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Abstract: This paper describes an application of a new fault detection and isolation (FDI)
technique based on set-valued observers (SVOs) to a linear parameter varying (LPV) longitudi-
nal aircraft dynamic model. The FDI strategy adopted herein computes and uses the set-valued
estimates of the SVOs to eliminate models of the plant that are not compatible with the set of
observations provided by the aircraft sensor suite and actuation data. The design of the SVOs
takes into account model uncertainty and disturbances, thus avoiding false alarms due to such
perturbations. The behavior of the proposed solution is assessed in simulation, by deliberately
generating hard and soft sensor/actuator faults. The results show that the faults take, in general,
only a few iterations to be detected and isolated, therefore paving the way for the use of the
proposed methodology in practical applications.

Keywords: Fault Detection and Isolation, Uncertain Linear Systems, Linear Time-Varying
Systems

1. INTRODUCTION

The field of Fault Detection and Isolation (FDI) has been
one of the focus of attention of the control systems iden-
tification communities since the early 70’s Willsky (1976).
Indeed, several types of approaches can be found in the
literature and have been implemented and tested during
the last decade – see, for instance, Blanke et al. (1997,
2001); Isermann (1997); Patton and Chen (1997); Frank
and Ding (1997); Esteban (2004); Collins and Tinglun
(2001); Longhi and Moteriù (2009); Mattone and De Luca
(2006). Recently, a novel strategy for model invalidation
has been introduced in Rosa et al. (2009), which can be
applied to FDI of linear time-varying (LTV) plants, and
that possesses several important properties in safety criti-
cal scenarios, as discussed in the sequel. Model invalidation
or model falsification is used to eliminate models of the
plant that are not compatible with the data acquired from
the sensors. As shown in this paper, this method can be
used for FDI. One of the main concerns common to all
FDI systems is that model uncertainty (such as unmodeled
dynamics) and disturbances should never be interpreted as
faults, and indeed the approach in Rosa et al. (2009) is able
to account for this type of uncertainty.

Among the different Fault Detection (FD) and FDI ap-
proaches available in the literature (see, for instance, Es-
teban (2004) for an in-depth presentation of such meth-
ods), active and deterministic model-based fault detection
strategies are of particular interest, due to their ability
to explicitly handle robustness problems and of detecting
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faults within a small time-window. Classical approaches to
this type of fault detection strategies are usually composed
of two parts: a filter that generates residuals, which should
be large under faulty behaviors; and a decision threshold,
which is used to decide whether a fault is present or not –
see Patton and Chen (1997); Frank and Ding (1994); Este-
ban (2004); Massoumnia (1986); Willsky (1976); Besançon
(2003); Bokor and Balas (2004); Meskin and Khorasani
(2009); Wang et al. (2009); Narasimhan et al. (2008) and
references therein.

The main idea in such approaches is, therefore, to de-
sign filters that are significantly more sensitive to faults
than to disturbances and model uncertainty. This can be
achieved, for instance, by using geometric considerations
regarding the plant Massoumnia (1986); Longhi and Mo-
teriù (2009); Bokor and Balas (2004), or by considering
norm-optimization based methods Edelmayer et al. (1994);
Frank and Ding (1997); Niemann and Stoustrup (2001);
Marcos et al. (2005); Collins and Tinglun (2001). The later
approach provides, in general, important robustness prop-
erties, as stressed in Edelmayer et al. (1994); Mangoubi
et al. (1995); Patton and Chen (1997); Esteban (2004), by
explicitly accounting for model uncertainty. The isolation
of the fault can, in some cases, be done using a similar
approach, i.e., by designing filters for families of faults,
and identifying the most likely fault as that associated to
the filter with smaller residuals.

