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Abstract—Although Kalman Filters provide an optimal solu-
tion to the state estimation problem for linear systems, they
require knowledge of an accurate description of the system’s
model. More robust approaches to Kalman Filtering for systems
with uncertain models have been developed, such as set-valued
state estimators, which identify the set of possible states that the
system may be in given its uncertainties. This work presents
a practical example of the application of a set-valued state
estimator, and also provides insight into the advantages of
performing simultaneous model identification for this class of
estimators. The results of this robust estimator are then compared
to those obtained when using

I. INTRODUCTION

Kalman Filters are a very significant and well-established
development in the field of systems and control theory. Given
a linear system affected by stochastic noise, the Kalman Filter
is able to provide the optimal estimate of the system’s state
based on gathered noisy observations. However, this class of
filters is not robust to unmodeled variations in the system’s
model. In this case, optimality is lost, and the performance of
the filter degrades considerably. Since, in practice, there are
situations where it is difficult to estimate the system’s model
reliably, or it may possess parameters which are impossible
to fully specify beforehand, there is a need for estimators
which are robust to this type of variations, even if they are
suboptimal. Examples of robust filters include Guaranteed
Cost State Estimators [1], Set-Valued State Estimators [1],
[5], [6] , robust H∞ filters [4], [7] and adaptive filters such
as the Multiple Model Adaptive Estimator (MMAE) [8]. Of
these, the class of set-valued state estimators provide a wide
range of functionalities, since they allow robust estimation
under dynamic, non-linear uncertainties in the plant and sensor
models, by defining a general constraint (Linear Quadratic
Constraint) over these uncertainties, based on an uncertainty
description introduced in the work of Yakubovich [9]. This
class of estimators also allows for on-line model validation,
and is suitable for applications involving mixed continu-
ous/discrete measurements (or discrete at different rates) which
may possess missing data.

This work studies the application of a set-valued state
estimator in a simulated practical scenario, and presents results
that demonstrate that it is possible to obtain reliable state
estimates in the presence of model uncertainty. Although the
authors of this class of estimators explicitly considered the
problem of model validation, i.e. to determine if a given model

is compatible with the controls applied to the system and
the resulting measurements produced by it, its application
is restricted to the problem of obtaining a suitable set of
possible system models. In practice, it is advantageous to also
produce an on-line estimate of the true system model, since
this will evidently reduce the amount of uncertainty present
in the state estimate. This issue is also explored in this work,
by inspecting the behavior of the estimator if the system’s
uncertainty is re-evaluated online. This is accomplished by
resorting to a parallel MMAE, and feeding the resulting
estimate of the system’s parameters to the set-valued estimator.
The resuts with respect to state estimation from these two
filters are then compared, noting that while the former uses a
stochastic description of system uncertainty, the latter uses a
deterministic one. The impact of this fact on filter usability is
then discussed.

II. HYBRID SET-VALUED STATE ESTIMATION

This section introduces the basic concepts and techniques
behind set-valued state estimators. Consider the linear uncer-
tain system described by equations (1)-(5), where x(t) is the
system’s state, u(t) is a deterministic control input, w(t), vc(t),
vd(t) are “uncertainty inputs”, yc(t), yd(tj) are the system’s
measured outputs, zc(t), zd(tj) are the system’s “uncertainty
outputs”, A(t), B1(t), B2(t), Kc(t), Gc(t), Cc(t) are bounded
piecewise continuous matrix functions, and Kd(tj), Gd(tj),
Cd(tj) are matrix sequences.

