically tied with the for-
mulation of matrix completion as in (12), with its only dif-
ference being that there are no unknown entries, so (12) be-
comes

minimize ||A||∗ + λ||E||1
subject to D = A + E,

(14)

where E models a matrix of outliers, intended to be as
sparse as possible. In this case as in (12), there is evi-
dence [7] this problem exhibits the same minimizer as its

Algorithm 1 Finding permutations for SPOC
Initialize known count k = 0
Initialize unknown count u = 0
for all points i ∈ 1 : N do

if point i is known then
Increment k
Pi,k = 1

else
Pi,N−u = 1
Increment u

end if
end for

non-convex counterpart

minimize rank(A) + λ||E||0
subject to D = A + E.

(15)

Although we still are limited by the performance of sin-
gular value decompositions in the Robust PCA method,
they do not put such a heavy burden on the global time
since they are dealing with matrices of smaller dimension
and with no occluded entries. The final algorithm, which
joins both methods, is summarized in Alg. 2.

Algorithm 2 Joint Matrix Completion using SPOC and
RPCA

for all new frames i ∈ 1 : N do
Calculate P s.t. W(i+1)P has a Young pattern (Alg. 1)
Perform RPCA (14) on W̃(i+1) to remove possible
outliers
Estimate completion for frame (i+1) using SPOC with
refined W̃(i+1) and remaining data in W(i)

end for

In the development of this method, we have assumed the
existence of a set of initial known frames W(i). It should
be noted, however, that this initialization is not critical, as
this sub-matrix can also be found from partial observations
by using existing algorithms for problem (12). We should
also note the fact that although doing sequential permuta-
tions might lead to suboptimal completions — since matrix
as a whole may not be converted to a young diagram — this
is attenuated by the fact that we use Robust PCA on each
iteration. As the number of new frames grows, this itera-
tion on the sub-matrices should correct all of the outliers
in the original matrix, thus yielding asymptotically optimal
results.

3. Experiments
In this section, we perform a few experiments with syn-

thetic data to illustrate the effectiveness and speed of our
method.

Example of completion To motivate the importance of
this problem, we generate trajectories of a rigid object (a
sphere) (Fig. 1) and depict what a typical scenario of track-
ing would give as a result (Fig. 2). In this case, we have
originally N = 49 points tracked around f = 30 cameras,
but only 70% are present in the measurement matrix. By
using our method, we are able to retrieve the original set
of trajectories (Fig 3), despite the significant percentage of
occluded entries.

Comparison of methods We generate 40× 20 matrices
with points living in the interval [−50, 50] and having ap-
proximately rank 4 and occlude, for each frame matrix



2× 20, about 40% of the points. To compare with exist-
ing state-of-the-art, we measure the norm of the residuals
against ground truth and the total runtime of the algorithm.
As a representative of the state-of-the-art, we use Singular
Value Thresholding (SVT) [4] and set its parameters τ and
tol to achieve better accuracy in detriment of speed. We
choose the values such that the accuracy results obtained are
comparable with what is obtained by our method. The aver-
age residual plot (Fig. 4) shows that even for the case where
the accuracy is worst (thus, speed is better) than what is
obtained by our method (SPOC+RPCA), the latter still out-
performs the former in runtime (Fig. 5) for several frames.
Since we are not on the presence of outliers, SPOC is able to
recover the matrix with less error than the remaining meth-
ods for a small set of.

To demonstrate the resilience of our method to out-
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Figure 1. Ground truth trajectories.
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Figure 2. Partial data.

liers, we added to approximately 10% of the non occluded
points sparse noise generated from a uniform distribution
on the interval [−15, 15] and measure the average resid-
ual (Fig. 6) and runtime (Fig. 6). Here, the performance
of SPOC is clearly undermined, since we are not able to
trust entirely on the known entries for completing the ma-
trix. SVT and RPCA+SPOC achieve performance compa-
rable to what was obtained for the case when no outliers are
present, both in residual norm and runtime. In both cases,
our method (RPCA+SPOC) clearly outperforms SVT in run
time for the case when only a subset of frames are to be esti-
mated. The monotonic tendency on RPCA+SPOC suggests
that for as the number of frames to be estimated is signifi-
cantly larger than the number of frames assumed known, it
should take the same time than SVT to perform the com-
pletion. On this point, there is no difference between either
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Figure 3. Estimated trajectories.
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Figure 4. Variation of average norm of residuals with number of
occluded frames without.



methods. It should be noted, however, that these numbers
are in respect to estimating 75% of the matrix. As such,
on an incremental framework, the considered time for each
frame should be the one indicated for the estimation of one
occluded frame (in the left region of the plot), where our
method outperforms RPCA+SPOC by a significant margin,
for comparable accuracy.

4. Conclusions

We have presented a method to recover point trajecto-
ries of a rigid object while being subject to gross outliers
and self-occlusion. Results show that our method beats
in terms of speed existing algorithms performing the same
task, while achieving comparable estimation performance.
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Figure 5. Variation of average runtime with number of occluded
frames without outliers.
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Figure 6. Variation of average norm of residuals with number of
occluded frames with outliers.

Our algorithm can be applied sequentially, allowing for
real-time implementations, where only a small subset of the
data is available beforehand.

Further work should exploit the formulation of a spec-
trally optimal completion while subject to outliers in the
obtained data points into a single optimization problem, so
as to avoid the use of matrix completion algorithms on the
same columns more than once.
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