The FDI strategy adopted in this paper uses a different
philosophy. Instead of identifying the most likely model of
the nominal/faulty plant, we discard models that are not
compatible with the observations. As shown in the sequel,
this method guarantees that there will not be false alarms,
as long as the model of the non-faulty plant remains valid.
Moreover, we need not address the difficult problem of
computing the decision threshold used to declare whether or
not a fault has occurred. To this end, we use the set-valued



observers (SVOs) – see Witsenhausen (1968); Schweppe
(1968, 1973); Milanese and Vicino (1991) and references
therein for an overview on SVOs – described in Rosa et al.
(2009), which are based-upon the work in Shamma and Tu
(1999).

One of the advantages of this method is that it is able to
cope with linear time-varying plants. In particular, linear
parameter varying (LPV) models can be used under this
environment. These LPV (see Shamma (1988)) models
represent nowadays a compromise between the global ac-
curacy of nonlinear models and the straightforward con-
troller synthesis and system analysis techniques available
for LTI representations. Indeed, LPV descriptions of air-
craft models have been extensively adopted to accurately
model the desired dynamics over a set of predefined oper-
ating regions – see Esteban (2004); Rosa et al. (2007) and
references therein.

In this paper, we provide an application example of a new
FDI method based on SVOs, and address the performance
of the aforementioned technique when applied to the
detection of faults in an aircraft. The performance of
the approach is assessed by simulation, by deliberately
generating faults in the aircraft model. The key criteria
of this evaluation are the time required to diagnose a
failure, and the robustness of the method against model
uncertainty and exogenous disturbances.

The remainder of this paper is organized as follows: Section
2 provides some background material on SVOs; Section 3
describes the robust FDI approach for LPV systems that is
going to be used throughout this paper; Section 4 presents
the LPV longitudinal model of an aircraft; simulation
results for this plant are presented in Section 5; finally,
Section 6 summarizes some conclusions.

2. BACKGROUND MATERIAL

As described in Section 3, the problem of “disqualifying”
dynamic models of a system can be tackled using set-
valued observers (SVOs). This type of observers was devel-
oped for linear time-varying systems and later on extended
to uncertain plants (see Rosa et al. (2009)). In this section,
we provide some background material on SVOs and on its
applicability to fault detection and isolation, required for
the remainder of the paper.

Consider that the non-faulty plant can be represented by
an uncertain (possibly time-varying) discrete-time linear
system, with uncertain initial conditions, and excited by
bounded but unknown exogenous disturbances, i.e.,{

x(k + 1) = A(k)x(k) +A∆(k)x(k) + Ld(k)d(k)
+B(k)u(k)

y(k) = C(k)x(k) + n(k),
(1)

where x(0) = x0, x0 ∈ X(0), d(k) with |d(k)| =
max
i
|di(k)| ≤ 1 are the disturbances, n(k) with |n(k)| =

max
i
|ni(k)| ≤ n̄ is the sensors noise, u(k) is the control

input, y(k) is the measured output, x(k) is the state of
the system and X(0) := Set(M0,m0), where

Set(M,m) := {q : Mq ≤ m} (2)
represents a convex polytope. Moreover, let x(k) ∈ Rn,
d(k) ∈ Rnd , u(k) ∈ Rnu and y(k) ∈ Rny .

Furthermore, assume that 1

A∆(k) = A1(k)∆1(k) +A2(k)∆2(k) + . . .+AnA∆nA(k),
1 Notice that this method can be used to model several types of
uncertainty, such as the uncertainty in the geometry or mass of the
aircraft.

for |∆i(k)| ≤ 1, i = 1, . . . , nA. The scalars ∆i(k), i =
{1, . . . , nA}, represent parametric uncertainties, while the
matrices Ai, i = {1, . . . , nA}, are the directions which
those uncertainties act upon.

An SVO attempts to generate the smallest X(k + 1) such
that x(k + 1) ∈ X(k + 1), based upon (1) and with the
additional knowledge that x(k) ∈ X(k), x(k − 1) ∈ X(k −
1), · · · , x(k−N) ∈ X(k−N) for some finiteN . Moreover, it
also requires that for all x ∈ X(k+1), the observations are
compatible with (1). In this paper, we use the procedure
introduced in Shamma and Tu (1999) for time-varying
discrete-time linear dynamic systems, which was later on
extended to uncertain plants in Rosa et al. (2009).