ẋ(t) = A(t)x(t) + B1(t)w(t) + B2(t)u(t) (1)
zc(t) = Kc(t)x(t) + Gc(t)u(t) (2)

zd(tj) = Kd(tj)x(tj) + Gd(tj)u(tj) ∀j = 1, ..., k (3)
yc(t) = Cc(t)x(t) + vc(t) (4)

yd(tj) = Cd(tj)x(tj) + vd(tj) ∀j = 1, ..., k (5)

Note that the system definition is general enough to include
the possibility of both continuous and discrete-time measure-
ments, and could be easily extended to include multiple assyn-
chronous discrete-time sources of information. The uncertainty
in this system is assumed to verify that, within a time interval
]0, s], for given initial conditions x0, and for some constant d:



(x(0) − x0)T P−1
0 (x(0) − x0) +

∫ s

0

(w(t)T Q(t)w(t)+

+ vc(t)T Rc(t)vc(t))dt +
∑
tj≤s

vd(tj)T Rd(tj)vd(tj) ≤

≤ d +
∫ s

0

||zc(t)||2dt +
∑
tj≤s

||zd(tj)||2 (6)

Where P0 is an appropriate positive definite matrix, and
Q(t), Rc(t), Rd(tj) are positive semi-definite. The above is
known as an Integral Quadratic Constraint. Intuitively, it
imposes an upper bound on the uncertainty introduced by
w(t), vc(t), vd(t), as defined by linear functions zc(t), zd(tj),
which converge if the overall system is stable. This allows
the uncertainty inputs to be defined as possibly time-varying
and non-linear. It also implies that a suitable description for
this type of uncertainty is by establishing norm bounds upon
each of the model’s uncertain terms. It is easy to remark
that, assuming that the uncertainty inputs satify the above
constraints for every possible state, then the set of possible
states at the initial instant is an ellipsoid whose shape is
defined by P0 and d. If this set is bounded for every possible
x0, d, and every history of inputs u(t)|s0 and measurements
yc(t)|s0, yd(t)|s0, then the system is said to be “verifiable”. If
such is the case, the theory behind set-valued state estimator
allows for the possible state ellipsoid to be propagated into any
given time instant, and it can be shown that the set remains
an ellipsoid under these circumstances [1].

The inclusion of both continous and discrete time compo-
nents in the system’s model requires the following auxiliary
definition:

f(t−j ) = lim
t→tj ,t<tj

f(t) (7)

With this, and following [1], the design of a set-valued state
estimator relates to the following equations:

Ṗ (t) = A(t)P (t) + P (t)A(t)T + B1(t)Q(t)−1B1(t)T +

+ P (t)Kc(t)T Kc(t)P (t) (8)

P (tj) =
(
P (t−j )−1 + Cd(tj)T Rd(tj)Cd(tj)

)−1

∀j = 1, ..., k (9)

These equations are known as a jump Ricatti equation,
owing to their possible discontinuities at the sampling instants
tj . In [1], it is shown that if equations (8),(9) have a positive
definite solution with initial condition P (0) = P0, then the
system is verifable. The estimate of the system’s state may
then be taken as the center of the ellipsoid of possible states,
which has the following update equations:

˙̂x =
(
A(t) + P (t)Kc(t)T Kc(t)

)
x̂(t)+

+
(
B2(t) + P (t)Kc(t)T Gc(t)

)
u(t) (10)

x̂(tj) = x̂(t−j ) + P (t−j )Cd(tj)T Rd(tj)yd(tj)−
− P (t−j )Cd(tj)T Rd(tj)Cd(tj)x̂(t−j ) ∀j = 1, ..., k (11)

If the system is verifiable, then another quantity may be
defined, which can be seen as a generalized error between the
uncertainty outputs of the system and the uncertainty effec-
tively generated when receiving observations yd(tj),yc(t):

ρs(u, yd, yc) =
∫ s

0

{
||Kc(t)x̂(t) + Gc(t)u(t)||2

−(Cc(t)x̂(t) − yc(t))T Rc(t)(Cc(t)x̂(t) − yc(t))
}

dt+

+
∑
tj≤s

{
||Kd(tj)x̂(tj) + Gd(tj)u(tj)||2

−(Cd(tj)x̂(tj) − yd(tj))T Rd(tj)(Cd(tj)x̂(tj) − yd(tj))
}
(12)

It can then be shown that the set of possible states that the
system may be in, at any time instant s, is given by:

X(s, x0, d, u(t)|s0, yc(t)|s0, yd(t)|20) = {x ∈ ℜn :

(x − x0)T P−1(s)(x − x0) ≤ d + ρs(u, yd, yc)
}

(13)

It is also evident that this set is only non-empty if
ρs(u, yd, yc) ≥ −d, in which case the system is said to
be “realizable”, which intuitively means that, for the given
parameter uncertainties, this set of states is reachable through
u(t)|s0, yc(t)|s0, yd(t)|s0, from the initial conditions x0. The
process of model validation refers to using this property to
ascertain if a given system model is realizable. In contrast,
state estimation in this class of filters requires obtaining the
set (13) from the premise that the system is in fact realizable.

