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Introduction
Discrete-time nonlinear plant

Discrete-time nonlinear plant

xk+1 = f(xk,uk, ξk)
x0 ∼ N (x̄0,Σ0)
zk = g(xk,θk)

f g

xk

xk+1
uk

ξk

delay

zk+1

θk+1

For clarity, assume additive zero-mean Gaussian white-noise

xk+1 = f(xk,uk) + Lkξk

zk = g(xk) + Dkθk

ξk ∼ N (0,Ξ), θk ∼ N (0,Θ), both uncorrelated
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Introduction
Problem formulation

Given the input up to time k − 1

{ui : 0 ≤ i ≤ k − 1}

and the observations up to time k

{zi : 0 ≤ i ≤ k},

compute an estimate of xk in a
minimum mean squared error sense
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Introduction
Optimal solution

Cannot be described by a finite number of parameters
However, under some simplifying assumptions, it has the form

x̂k+1|k+1 = (prediction of xk+1)

+ Hk+1[zk+1 − (prediction of zk+1)]

Pk+1|k+1 = Pk+1|k −Hk+1Pz̃k+1H
!
k+1

Optimal terms in the recursion

x̂k+1|k = E{f(x̂k|k,uk, ξk)}
ẑk+1 = E{g(x̂k+1|k,θk)}
Hk = PxkzkP

−1
z̃k

Hard to compute in closed-form
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Introduction
Optimal solution (Cont.)

The Extended Kalman Filter (EKF) and the Unscented
Kalman Filter (UKF) use different methods to find an

approximate solution for the optimal terms
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Extended Kalman Filter
Review

Optimal predictions

x̂k+1|k = E{f(x̂k|k,uk, ξk)}
ẑk+1 = E{g(x̂k+1|k,θk)}

EKF predictions

x̂k+1|k = f(x̂k|k,uk,0)

ẑk+1 = g(x̂k+1|k,0)
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Extended Kalman Filter
Review (Cont.)

Covariance propagation: apply Kalman Filter equations to the
linearized system

xk+1 ≈ Âkxk + Lkξk

zk+1 ≈ Ĉkxk + Dkθk

where

Âk =
∂f

∂x

∣∣∣∣x=x̂k
u=uk

Ĉk =
∂g

∂x

∣∣∣∣x=x̂k
u=uk
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Extended Kalman Filter

Algorithm
Initialization: x̂0|0 = x̄0,P0|0 = Σ0

Main cycle: for k = 0, 1, 2, . . .

1 Predict step:

x̂k+1|k = f(x̂k|k, uk)

Pk+1|k = ÂkPk|kÂ!k + LkΞL!k

2 Measurement update step:

ẑk+1 = g(x̂k+1|k)

Hk+1 = Pk+1|kĈ!k

h
ĈkPk+1|kĈ!k + DkΘD!k

i−1

x̂k+1|k+1 = x̂k+1|k + Hk+1(zk+1 − ẑk+1)

Pk+1|k+1 =
h
I−Hk+1Ĉk

i
Pk+1|k
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Unscented Kalman Filter
Random variables and nonlinear transformations

Consider a random variable x and a nonlinear map

f : Rn → Rn, x &→ f(x) = z

If x has mean x̄ and covariance Px, what is the mean and
covariance of z?

For example, EKF assumes z̄ = f(x̄)
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Unscented Kalman Filter
Transformation example

Example: x = (x1, x2) ∼ N (x̄,Px)
(z1, z2) = f(x1, x2) = (x2

1 + x1(1− x2), x2(x1 − 2))
Mean and covariances computed by Monte Carlo methods

Figure: (x1, x2) Figure: (z1, z2)
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Unscented Kalman Filter
Unscented transformation

Proposed by Julier, Uhlmann, and Durrant-Whyte [1995,
2000], further developments by Wan and van der Merwe
[2001]

How it works:
1 generate a set of points whose sample mean and covariance

match those of x
2 propagate them through function f(·)
3 compute the sample mean and covariance of the propagated

points

Resembles a Monte Carlo method. However, the sample
points are not drawn at random: they are deterministically
chosen
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Unscented Kalman Filter
Unscented transformation (cont.)