For plants with uncertainties, the set X(k + 1) is, in
general, non-convex, even if X(k) is convex. Thus, it
cannot be represented by (2). One solution to this problem
is to overbound this set by another, denoted by X̂(k+ 1),
which is going to be described in the sequel.

Let vi, i = 1, . . . , (NnA)2, for some positive scalar N , de-
note a vertex of the hyper-cubeH :=

{
δ ∈ RNnA : |δ| ≤ 1

}
,

where vi = vj ⇔ i = j. Then, we denote by X̂vi(k +
1) the set of points x(k + 1) that satisfy (1) with
[∆(k)T, · · · , ∆(k−N +1)T]T = vi and with x(k) ∈ X̂(k),
· · · , x(k −N + 1) ∈ X̂(k −N + 1). Further define

X̂(k + 1) := co
{
X̂v1(k + 1), · · · , X̂v(NnA)2

(k + 1)
}
,

where co {p1, . . . , pm} is the convex hull of p1, . . . , pm.

Since, as previously mentioned, X(k + 1) is, in general,
non-convex even if X(k) is convex, we are going to use
X̂(k + 1) to overbound the set X(k + 1). An illustration
for the case nA = 1, N = 1, is depicted in Fig. 1.

X(k)
^X (k)D=1

X (k)D=-1

Fig. 1. Convex hull, X̂(k), of the sets generated by the
solutions to (1) with nA = 1, N = 1 and for ∆ = 1
and ∆ = −1.

It is important to stress that, under certain conditions, the
set X̂(k + 1) contains X(k + 1), as demonstrated next.
Proposition 1. Consider a system described by (1) and
let Ãkm(∆) = (A(k) +A∆(k)) · · · (A(k−m) +A∆(k−m)).
Further define H(Ãkm)(∆∗) as the Hessian matrix of Ãkm
with respect to ∆, evaluated at ∆∗. If H(Ãkm)(∆∗) ≥ 0 for
all ∆∗ such that |∆∗| ≤ 1 and for all m = 0, · · · , N − 1,
then X(k) ⊆ X̂(k) for all k ∈ {0, 1, 2, · · · }.

Proof: Denote by Xvi(k + 1) the set of points x(k + 1)
that verify (1) with A∆ ≡ Avi and with x(k) ∈ X(k).
Further define

X∗(k+1) := co
{
Xv1(k + 1), Xv2(k + 1), · · · , XvnA

(k + 1)
}
.

Then, it is clear that X∗(k) ⊆ X̂(k) for all k ∈
{0, 1, 2, · · · }. Hence, we only have to prove that X(k) ⊆
X∗(k). However, this comes naturally from the fact Ãkm :
RNna → Rn2

is a convex map of the variables ∆(k), · · · ,
∆(k −N + 1). 2



Although this approach adds some conservatism to the
solution, it possesses the valuable property summarized in
Proposition 2.
Proposition 2. Suppose that a system described by (1)
with x(0) = x0 and u(k) = 0,∀k, verifies, for sufficiently
large N∗,

γN := max
∆(k), · · · ,∆(k +N)
|∆(m)| ≤ 1,∀m

k ≥ 0

∥∥∥Πk+N
j=k A(j)

∥∥∥ < 1,

for all N ≥ N∗, and where

A(j) :=

[
A(j) +

∑
i

Ai(j)∆i(j)

]
.

Then, X̂(k) cannot grow without bound.

Proof: Consider the smallest hyper-cubes, denoted by
Ψ(1),Ψ(2), · · · ,Ψ(m), that contain the sets X̂(1), X̂(2),
· · · , X̂(m), respectively. Let N ≥ N∗. Then, an SVO can
be synthesized to generate the sets Ψ(1), Ψ(2), · · · , Ψ(m),
using the following inequality:

|x(k +N)| ≤ γN |x(k)|+ δN , (3)
where
δN = max

d(k),··· ,d(k+N−1)
|AN−1Ld(k) + · · ·+ Ld(k +N − 1)|.