It is clear from equations (2),(3), that this type of es-
timators allows for dynamic re-evaluation of the uncer-
tainty over the system’s parameters, by adjusting matrices
Kc(t),Kd(tj), Gc(t), Gd(tj) accordingly. If these are such
that the norm of the uncertainty outputs is minimized, then
the set of possible states will also be miminized through (13).
However, in [1] the authors do not present a clear methodology
to accomplish system identification resorting to the concepts
of set-valued estimation. Even so, in order to analyze the
behavior of such a system when uncertainty is dynamically re-
evaluated, an auxiliary estimator is used for this purpose. The
next section introduces an alternative system identification/
state estimation framework that allows for an estimate of the
system’s parameters to be obtained online.



III. MULTIPLE MODEL ADAPTIVE ESTIMATION

Multiple Model Adaptive Estimation, first proposed by M.
Athans in [8], is a versatile technique for state estimation
and system indentification for linear systems with unknown
parameters. Although not the focus of this work, this algorithm
must be briefly described since it will be used as a basis
for comparison, and it will serve as an independent system
identifier for the state-valued estimator.

In this technique, a set of Kalman Filters is implemented
in parallel, and to which an hypothetic value of the unknown
parameters is assigned. Given enough filters to cover a region
of interest in the unknown parameter space, an a posteriori
probability measure is then assigned to each of these filters, by
inferring over the collected data and respective state estimates,
which represents the likelihood of each of the filters being the
“correct” one, in the sense that they more accurately describe
the true system model. The system’s state estimate is then
taken as the expected value of this probability mass function,
from which the state covariance can also be obtained.

The a posteriori probability over the bank of N filters is
updated, for each filter i, by:

Pi(tj+1) =
βi(tj+1)e−

1
2wi(tj+1)∑N

k=0 βk(tj+1)e−
1
2wk(tj+1)Pk(tj)

Pi(tj) (14)

where, given each filter’s residual ri(tj+1) ≡ y(tj+1) −
ŷi(tj+1|tj), and the covariance over this residual, Si(tj+1) ≡
cov{ri(tj+1), ri(tj+1)}, the relevant weighting terms are de-
fined as:

βi(tj+1) =
1

2π
√

det Si(tj+1)
(15)

wi(tj+1) = ri(tj+1)T Si(tj+1)−1ri(tj+1) (16)

It can then be shown that the p.m.f. over the filter bank will
eventually converge until the filter which best matches the true
system is assigned probability 1.

IV. IMPLEMENTATION: HUMAN TRANSPORT SYSTEM

The application domain here considered is a simulation of
the dynamics of a Human Transport System (HTS), for which
the control problem is basically the stabilization of an inverted
pendulum. Consider the configuration of the HTS, present
in Figure 1, in which its main physical characteristics are
presented. A user riding the HTS is represented by a point
mass of M2 at a height L̄2, resulting in an inertia Ī2. The
HTS itself possesses mass M1. A force u(t) is applied by its
wheels to keep the system stable. The system’s sensors are
able to measure its angular position, θ(t), and velocity, θ̇(t).

