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Abstract

The problem of state estimation in asynchronous, lossy
and randomly delay systems arises frequently in problems
connected with communications networks, where measure-
ments may travel different paths between the plant which
originated them and the controller. This usually leads to dif-
ferent delays between measurements of different sensors or
even to the loss of some of the measurements. In particular,
we consider the case where we have access to the control
acting upon the plant and to the delays of each measurement
arriving at time instant t, albeit we have no prior knowl-
dge on the distribution of these delays. In this scenario we
describe the minimum variance unbiased estimation of the
state vector for an online situation described by Matveev
and Savkin [3, 2]. We proceed by analysing the conditions
for stability of the estimator and provide numererical sim-
ulations to better understand its constrains and the proper-
ties.

1. Introduction

Whenever communication between different sensors and
a observer takes place over parallel and independent chan-
nels we are due to observe different delays between mea-
surements. This is said to be an asynchronous system. In
these systems, not only measurements corresponding to the
same timet from different sensors may arrive at the ob-
server at different timest′ but also measurements from the
same sensor may arrive out of order. Furthermore, as it
happens often in communications over the internet, we may
loose some of the data, due to noise or to protocol malfunc-
tions. The diversity of causes which give rise to these delays
and losses (see e.g. [4], [3]) makes their distribution diffi-
cult to model. Fortunately, it is common practice to provide
the measurements with the corresponding time stamps and,
if the observer and the producer have synchronous clocks
or if it is possible to estimate the clocks independently (e.g.
GPS/Gallileo satellite signals), the observer has direct ac-

cess to the delays. These information allow us to place each
new measurement with respect to previous ones and thus
incorporate delayed measurements in our state vector esti-
mations.

Usually, not only the measurements may be lost, but also
the control. However, here we assume that we have access
to the control, as is the case over TCP/IP networks. This
assumptions is not only valid since it reflects a widely used
protocol, but also it is useful in the sense that it allow us to
separate the state estimation and the optimal control prob-
lem. Albeit here we only address the problem of state esti-
mation, we keep in mind that the ultimate goal is to provide
those estimations in anonline fashion.

In this project, we present the minimum variance esti-
mator for the state vector estimator of a system with asyn-
chronous, lossy and delayed measurements, with a con-
troller acting upon the system. The system follows all the
natural assumptions of independent white Gaussian noise.
This problem was already solved by Matveev and Savkin,
[2]. Here we will provide an overview of the estimator itself
as well as its main properties and will provide numerical ex-
amples to highlight those same properties. In particular, we
will focus on the impact that delayed observations have on
the estimation uncertainty and will adress the stability od
the system.

This work is organized as follows: in section (2) we for-
malize the estimation problem and provide the MVUE; in
section (3) we address the main characteristics of the esti-
mator and finally, in section (4), we provide the numerical
simulations.

2. State Vector Estimation

We start by describing our problem as a state model in its
basic formulation: from plant state vector to observed mea-
surements. Then we reformulate the problem as an aug-
mented state model, to take into account the delays, and
finally we present the state vector estimator based on this
augmented model.

The state model of the sensor network can be described



by the following equations for state vector dynamics, eq.(1),
measurements, eq.(2) and initial conditions, eq.(3):

x(t + 1) = A(t)x(t) + B(t)u(t) + ξ(t),

t = 0, ..., tmax (1)

yν(t) = Cνx(t) + χν(t), ν = 1, ...l (2)

x(0) = a, (3)

whereν corresponds to sensor index. Furthermore, we are
assuming independent white Gaussian noise for plant and
measurements, which means thatξ(t) ∼ N (0, Rξ,ξ) and
χ(t) ∼ N (0, Rχ,χ). Moreover, we assume that we have an
uncertainty in the initial position and that this uncertainty
is independent on both plant and measurements the noise
and also follows a Gaussian distribution;a ∼ N (Ea,Ra,a).
The noise arising from the communication between the sen-
sor and the estimator can be incorporated underχ.