Notice that it suffices to show that the sequence Ψ(1),
Ψ(2), · · · , Ψ(m) does not grow without bound, since it
contains X̂(1), X̂(2), · · · , X̂(m). Given that γN < 1 by
assumption and that |δN | < ∞ since |d| < ∞, the
sets defined by (3) cannot grow without bound, which
concludes the proof. 2

Remark 1: Notice that, in order to guarantee that X̂
does not grow without bound, an SVO should use the N
most recent estimates. In other words, the estimation of
X̂(k + N) should take into account the fact that x(k) ∈
X̂(k), x(k+1) ∈ X̂(k+1), · · · , x(k+N−1) ∈ X̂(k+N−1).
The exact description of the SVO is omitted here due to
lack of space. �
As a final remark, the uncertainty in B(k) and C(k) can
also be handled by the algorithm – the interested reader
is referred to Rosa et al. (2009) for further details.

3. FAULT DETECTION AND ISOLATION USING
SVOS

We are now ready to state the main results that are going
to be used for the fault detection and isolation of a linear
parameter varying (LPV) model of an aircraft. We start by
analyzing the applicability of the SVOs for fault detection
(FD), and extend it to fault detection and isolation.

The following proposition is required in what follows to
guarantee that there will be no false alarms.
Proposition 3. Consider a non-faulty plant described by
(1) and a corresponding SVO, as in Section 2. Then, if
X̂(k) = ∅ for some k ≥ 0, a fault has occurred at some
time-instant k0, where k0 ≤ k.

Proof: If X̂(k) is empty for some k, then the observations
are not compatible with the model of the plant. Since we
assume that the non-faulty plant can be described by (1),
we conclude that a fault has occurred. 2

The architecture depicted in Fig. 2, together with the
result in Proposition 3, can be used to address the problem

of fault detection for discrete-time linear time-varying
plants. In reference to Fig. 2, the FD filter is composed
of an SVO and a logic block, which decides whether or
not a fault has occured, according to the emptiness or not
of the set-valued estimate of the state, at each sampling
time.

Unknown Plant

SVO

u(k)
y(k)

Sensor
noise

Plant
disturbances

d(k) n(k)

Logic

X(k)
^

X(k)=    ?
^ YesNo

No Fault
Detected

Fault
Detected

FD signal

FD Filter w/SVO

Fig. 2. Fault Detection (FD) architecture for uncertain
plants using a Set-Valued Observer (SVO).

The fault isolation techniques available in the literature try
to identify a very precise faulty behavior, after a general
fault is detected. This means that, unlike an FD filter,
an FDI filter should not only be able to detect a faulty
behavior of the plant, but also to provide information
regarding its whereabout.

The SVOs are also suitable for fault isolation, as long as
the corresponding model of the fault has been considered
during the design. Using the aforementioned results, an
SVO can be designed for a particular fault that is required
to be properly isolated. Two additional SVOs, besides the
faults isolation SVOs, are synthesized:

(1) one SVO for the non-faulty (probably uncertain and
time-varying) plant – referred to as nominal SVO ;

(2) one SVO that is able to handle the faulty and non-
faulty plant – referred to as robust SVO.

The nominal SVO is used for fault detection only. Notice
that this SVO produces state estimates valid not only
for the nominal model of the plant, but also for any
plant belonging to the family of admissible plants. As
previously described, the set-valued estimate for the state
of the plant, obtained using this observer, is non-empty,
if the plant does not present a faulty behavior. If the
state estimate of the nominal SVO is the empty set, a
fault has occurred. Hence, the fault isolation SVOs are
initialized with the state estimate provided by the robust
SVO. A fault is completely isolated whenever only one of
the fault isolation SVO has a non-empty set-valued state
estimation.

