

Nonlinear Wind Estimator Based on Lyapunov Techniques

Pedro Serra[†]

[†]ISR/DSOR

July 7, 2010

Pedro Serra Nonlinear Wind Estimator

Outline

- 1 Introduction
 - Motivation
 - Problem
- 2 Modeling
 - Aircraft Dynamics
 - Guidance Control and Navigation structure
 - Guidance Dynamics
- 3 IBVS Control
 - Geometrical Properties
 - Error dynamics
 - Wind Estimator
 - Control Design

Motivation Problem

Introduction

- - Difficulty to accurately measure the vehicle's position regarding the local environment
 - GPS provides positioning in the (ECEF) without considering local topography
 - measurement rate is not sufficient for some applications
 - quality of the height's measure is poor
 - signals are subjected to shortages some environments

Motivation Problem

Introduction

- Using cameras as primary sensors for relative position allows to cast the problem into an Image-Based Visual Servo Control
 - possibility to perform autonomous tasks in low-structured environments with no external assistance
 - A vision system can be cheap, light and adaptable
 - can be used to provide robust relative pose information

- Tracking parallel linear visual features though IVBS control
- Estimate the wind velocity in the orthogonal direction to the linear visual features

Aircraft Dynamics Guidance Control and Navigation structure Guidance Dynamics

Modeling Aircraft Dynamics

$$v = v_a + v_w$$

$$\dot{\xi} = R(v_a + v_w)$$

$$m\dot{v} = -\Omega_{\times}mv + F_g + F_{aero} + F_{engine}$$

$$\dot{R} = R\Omega_{\times}$$

$$I\dot{\Omega} = -\Omega_{\times}I\Omega + \Gamma_{aero}$$

$$F_{engine} = -\Omega_{\times}I\Omega + \Gamma_{aero}$$

 $F_{aero} = QS \begin{bmatrix} C_X(\alpha, \beta) & C_{Y_{\beta}}\beta & C_{Z_{\alpha}}(\alpha - \alpha_0) \end{bmatrix}^T$

Pedro Serra No

Aircraft Dynamics Guidance Control and Navigation structure Guidance Dynamics

Modeling Guidance, Control and Navigation structure

- regulating the norm of the airspeed $V_a = ||v_a||$ on a desired velocity V_a^d ;
- $\bullet\,$ regulating the sideslip angle β to zero
- stabilizing the orientation dynamics through a fast inner-loop controller such that assignments in (ϕ,α,β) are correctly stabilized
- stabilizing the translational dynamics by considering β = 0 and V_a constant using (φ, α) as control inputs.

Aircraft Dynamics Guidance Control and Navigation structure Guidance Dynamics

Modeling Guidance, Control and Navigation structure

Aircraft Dynamics Guidance Control and Navigation structure Guidance Dynamics

Modeling Guidance Dynamics

$$\dot{\xi} = R(v_a + v_w)$$
(1)
$$\dot{v}_w = -\Omega_{\times} v_w$$
(2)

$$\dot{v}_a = -\Omega_{\times} v_a + \pi_{v_a} u_a(\alpha, \phi)$$
 (3)

$$\pi_{v_a} = I_d - \frac{v_a v_a^T}{V_a^2}$$
$$u_a(\alpha, \phi) = mg \cos \theta \sin \phi e_y + QSC_{Z_\alpha}(\alpha - \alpha_0)e_\alpha$$

Geometrical Properties Error dynamics Wind Estimator

Control Design

IBVS Control Geometrical Properties

• Linear features representation

Pedro Serra

Nonlinear Wind Estimator

Geometrical Properties Error dynamics Wind Estimator Control Design

IBVS Control Error Dynamics

• Error dynamics

$$\dot{\delta} = -\Omega_{\times}\delta - Q[(v_a + v_w) \times U]$$

• Let \hat{v}_w be an estimative of $v_w \times U$

$$\tilde{v}_w = v_w \times U - \hat{v}_w$$

Then

$$\dot{\delta} = -\Omega_{\times}\delta + Q[\operatorname{sk}(U)v_a - \hat{v}_w - \tilde{v}_w)]$$

Pedro Serra Non

Nonlinear Wind Estimator

Geometrical Properties Error dynamics Wind Estimator Control Design

IBVS Control Wind Estimator

• Need to ensure $\|\hat{v}_w\| < \varepsilon V_a$, then

$$\hat{v}_w = \varepsilon' V_a \frac{y}{\sqrt{1 + \|y\|^2}}$$

• Choosing the dynamics for y as an external pertubation constant in the inertial frame

$$\dot{y} = -\Omega_{\times}y + \pi_U u_w, \quad y(0) = 0$$

where u_w acts as the innovation of the wind estimator.

