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Abstract

This thesis reports, in the first part, the steps for developing a POrtable

Navigation Tool for Underwater Scenarios (PONTUS) to be used as a localization

device for subsea targets. PONTUS consists of an integrated ultra-short baseline

acoustic positioning system aided by an inertial navigation system. The tool’s

architecture is fully disclosed, followed by rigorous technical descriptions of the

hardware ensemble and software development. A localization technique is then

developed to estimate the position of a moving target based on discrete-time

direction and biased velocity measurements. A nonlinear system is first designed,

followed by a state augmentation that yields an equivalent linear time-varying

system. The final estimation solution resorts to a Kalman filter with globally

exponentially stable error dynamics. Its performance is assessed via realistic

numerical simulations and via a set of experimental results using PONTUS.

In the second part, four estimators are proposed to tackle the problem

of attitude estimation taking into account the rotational motion of the planet.

The solutions presented herein put emphasis on the fact that only one vector

measurement is explicitly employed in the estimators, which are aided by angular

velocity readings collected from a set of triaxial high-grade gyroscopes sensitive

to the Earth’s spin. Different strategies, such as explicitly estimating the Earth’s

angular velocity or considering time-varying observer gains, are studied aiming

at speeding up convergence rates while maintaining high levels of accuracy and

low computational complexity. It is further examined the case when both the

gyroscope readings and the measurements of the reference vector are corrupted

by biases. Realistic simulation tests are detailed that illustrate the performance

of all four attitude estimators. In particular, the speed and efficiency of the fastest

observers are demonstrated through an extensive set of experimental results.

Keywords: Marine Robotics, Underwater Source Localization, Attitude Esti-

mation, Acoustic Signal Processing, Kalman Filtering, Earth Rotation.
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Chapter No. 1

Introduction

“Science is magic that works.”

Kurt Vonnegut

in Cat’s Cradle

Contents
1.1 Underwater Navigation and Tracking . . . . . . . . . 2

1.2 Nonlinear Attitude Estimation Techniques . . . . . . 7

1.3 Thesis Outline, Contributions and Publications . . . 12

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Statement of Originality . . . . . . . . . . . . . . . . . 16

The main goal of this thesis is to develop estimation techniques for tracking,

navigation and stabilization of robotic vehicles. In particular, solutions are

proposed for both the problem of underwater source localization using Ultra-Short

Baseline (USBL) acoustic positioning systems, and for the problem of attitude

estimation resorting to high-grade gyroscopes which are sensitive to the Earth’s

rotation.

The issues surrounding the first problem are predominantly related to a

need to build underwater robotic platforms, with limited costs, in order to per-

form tasks with great precision in environments that may not be suitable for hu-

man intervention. Similarly, the issues addressed in the second problem are also

cost-related, prioritizing simplified mission setups which employ a least possible

number of sensors while offering high-accuracy levels of performance in addition

1



to computationally light algorithms.

Combining attitude estimation with source localization allows therefore for

a comprehensive determination of a vehicle’s pose, which is of great importance

across many marine applications, including, for example, navigation and detec-

tion of submarines, multi-vehicle intervention in hazardous scenarios, resource

monitoring, and bottom mapping.

1.1 Underwater Navigation and Tracking

When humans first dared to venture into aquatic ecosystems, they were driven by

a survival instinct which instructed them to hunt for and gather food. Except for

very shallow lakes and surfaces, large bodies of water have nonetheless remained

a great mystery throughout history. The first underwater picture was only taken

in 1899, by French pioneer Louis Marie Auguste Boutan. However, more than

30 years prior to this remarkable achievement, in 1866, the British ship Great

Eastern had already succeeded in laying the first permanent telegraph line across

the Atlantic Ocean, forever changing the paradigm of worldwide communications

[Bur04]. If one thing is clear from this sequence of events is that there is no

need for visual recognition of an environment for one to know how to exploit and

move within its boundaries. Indeed, navigating, and locating animals or objects

underwater is possible without direct observations of the water column and its

surroundings.