At each time instantt, the observer receives a set of mea-
surements from different sensorsν and with different time
stampsθ. To the set of all pairs (ν , θ) arriving in the in-
stant t we call S(t). Since we are considering the case
where we have access to the producers (sensor) identity
and the time stamp of each measurement, we can consider
that measurements only arrive once(S(t1) ∩ S(t2) = ∅ for
t1 6= t2) and that have access toS(t) at each time instant
t. This means that our observations are independent and
that we do not need the statistics of the delays and losses
because we have first hand access to them.

The delay of each measurement is denoted asτn(t).
These delays are produced independently of the plant and
measurement noise. Moreover, we are assuming that
the delays have an upper bound:τν(t) ≤ σ, ∀t ∈
[0, tmax]∀ν ∈ {1, ..., l}. This upper bound is important
because it allow us to restrain our problem: all the action
will be happening in the time interval[t− σ, t]. To estimate
the state vector, we will take advantage of this fact by intro-
ducing an augmented state model, where we will deal the
whole system in this interval.

2.1. Augmented State Model

From the previous assumptions we know that for each
time instantt all our new measurements will come from the
interval [t − σ, t]. This lead the authors [2] to introduce a
new state model which describes the system in this interval.
The state vector and the observations in this model are given
by equations (4) and (5)

X(t) = [x(t), x(t − 1), ..., x(t − σ)]T (4)

Y (t) = (zν,j) ∈ ζ (5)

zν,j =

{

yν(t − j)if (ν, t − j) ∈ S(t)
0, otherwize

(6)

and the state model is given by the equation set (7).

X(t + 1) = U(t)X(t) + Bu(t)Hξ(t)

Y (t) = C [t, S(t)] X(t) + η[t, S(t)]

η[t, S(t)] = {µν,j}
l σ
ν=1,j=0 ∈ ζ

C [t, S(t)] = {yν,j}
l σ

ν=1,j=0 ∈ ζ

yν,j =

{

Cν(t − j)x(j), if (ν, t − j) ∈ S(t)
0 otherwise

U(t) =









A(t) 0 ... 0 0
I 0 ... 0 0
. . ... . .

0 0 ... I 0









(7)

B(t) = [B(t), 0, ...0]
T

X(0) = (a, ...., 0)
T

P(0) =









Ra,a 0 ... 0 0
0 0 ... 0 0
. . ... . .

0 0 ... 0 0









,

whereP(0) is the initial covariance matrix corresponding
to the initial state vectorX(0). We can now introduce the
Kalman filter to estimateX(t + 1) and this, according to
Kalman Filter properties (see e.g. [1]), will be the mini-
mum variance estimator for the whole set of state vectors
x(t + 1), ...x(t + 1 − σ) conditioned over all the observa-
tions arriving untilt + 1 (Y (0)...Y (t + 1)), the information
regarding their origin (S(0)...S(t + 1)) and the control in-
formation (u(0)...u(t + 1)).

2.2. Kalman Filter for the Augmented State Model

By plugging in the previous state vector into a regular
Kalman filter and taking advantage of the sparseness of ma-
trix U(t) and observation vectorY (t), the authors provide
an efficient way to compute the state vector estimative.

The final expressions are much more spectacular than
the actual concept which is behind them (the Kalman fil-
ter). Here we will briefly present them just to highlight the
impact of each new delayed observation on the overall esti-
mator.

The predictive phase of the filter corresponds to equa-
tions eq.(8) and eq.(9).

x̂(t + 1|t) = A(t)x̂(t|t) + B(t)u(t) (8)

P0,0(t + 1|t) = A(t)P0,0(t|t)A(t) + Rξ,ξ(t), (9)
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The update phase is a bit more cumbersome.

x̂(j|t + 1) = x(j|t) + K
(ν,θ)
t+1j (t + 1)[yν(θ)yν(θ|t)]

j = t + 1, t, ...t + 1 − σ (10)

ŷν(θ|t) := Cν(θ)x̂(θ|t) (11)

Ks
t+1−j(t) =

∑

ν,θ∈S(t)

Pj,t−θ(t)Cν(θ)T λ+(t)s
ν,θ (12)

λ+(t)s2

s1
= Ds2

s1
λ+(t), (13)

except for all the empty rows and columns

λ(t) =













λs1

s1
(t) λs2

s1
(t) ... λ

sq

s1
(t)

λs1

s2
(t) λs2

s2
(t) ... λ

sq

s2
(t)

. . ... .