1 Form the set of 2L+1 sigma points (L is the state dimension)

X0 = x̄

Xi = x̄ +
(√

(L + λ)Px
)
i
, i = 1, . . . , L

Xi = x̄−
(√

(L + λ)Px
)
i−L

, i = L + 1, . . . , 2L

where (X)i denotes the ith column of matrix X

Figure: Sigma points

x̄ + -

√
(L+λ)Px =

[ ]
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Unscented Kalman Filter
Unscented transformation (Cont.)

2 Transform each of the sigma points

Zi = f(Xi), i = 0, . . . , 2L

Figure: Original sigma points Figure: Transformed sigma points
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Unscented Kalman Filter
Unscented transformation (Cont.)

3 Mean and covariance estimates for z, cross-covariance of x
and z

z̄ =
2L∑

i=0

W (m)
i Zi Pz =

2L∑

i=0

W (c)
i (Zi − z̄) (Zi − z̄)!

Pxz =
2L∑

i=0

W (c)
i (Xi − x̄) (Zi − z̄)!

where the weights are defined as

W (m)
0 = λ/(L + λ), W (c)

0 = λ/(L + λ) + (1− α2 + β)

W (m)
i = W (c)

i = 1/{2(L + λ)}, i = 1, . . . , 2L
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Unscented Kalman Filter
Unscented transformation (Example)

Example

Figure: Linearization Figure: Unscented
Transformation

The UT can be seen as a function with the following syntax

[z̄,Pz,Pxz] = UT{f(·), x̄,Px}
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Unscented Kalman Filter

Algorithm
Initialization: x̂0|0 = x̄0,P0|0 = Σ0

Main cycle: for k = 0, 1, 2, . . .

1 Predict step:

[x̂k+1|k,Pk+1|k] = UT{f(·, uk), x̂k|k,Pk|k}

Pk+1|k = Pk+1|k + LkΞL!k
2 Measurement update step:

[ẑk+1,Pz̃ ,Pxz ] = UT{g(·), x̂k+1|k,Pk+1|k}

Pz̃ = Pz̃ + DkΘD!k

Hk+1 = PxzP−1
z̃

x̂k+1|k+1 = x̂k+1|k + Hk+1(zk+1 − ẑk+1)

Pk+1|k+1 = Pk+1|k −Hk+1Pz̃Hk+1
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An illustrative example
ASC

Simplified model of an autonomous surface craft (ASC)
moving along straight lines

mẍ(t) + a1ẋ(t)|ẋ(t)|+ a2ẋ
3(t) = b(u(t) + w(t))

where w(t) represents an external disturbance caused by waves

State-space representation

ẋ1 = x2

ẋ2 = −a1

m
x2|x2|−

a2

m
x3

2 +
b

m
(u + w)

where x1(t) = x(t) and x2(t) = ẋ(t)
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An illustrative example
Waves

Waves power spectral density

Φww(ω) =
100ω2

81ω4 + 18ω2 + 1

State-space representation

ẋw1 = xw2

ẋw2 = −1
9
xw1 −

2
3
xw2 +

1
9
ξw

w = 10xw2

where ξw(t) ∼ N (0, 1)
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An illustrative example
Sensors

On board the ASC, there are two sensors

Position sensor
z1 = x1 + θ1

where θ1(t) ∼ N (0, σ2
1)

Velocity sensor
z2 = x2 + θ2

where θ2 ∼ N (θ̄2, σ2
2) with θ̄2 (= 0

θ2 is not zero-mean. Written as the output of the LTI system

ẋs = 0 θ2 = xs + σ2ξs

where xs(0) = θ̄2 and ξs ∼ N (0, 1)
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An illustrative example
Unknown parameters

The parameters a1, a2, and b of the ASC are assumed
unknown

Estimates of the parameters: x3, x4, and x5

ẋ3(t) = ẋ4(t) = ẋ5(t) = 0
x3(0) = a1, x4(0) = a2, x5(0) = b
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An illustrative example
Augmented plant

Plant’s state

x =
[
x1 x2 x3 x4 x5 xw1 xw2 xs

]!