Remark 2: Despite the designation of the filters, all
the SVOs should be robust against model uncertainty,
including the nominal and the faults isolation SVOs.
For example, the nominal SVO should take into account
uncertainty in the geometry and mass of the aircraft, and
in the readings that are acquired from the sensors. �
The overall architecture of the FDI filter with SVOs is
depicted in Fig. 3. It should be stressed that the FD filters
with SVOs that are designed for specific faults, are only
initialized with the set-valued state estimate of the robust
SVO when a fault is detected by the nominal FD filter.

This approach, however, may lead to some practical prob-
lems since the set-valued state estimate provided by the
aforementioned robust SVO can be very large, which, in
turn, leads to a very long fault isolation period. A solution
to overcome this issue is presented next.



Unknown Plant
u(k)

y(k)

Sensor
noise

Plant
disturbances

d(k) n(k)

X(k)
^
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FDI Filter w/SVOs

Robust SVO
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...
Nominal FD Filter w/SVO

Fault #1
Diagnosis Signal

Fault #2
Diagnosis Signal
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Diagnosis Signal

Fig. 3. Fault Detection and Isolation (FDI) architecture for
uncertain plants using Set-Valued Observers (SVOs).

Consider, for instance, a loss-of-effectiveness type of fault
in an actuator. This fault can be modeled by multiplying
the actuator input by a constant λ ∈ [0, 1]. Therefore,
consider an SVO, as described in Section 2, designed for
a plant with this type of uncertainty. Then, such an SVO
would validate observations from a model with any value of
λ ∈ [0, 1] and, in particular, for λ = 1, which corresponds
to the nominal plant. Hence, the set-valued estimate of
this fault isolation filter need not be initialized with that
of the robust SVO whenever a fault is detected.

Therefore, in reference to Fig. 3, one can use only the fault
isolation filters, if each of these filters includes the nominal
model of the plant as one of the admissible models. A
fault is then isolated when only one of the isolation filters
provides a non-empty estimate of the state of the plant.

4. AIRCRAFT LONGITUDINAL LPV MODEL

As previously mentioned, in this paper we study the ap-
plicability and the performance of a novel FDI strategy
to an aircraft linear parameter varying (LPV) Shamma
(1988) longitudinal model. These LPV models are, in gen-
eral, time-varying and represent nowadays a compromise
between the global accuracy of nonlinear models and the
straightforward controller synthesis and system analysis
techniques available for linear time-invariant (LTI) de-
scriptions.

The dynamics of an aircraft are highly nonlinear, and de-
pend on several (time-varying) parameters, such as the dy-
namic pressure and the aerodynamic coefficients. However,
in constant altitude steady-state flight, these dynamics are
well-described by LPV models, which depend upon the air-
speed. In particular, consider the aircraft LPV longitudinal
model presented in Fujimori and Ljung (2006). This model
can be described by the following linearized equations:

du

dt
−Xuu+ g cos Θoθ = 0,

−Zuu+ V
dα

dt
− Zαα+ (V + Zq)q + +g sin Θoθ = Zδeδe,

−Muu−Mα̇
dα

dt
−Mαα+

dq

dt
−Mqq = Mδeδe,

dθ

dt
= q.

(4)

The longitudinal states are the forward airspeed, u (which
should not be confused with the control input in (1)), the
pitch angle, θ, the angle-of-attach, α, and the pitch rate, q.
The parameters of the model are the stability and control
derivatives (described in the sequel), the magnitude of
the gravity vector, g, the pitch trimming angle, Θo, and

the airspeed, V , i.e., the magnitude of the velocity of the
aircraft relative to the fluid. Moreover, δe is the deviation
of the elevator angle.