. . ... .

λs1

sq
(t) λs2

sq
(t) ... λ

sq

sq (t)













(14)

λsj

si
(t) = Cν1

(θ1)Pt−θ1,t−θ2
Cν2

(θ2)
T + ∇s2

s1
, (15)

∇s2

s1
=

{

Rν1

ξ,ξ(θ), if s1 = s2

0 otherwise
(16)

P̄i,j = Pi,j −
∑

(ν,θ)∈S(t)

K
(ν,θ)
i (t)Cν(θ)Pt−θ,j(θ)

(17)

Pi,j =















P̄0,0 , if i = 0, j = 0
Ā(t)Pi,j−1(t)

T , if i = 0, j ≥ 1
P̄i,j−1(t)A(t)T , if i ≥ 1, j = 0

P̄i,j−1 if i ≥ 1, j ≥ 1

(18)

wheresi is a pair(νi, θi) andDsj

si a matrix such asλsj

si =
D

sj

si λ(t) except for all the empty rows and collumns.
As we can see, each new measurementyν(θ) will con-

tribute to update the estimative of all the state vectors in the
interval [t − σ, t], in particular it will correct the estimate
x̂(t + 1|t + 1) even if we are not observing the measure-
ments corresponding tot + 1. This corresponds to update
all the previous state vector estimativesx̂(j|θ) (and thus re-
ducing the covariance matrix) and then propagate the new
estimatives and new covariances untilt + 1.

3. Stability of the Estimator

The main problem in establishing the stability of the es-
timator is that it was obtained from a system which is not
time invariant: the augmented system. Even if we had a
time invariant plant model, since the observation matrixC
in the augmented model is not constant in time, we can-
not establish stability through the steady state Kalman filter.
However, there are some conditions which we can provide
to make sure that the system is stable.

The extensive proof for the conditions of stability can
be found in [2]. Here we will just provide the conditions
and sketch the main steps of the proof. Further analysis on

the effects of the main conditions on the stability will be
provided in section 4.

The plant system must be time invariant: Cν = C and
A(t) = A

The noises are statistically stable and non Singular:
Rξ,ξ > 0, Rχ,χ > 0
Plant is either a.s. Observable via the communication
channels or stable: According to the definition of observ-
ability over the communication channels ([2]) a system is
observable in the interval[t0, t1] if and only if it respects:

M(t0, t1) :=

t1
∑

(ν,θ)∈S(t0,t1)

l
∑

ν=1

(

Aθ−t0
)T

CT
ν CνAθ−t0 > 0

whereS(t0, t1) is the set of measurements with time stamps
t0 < θ < t1.

If these conditions are met, the system is stable in the
sense of Lyapunov, after some stabilizing timet∗. The full
demonstration can be found in [3], but here we provide a
brief overview of the main ideas behind it, in particular
we introduce the Lyapunov function and provide evidence
that it full fils the stability criteria. Before we proceed, we
just introduce the estimation errors vectorE(t), and the pre-
dicted and updated covariances of the augmented estimator
P(t) andP̄(t).

The Lyapunov function is defined asL(t) =
E(t)P−1(t)E(t) and it is positive definite if and only if
P−1(t) is also. To show that this is true, we just need to
show thatP has a lower bound greater than zero and a fi-
nite lower bound. The lower bound is trivially the covari-
ance matrix of a system with no delays and with no losses.
The upper bound arrises from the observability via the com-
munication channels constrain. Since the estimation error
x(t) − x̂(t|t) is proportional toM(t0, t1)

−1, if the sys-
tem is observable this matrix has an upper bound and so
will P (t) = E[(x(t) − x̂(t|t))2]. Furthermore the evolu-
tion along time ofL can be computed by propagatingE(t)
in time and, by using the state model without noises and
Kalman Filter Equations, we arrive at:

∆L(t) ≤ −
(

V (t)T P−1(t)V (t)T +

∑

(ν,θ)∈S(t)

e(θ|t)T CT
ν

(

Rn
χ,χCνe(θ|t)

)



 where:

V (t) =
(

P̄(t)P−1(t) − I
)

UE(t − 1)

E(t + 1) = E(t) + V (t + 1)

and thus clearly∆L(t) ≤ 0 and the system is stable in
the interval[t1 − σ, t1].
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4. Numerical simulations

The objective of this section is two fold: we wish to un-
derstand the impact of delays in both the estimation covari-
ance and in stability. To achieve this, we consider only a
linear time invariant system with three different delays and
losses distributions.