The dynamics of the HTS can be modelled as the nonlinear
system:

θ̈ =
1

m(M2, θ)

(
u −

(
M2 + M̄1

)
g tan(θ) + M2L̄2 sin(θ)θ̇2

)
(17)

Fig. 1. Representation of the Human Transportation System

where g = 9.81ms−2, and

m(M2, θ) =

(
M2L̄2 cos(θ(t)) −

(
M2 + M̄1

) (
M2L̄

2
2 + Ī2

)
M2L̄2 cos(θ(t))

)
(18)

However, for small angles, these dynamics can be approxi-
mated by the linear system:

[
θ̇(t)
θ̈(t)

]
=
[

0 1
α(M2) 0

] [
θ(t)
θ̇(t)

]
+
[

0
β(M2)

]
u(t)

(19)

where α(M2), β(M2) are nonlinear functions of parameter
M2 (their dependence on M2 will be ommited). The latter is,
therefore, the source of uncertainty in the system’s model. It
is assumed that the admissible user weights lie in the M2 ∈
[50, 100]kg range. As an uncertain system, the HTS can then
be approximated by:

ẋ(t) =
[

0 1
α 0

]
x(t) +

[
0
β

]
u(t) +

[
0
1

]
w(t) (20)

zc(t) =
[

kα(t) 0
]
x(t) + kβ(t)u(t) (21)

yd(tj) = x(tj) + vd(tj) (22)

with the following additional norm constraint for w(t):

w(t) = ∆zc(t) ||∆|| ≤ 1 (23)

The observation noise vd(tj) is assumed to be white. The
initial conditions are assumed to be such that:

N = P (0)−1 =
[

0.2742 0
0 0.0027

]
(24)

x(0) =
[

0.3 0
]T (25)

d = 1 (26)

The matrix weighting functions are assumed to be Rd(tj) =
Q(t) = I . The sampling period of the sensors is assumed to
be T = 0.01s.



Fig. 2. Estimation of the uncertain parameter’s norm bounds from the MMAE
user weight estimate.

Fig. 3. Connection between the physical system, the SVE, and the auxiliary
MMAE.

The absence of continous-time measurements, when noting
that the open-loop plant dynamics are unstable within the
unknown parameter’s region of interest, may lead itself to
an unstable estimator if care is not taken into selecting
the appropriate values for the weighting matrices. This is
intuitively seen since the measurements gathered by the system
must adjust the state variables sufficiently to compensate for
the unstable predicted motion between two sampling instants.

The Kc(t),Gc(t) coefficients are dynamically estimated by
a MMAE by approximating the p.m.f. over its filter bank by
a Gaussian distribution, and taking the norm bound of the
dependent parameters by establishing a confidence interval
over M2. This process is depicted in figure 2. Figure 3 shows
the connection between the “real” system and the Estimators.
It should be noted that the MMAE in this particular application
serves only as a means of reducing the norm bounds on
relevant parameters of the set-valued estimator dynamically.
In fact, the purpose of both the set-valued estimator and the
MMAE is the same, and, should it be possible, it would

be preferrable to estimate these norm bounds within the set-
valued estimator itself. Nonetheless, the state estimate returned
by the MMAE can also serve as a basis for further comparison.
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Fig. 4. Evolution of the system’s angular position (blue) and respective
SVE output (red, dashed). The black bounds denote projections of the limit
of the set of possible states. No system identification was performed in this
experiment.
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Fig. 5. Evolution of the system’s angular velocity (blue) and respective
SVE output (red, dashed). The black bounds denote projections of the limit
of the set of possible states. No system identification was performed in this
experiment.

V. RESULTS

Results were taken from the proposed experimental setup
by using MATLAB/Simulink to implement the system. In
Figures 4 and 5, the evolution of the state variables is
shown, along with the estimate obtained through the SVE and
the set bounds, for a situation where there are no external
disturbances, and the norm bounds on the uncertainty are
held constant. This constitutes a sanity check on the system,
and demonstrates that the SVE is able to estimate the state
variables correctly, although the possible set bounds are con-
servative, particularly with respect to the angular velocity of
the system.

In Figure 6, a representation of the convergence of the
auxiliary MMAE to the correct user weight is shown. From
these, it is possible to establish that the uncertainty output’s
parameters kα and kβ may also be dynamically estimated
by the MMAE. These results are shown in Figures 7 and 8.
Note that there is a lower saturation on these estimates, which
corresponds to the resolution of the MMAE with respect to
the user’s weight.