Geometrical Properties Error dynamics Wind Estimator Control Design

IBVS Control Wind Estimator

• After some tedious computations

$$\begin{aligned} \dot{\hat{v}}_w &= -\Omega_{\times} v_w + P_{\hat{v}_w} \pi_U u_w \\ P_{\hat{v}_w} &= \varepsilon' V_a \sqrt{1 - \frac{\|\hat{v}_w\|^2}{\varepsilon'^2 V_a^2}} \left(I - \frac{\hat{v}_w \hat{v}_w^T}{\varepsilon'^2 V_a^2} \right), \quad \varepsilon' \in \left(\frac{1+\varepsilon}{2}, 1\right). \end{aligned}$$

 $\bullet\,$ The estimation remains in the plane orthogonal to U.

Geometrical Properties Error dynamics Wind Estimator Control Design

IBVS Control Control Design

• Let
$$v_a^d$$
 be the desired airspeed

$$v_a^d = -\mathrm{sk}(U)(k_1\delta - \hat{v}_w) + \sqrt{V_a^2 - \|k_1\delta - \hat{v}_w\|^2}U$$

• Define a second error term

$$\delta_2 = v_a - v_a^d$$

 ${\ }{\ }$ and let S_1 and S_2 be two storage functions

$$S_1 = \|\delta\|^2 + \frac{2}{k_1} \tilde{v}_w^T \delta + \frac{4}{k_1^2} \|\tilde{v}_w\|^2 \qquad S_2 = \frac{\|\delta_2\|^2}{2}$$

Pedro Serra

Nonlinear Wind Estimator

Geometrical Properties Error dynamics Wind Estimator Control Design

IBVS Control Control Design

Theorem

Specify the inovation term of the wind estimate and the control input as

$$u_w = k_2 \delta$$
 $u_a = \frac{2k_3 V_a}{\|v_a + v_a^d\|^2} \pi_{v_a} v_a^d$

then there exists positive gains (k_1, k_2, k_3, K) such that the function

$$L = S_1 + KS_2$$

is a Lyapunov function for the guidance dunamics that guarantees that the error signals $(\delta, \delta_2, \tilde{v}_w)$ converge exponentially to zero.

Geometrical Properties Error dynamics Wind Estimator Control Design

IBVS Control Control Design - proof

Proof.

Computing the time derivative of $S_1 \mbox{ and } S_2$ and applying the control input an the innovation term one can show that

$$\dot{L} \leq -\left(\delta + \frac{\tilde{v}_w}{k_1}\right)^T M_1(k_i, K, Q, P_{\hat{v}_w}) \left(\delta + \frac{\tilde{v}_w}{k_1}\right)$$
$$-g_1(k_2, k_1, K) \delta^T P_{\hat{v}_w} \delta$$
$$-k_3 K \|\delta_2\|^2 - K \delta_2^T M_2(U, Q, k_i, v_a^d) \delta_2$$

where it is possible to choose positive gains (k_1, k_2, k_3, K) such that $M_1(k_i, K, Q, P_{\hat{v}_w})$ and $M_2(U, Q, k_i, v_a^d)$ are positive defenite matrices and $g_1(k_2, k_1, K)$ is a positive scalar.

Geometrical Properties Error dynamics Wind Estimator Control Design

IBVS Control Control Design - proof

Proof - cont.

- Lyapunov direct method ensures that $(P_{\hat{v}_w}\delta, \delta + k_1^{-1}\tilde{v}_w, \delta_2)$ converge towords zero.
- Note that is $P_{\hat{v}_w}$ positive as soon as $\tilde{v}_w < \varepsilon' V_a$
- and due to the restrictions imposed for the gain k_1 , $\delta + k_1^{-1} \tilde{v}_w = 0$ implies that $\|v_w\| < \varepsilon' V_a$
- Thus $P_{\hat{v}_w}$ is a positive definite matrix at the equilibrium, implying that $(\delta, \tilde{v}_w, \delta_2)$ converge to zero exponentially.

Results Wind Estimator

Pedro Serra Nonlinear Wind Estimator

Results Estimation Error

Results Landing Maneuver

Pedro Serra

Nonlinear Wind Estimator

Short Bibliography

Bruno Herisse, Tarek Hamel, Robert Mahony, and Francois-Xavier Russotto. A nonlinear terrain-following controller for a vtol unmanned aerial vehicle using translational optical flow.

In Robotics and Automation, 2009. ICRA '09. IEEE International Conference on, pages 3251–3257, May 2009.

F. Le Bras, T. Hamel, C. Barat, and R. Mahony.

Nonlinear image-based visual servo controller for automatic landing guidance of a fixed-wing aircraft.

In European Control Conference, pages 1836-1841, Aug. 2009.

R. Mahony and T. Hamel.

Image-based visual servo control of aerial robotic systems using linear image features.

Robotics, IEEE Transactions on, 21(2):227-239, April 2005.

Nonlinear Wind Estimator Based on Lyapunov Techniques

Pedro Serra[†]

[†]ISR/DSOR

July 7, 2010

Pedro Serra Nonlinear Wind Estimator