As explained in detail in Fujimori and Ljung (2006), by
defining x(t) and y(t) as

x(t) :=

[
u(t)
θ(t)
α(t)
q(t)

]
, y(t) :=

[
u(t)
θ(t)
α(t)

]
,

the dynamics in (4) can be rewritten as the following
continuous-time LPV model:{

d

dt
x(t) = A(V, ξ(V ))x(t) +B(V, ξ(V ))δe(t),
y(t) = Cx(t),

(5)

where
A(V, ξ(V )) = [aij ],
a11 = Xu, a12 = −g cos Θo, a13 = Xα,
a14 = 0, a21 = 0, a22 = 0,

a23 = 0, a24 = 1, a31 =
Zu

V
,

a32 = −
g sin Θo

V
, a33 =

Zα

V
, a34 = 1 +

Zq

V
,

a41 = Mu +Mα̇
Zu

V
, a42 = −Mα̇

g sin Θo

V
,

a43 = Mα +Mα̇
Zα

V
, a44 = Mq +Mα̇

(
1 +

Zq

V

)
,

B(V,ξ(V )) =

[ 0
0
Zδe
V

Mδe
+Mα̇

Zδe
V

]
, C =

[ 1 0 0 0
0 1 0 0
0 0 1 0

]
.

The stability and control derivatives (SCDs) are concate-
nated in vector ξ(V ), i.e.,
ξ(V ) = [Xu, Xα, Zu, Zα, Zq, Mu, Mα, Mα̇, Mq, Zδe , Mδe ].
For a nominal airspeed of Vo = 150 m/s, the numeric
values of the SCDs are summarized in Table 1.

Table 1. Stability and control derivatives for
Vo = 150 m/s.

SCD Value SCD Value

Xu −0.0298 Xα 12.609
Zu −0.3065 Zα −161.54
Zq −1.5464 Mu 0.0013
Mα −7.9295 Mq −1.8485
Mα̇ 0.1167 Zδe −11.374
Mδe −5.9544

The LPV model in (5) is going to be used in simulation to
represent the dynamics of the aircraft and to design the
SVOs for the FDI method described in Section 3.

5. SIMULATIONS

This section presents a series of simulations that illustrate
the applicability of the SVOs in fault detection and isola-
tion.

We use the aircraft model for the longitudinal axis, pre-
sented in Section 4, discretized with a sampling period
Ts = 200 ms. Using this model and the results summarized
in Section 2, an SVO was designed for this plant.

Remark 3: Applying Proposition 2, it can be seen that
by using the 12 most recent state estimates, the SVOs are
guaranteed to converge. �
Thereafter, a fault detection filter as in Section 3 was
synthesized in order to diagnose faults in the longitudi-
nal dynamics of the aircraft. For the simulations, both
the exogenous disturbances, d(k), and the sensors noise,
n(k), were generated using a random uniform distribution.
Moreover, four fault isolation filters were also designed
using the approach in Section 3, in order to isolate the
following failures in the aircraft:



(1) FDI #1: loss-of-effectiveness (LOE) in the forward
velocity, u, sensor;

(2) FDI #2: LOE in the pitch angle, θ, sensor;
(3) FDI #3: LOE in the angle-of-attach, α, sensor;
(4) FDI #4: LOE in the elevator, δe.

The FDI architecture used is depicted in Fig. 4. In
this case, the FDI filters were designed so that loss-of-
effectiveness type of faults can be diagnosed. Thus, as
explained in detail in Section 3, the FDI filters need not
be reset whenever a fault is detected by the nominal filter.

Uncertain Aircraft Model
u(k)

y(k)

Sensor
noise

Plant
disturbances

d(k) n(k)

FDI signals

FDI Filter w/SVOs

FDI Pitch Angle Sensor

Nominal FD Filter

FDI Forward Airspeed Sensor

FDI Angle-of-attack Sensor

FDI Elevator

Fig. 4. FDI architecture using SVOs for the aircraft
longitudinal model.

An LQG controller was designed for the aircraft linearized
model, about the nominal airspeed of Vo = 150 m/s, in
order to be able to generate faults in the actuator.