Plant dynamics

ẋ = f(x, u, ξw) =





x2

− 1
m

(
x3x2|x2|+ x4x3

2 + x5(u + 10xw2)
)

0
0
0

xw2

−1
9xw1 − 2

3xw2 + 1
9ξw

0
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An illustrative example
Augmented plant (Cont.)

Output

z =
[

x1 + σ1ξs1

x2 + xs + σ2ξs2

]

where ξs(t) ∼ N (0, I2)
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An illustrative example
Discretization

Continuous-time (augmented) plant is discretized using a step
size of h seconds

First-order discretization

xk+1 = xk + hf(xk, uk, ξw,k)

where xk stands for x(kh)
Output

zk =
[

x1,k + σ1
h ξs1,k

x2,k + xs,k + σ2
h ξs2,k

]
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An illustrative example
Parameter and sensor configurations

Four different configurations of parameters and sensor covariances

Parameters and their initial estimates

P1 = {a1 = 25, a2 = 0, b = 1;
x̂3(0) = −5, x̂4(0) = 0, x̂5(0) = 10}

P2 = {a1 = 25, a2 = 2, b = 1;
x̂3(0) = −5, x̂4(0) = −5, x̂5(0) = 10}

Sensor covariances

S1 = {σ2
1 = 1m2, σ2

2 = 0.04 (m/s)2}
S2 = {σ2

1 = 10m2, σ2
2 = 0.4 (m/s)2}
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Simulation results
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(b) 900 to 1000 s

Figure: Evolution of E{x2} for configuration (P2, S2)

João Almeida State estimation of nonlinear systems using the UKF 26/31



Introduction
Extended Kalman Filter

Unscented Kalman Filter
An illustrative example

Conclusion

An illustrative example
Simulation results (Cont.)
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Figure: Evolution of E{x̃!x̃} (sensors: S1, parameters: P2)

Figure: Evolution of E{x̃!x̃} (sensors: S2, parameters: P2)

João Almeida State estimation of nonlinear systems using the UKF 27/31



Introduction
Extended Kalman Filter

Unscented Kalman Filter
An illustrative example

Conclusion

An illustrative example
Simulation results (Cont.)

0 100 200 300 400 500 600 700 800 900 1000

10
1

10
2

time [s]

 

 

EKF
UKF

Figure: Evolution of E{x̃!x̃} (sensors: S2, parameters: P2)
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Simulation results (Comparison)

RMS values of both filters for different parameter
and sensor configurations

Parameters Sensors Filter RMS value of x̃

P1

S1
EKF 9.769
UKF 9.747 (0.23%)

S2
EKF 11.547
UKF 11.487 (0.52%)

P2

S1
EKF 12.022
UKF 11.588 (3.61%)

S2
EKF 14.003
UKF 13.071 (6.66%)

RMS =

vuut 1

N

NX

k=0

E{x̃!k x̃k}
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Conclusion
Summary

State estimation of a nonlinear system perturbed by additive
sources of zero-mean Gaussian white-noise

The EKF deals with a linearized version of the system and
then applies the standard KF equations

The UKF uses the unscented transformation to propagate the
mean and covariance of the state

The performance of both filters was compared through
simulation. It is shown that

only when more nonlinear terms are included
or, under severe noise

does the gain in performance of the UKF stands out
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Remarks

The Unscented transformation can also be applied to
prediction and smoothing

Also available: continuous-time version, unscented particle
filter

Like the EKF, there are no guarantees of stability or
optimality

In my humble opinion, if you are using an EKF, try using an
UKF. The worst it can happen is that you spend some time
implementing it (not much, if I did my job right)
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