The linear model emulates a car moving in a straight line
moving under a constant acceleration. Furthermore the car
is equipped with GPS, velocimeter and wifi, which allows
him to communicate, through a wireless network, its posi-
tion and velocity to an observer.

In the first distribution we consider no losses and small
to none delays (see graphics in figure (1)). In the second
distribution, we consider a small percentage of losses (<

10%) and longer delays. At last we consider high losses
and high delays.

4.1. Problem Description

The car state model can be described by the system in
equations eq.(1), eq.(2) and eq.(3) with ;

A =

(

1 1
0 1

)

(19)

B = 0 (20)

Ea = (0, 0)T (21)

Ra,a = 10−4I2 (22)

Rξ,ξ = 10−4 (23)

Rχ,χ = 10−2 (24)

To simulate the delays and losses, we used a Weibull
distribution for each of the sensors and considered that all
measurements with delays greater than6 were lost, i.e.,
σ = 6. To simulate each of the three types of delays, we
used: τ1

ν (θ) ∼ 1.3Wei(1, 1), τ2
ν (θ) ∼ 1.3Wei(0.7, 1) and

τ3
ν (θ) ∼ 1.3Wei(7, 0.0001) respectively. These distribu-

tions were selected empirically in order to emulate the de-
sired effect on the observations and have no physical mean-
ing: we are considering the general case where we have no
access to this distributions. The statistics for the delaysare
presented in the graphics of figure 1

4.2. State Vector estimation and uncertainty

The results from the simulations are presented in graph-
ics of figure (2) for position, velocity, and variances respec-
tively. The most interesting fact we can see in these exper-
iments is the upper bound on the covariance of the systems
which are observable over the communication system: the
first and the second case. In the third experiment, our co-
variance achieves much higher values (∼ 4 orders of mag-
nitude higher).

We also note that the difference in magnitude between
our uncertainty in velocity and in position is solely due to
the structure of our state model.

4.3. Observability and Stability

If A is non singular, the condition for almost surely ob-
servability in an interval[t0, t0 +σ] is equivalent to say that
we can only lose data in a null measure (a la Lebesgue)
set of points. In our examples this is only verified in the
two first cases, when we have loss rates lower very low.
To exemplify this, we computed the lower eigenvalue of
M(t1, t1 + σ) for the three cases and the results are pre-
sented in the graphic of figure (ref). Only the third case,
with high loss of measurements disrespect the observability
over communication channels constrain (M(t1, t1 + σ) >

0∀t1 ∈ 0, ..., tmax − σ).
According to the stability conditions, our system will

only be stable on the first 2 cases, since in the third it does
not fulfill the observability condition and the original plant
system is not stable. This can be seen in the graphics of
figure (3).

5. Conclusions

Here we presented the online minimum variance estima-
tor for a system with random delays, in the case where we
have access to them and when they are bounded. This em-
ulates systems where both the observer and the plant have
synchronized watches or at least where it is possible to es-
timate independently the delays and the state vector, as is
the case in the TCP protocol. Furthermore, this estimator is
able to overcome the stability issues intrinsically connected
with the delays and neglectable losses of data.

However, this estimator lacks generality, because the two
constrains which lead to its elegance of are too strong. In re-
ality, computer clocks will not be synchronized and at most
we can expect to be able to estimate the delays. The in-
troduction of uncertainty would require a joint estimation
of the delay and of the state vector, which is not possible
under this framework. One sujestion for overcoming this
drawback can be found at [4], where several models are
considered: one for each type of problem in the comuni-
cations (e.g. one for modeling a delay of∆t = 1, another
for ∆t = 2 and other for modeling a measurement loss).
Then given a new measurement the system should be able
to predict not only the state model, but also the perturbation.
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Figure 1. Delays statistics for the 3 experiments. Delays labeled as -1 correspond to losses.
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