Two different scenarios are going to be analyzed in the se-
quel. The first one consists in generating abrupt (or hard)
faults in the sensors/actuator. We start by considering a
hard fault in the elevator. In particular, for t ≥ 20 s, the
elevator becomes stuck at zero, i.e., δe(t) = 0 for t ≥ 20
s. For this configuration, the average results for 5 Monte-
Carlo runs are depicted in Fig. 5. The faults were detected
in less than 3 iterations, i.e., in less than 600 ms, and
isolated in less than 1 s.
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Fig. 5. Hard fault in the elevator of the aircraft. The
results shown were obtained by averaging 5 Monte-
Carlo runs. After nearly 1 s, the only FDI filter that is
able to explain the observations is FDI #4. Therefore,
the fault in the elevator is isolated in nearly 1 s.

A similar trial was tested for a hard failure in the forward
speed sensor of the aircraft. Suppose that, for t ≥ 20 s, the
effectiveness of the forward speed sensor is decreased by
40%, i.e., the reading acquired from the sensor corresponds
to 60% of the true forward speed of the aircraft. For this
case, the results obtained by averaging 5 Monte-Carlos
runs are illustrated in Fig. 6. The faults were detected

and isolated in less than 2 iterations, which is equivalent
to 400 ms. In fact, in most cases, only one iteration was
required to isolate this fault.

Remark 4: In order to give some insight regarding why
the failures in the forward speed sensor are, in these
simulations, more quickly detected and isolated than the
faults in the elevator, we stress that the changes in the
forward speed affect not only the state trajectory u(·), but
also the dynamics of the model. To see this, notice that
A(·, ·) and B(·, ·) in (5) depend upon the airspeed, V (·),
which is obviously related to u(·). �
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Fig. 6. Hard fault in the forward speed sensor. The fault
in the forward speed sensor is isolated in nearly 400
ms.

It should be noticed, however, that hard faults are, in gen-
eral, “easier” for detection. Indeed, for the second scenario,
we consider smooth (or soft) faults in the sensors/actuator,
thus representing more realistic failures.

Suppose that the effectiveness of the elevator suffers the
variation depicted in Fig. 7, i.e., the effectiveness of the
actuator decreases linearly during 2 s. In this case, the FD
filter with SVOs takes nearly 600 ms to detect the fault,
as shown in Fig. 7. Moreover, the fault is isolated in 2 s.
In comparison with the previous scenario (hard failures),
the FDI system requires more time to detect and isolate
the faults, as expected.
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Fig. 7. Soft fault in the elevator of the aircraft. The fault
in the elevator is isolated in nearly 2 s.

The results for a soft fault in the forward speed sensor are
depicted in Fig. 8. In this situation, the results are not
significantly affect by the smoothness of the fault. Indeed,
only 2 iterations are required to isolate the fault. The same
reasoning as in Remark 4 applies to this case.

Several Monte-Carlo simulations with faults occurring
in the pitch angle and angle-of-attack sensors were also
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Fig. 8. Soft fault in the forward speed sensor. The fault in
the forward speed sensor is isolated in nearly 400 ms.

conducted, leading to similar results, though they are
omitted here due to lack of space.

6. CONCLUSIONS

This paper illustrated the applicability of a novel method-
ology for fault detection and isolation (FDI) based on set-
valued observers (SVOs), with the example of a linear
parameter varying (LPV) aircraft longitudinal model. The
adopted approach relies on the set-valued state estimates
of the SVOs to validate or falsify the set of observations.
These SVOs are designed in such a way that model uncer-
tainty and disturbances can be accounted for. Hence, false
alarms due to such perturbations are avoided.

The simulation results show that the detection and isola-
tion of the faults take, in general, only a few iterations.
It was also noticed that, as expected, abrupt faults are
easier to detect than smooth faults, using this approach.
The results obtained show that the methodology derived
holds considerable promise for practical applications.
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