The results of applying these on-line estimates of the
uncertain parameters to the SVE are shown in Figures 9 and
10. To make the test more realistic, a sinusoidal disturbance
was added to the physical system’s output. The independent
MMAE state estimate is also shown, which responds consider-
ably better in this situation. This is because the instantaneous
observations do not have as much impact in the SVE, since
this framework assumes that the sensor model itself may
be uncertain. Since the variations induced by the output
disturbance still retain the state inside the possible state set
bounds, the filter is insensitive to these disturbances.

To better exemplify the response of the system when the its
physical parameters are shifted, simulations were run for users
of weight M2 = 50kg and M2 = 100kg. These results are
shown in Figures 11 and 12. These show that the estimator is
actually more sensitive to the external disturbances in the latter
case (these are more pronounced in this case), although the
estimated norm bounds enclose the actual state of the system
at all times.

The effect of performing online model identification upon
the set of possible states at each instant is exemplified in Figure
13. These show that, for a given time instant, the set of pos-
sible states is considerably reduced by dynamically reducing
the uncertainty norm bounds, as expected. This prompts the
suggestion that robust estimation should be accompanied by
model identification whenever possible.

Fig. 6. Convergence of the MMAE p.m.f. Each vertical line in the images
represents the p.m.f. over the bank of filters for a given iteration. Lighter
colors are associated with higher probability. Top: Real user weight is 75 kg
(class 6). Bottom: Real user weight is 65 kg (class 4).

VI. CONCLUSION

In this work, a set-valued state estimator was applied in
a practical scenario to demonstrate the capabilites of this
framework. The main advantage of this method lies in its
deterministic description of uncertainty, since the Integral
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Fig. 7. Evolution of the estimate of the uncertain parameter kα. After the
MMAE converges, the estimate saturates to its lowest admissible value.
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Fig. 8. Evolution of the estimate of the uncertain parameter kβ . After the
MMAE converges, the estimate saturates to its lowest admissible value.

Quadratic Constraint allows for a large class of uncertainties
to be modelled while maintaining the possibility of using a
format similar to a Kalman Filter. This allows the set-valued
estimator to be more general than when compared to, for
example, the MMAE, which would not handle well time-
varying uncertain parameters without at least a proper model
to describe its evolution.

The robust estimator is not straightforward to implement in
practice , since care must be taken into tuning the relevant
parameters (such as the uncertainty wheghting terms), that do
not have a clear independent meaning. The quality of the
estimate produced by the filter will depend largely on the
quality of the norm bounds placed over the uncertainty, which
can lead to conservative results.

To try to counteract this aspect, the behavior of a set-
valued estimator was studied while re-evaluating the system
uncertainty online, by performing system identification in an
auxiliar estimator. It was verified that the set of possible states
is effectively reduced by this process, leading to a filter which
is less sensitive to user-set parameters. This also suggests that
it may be possible to obtain a suitable method for system
identification whithin the SVE framework itself. As it stands,
the ability to perform model validation, if a range of possible
values for the unknown parameters is already available, is
not useful since all models whitin this range are trivially
valid. However, a particle-filter based approach, in which the
different hypothesis would be different instantiations of the
range of the unknown parameters, would likely be useful since



Fig. 9. Evolution of the system’s angular position (blue) and respective
SVE output (red, dashed). The black bounds denote projections of the limit
of the set of possible states. The MMAE estimate is shown in green. System
identification was active.
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Fig. 10. Evolution of the system’s angular velocity (blue) and respective
SVE output (red, dashed). The black bounds denote projections of the limit
of the set of possible states. System identification was active.

in this case particles could be ruled out by validation. It would
be then necessary to define some form of probability measure
over the set of possible filters.
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Fig. 11. Actual angular position of the HTS (red) and respective SVE set
bounds (black) for a user of weight M2 = 50kg.
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Fig. 12. Actual angular position of the HTS (red) and respective SVE set
bounds (black) for a user of weight M2 = 100kg.
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Fig. 13. Representation, for a single time instant t = 20s, and for a user
weight M2 = 75kg, of the shape of the possible states ellipsoid, when using
constant norm bounds (blue) and when performing online system identification
(red).