Conceptually, the problems of navigation and tracking of mobile agents in

underwater scenarios have a few underlying differences between them, although

they share a similar mathematical background, and resort to the same kind of

acoustic measurements, often consisting of Doppler readings, directions of arrival,

time differences of arrival, etc. Whereas in navigation the main concern is to

provide a user with information about the (typically shortest) path to a certain

location, in tracking, in the sense of localization1, the goal is to measure/estimate
1Some authors prefer to distinguish tracking from localization, associating the former to

2



the current position of a moving or static source with respect to a frame of

reference, for example, a vessel or buoy at the surface, a scuba diver equipped

with a tracking device, or a land base station.

In both problems, acoustic communications can be deemed active or pas-

sive, depending on whether there is or not an interrogation mechanism among

the involved parties. Passive communications are common in the studying of fish

populations, where marine biologists only listen to the sounds produced by fishes

with a hydrophone to infer their distribution and behavior. This technique how-

ever is limited to species that produce sounds and to the times and places where

they produce them [MHJ08]. Alternatively, acoustic transmitters of reduced di-

mensions, see [vem], can be surgically implanted into a fish to periodically emit

a known signal. In turn, it is possible to measure the signal’s direction of arrival

as well as the Doppler shift (assuming there is relative motion), which combined

allow to estimate the position of the fish [ROBS14]. On the other hand, active

communications are often concerned with measuring the signals’ times of travel,

which allows distances to be computed. This is particularly important in forma-

tion control, where multiple Autonomous Underwater Vehicles (AUVs) must be

aware of their nearest neighbors.

1.1.1 The Pursuit of Autonomy

An increasing need for further operational autonomy has been a persistent chal-

lenge in the development of underwater robotic vehicles, which are required to

perform in scenarios becoming ever more complex.

AUVs are in general versatile and sophisticated machines which, thanks to

recent advances in battery technology, can enjoy periods of battery life extended

up to several hours, a much desired feature of any robotic system. But besides

battery performance and longevity, the operational autonomy of an AUV encom-

the task of ascertaining the history of positions, i.e., the path, leading to the current location.
However, in this thesis, tracking and localization are henceforward considered synonyms, both
meaning to determine the current location of a source at various instants.
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passes a broad list of other technical aspects, often summed up by the vehicle’s

ability to autonomously maneuver and communicate underwater, with the lat-

ter involving either other (not necessarily autonomous) vehicles and/or remote

human supervisors.

Indeed, mission supervision carried out by humans remains an essential

aspect of subsea vehicle deployment. Therefore, real-time communications are

indispensable to the successful outcome of underwater expeditions. They should

facilitate the tracking of the aquatic fleet, the adjusting of setup configurations,

the retrieving of mission data, etc. Communications should also be reliable for

extended periods of time as well as robust to harsh conditions posed by the

environment.

AUVs started being developed several decades ago, at naval research cen-

ters, with the purpose of retrieving information about the unknown depths under

the surface of the oceans. Unfortunately, having a complete map of the ocean

bottom is a difficult and long-term endeavor. According to the National Oceanic

and Atmospheric Administration [Nat18], more than eighty percent of the oceans

remain unmapped, unobserved, and unexplored. This notwithstanding, AUVs

moved steadily from a state of research and development, through operational

demonstrations, to reach the beginnings of commercial acceptance [Wer00]. Rys-

tad Energy, one of Norway’s leading market analysis and strategy consultancy

companies in the oil and gas sector, anticipates that, in five years, the subsea

market will grow from around $30 billion to between $60 and $70 billion annually

[Con19]. With aquatic exploration representing a source of extreme wealth and

potential business opportunities, the market for AUVs will naturally evolve into a

very attractive one, for both investors and customers alike. It is also noteworthy

the fact that AUVs have found a prominent place in the entertainment sector,

with many commercially available low-cost solutions offering inexperienced users

the possibility to learn how to explore marine environments on their own.

Nevertheless, despite the large sums of money involved in the AUV market,
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the main target will always consist in maximizing profits, which can only be

accomplished through a careful and balanced minimization of costs. This is where

the vehicles’ operational autonomy turns out to be critical, as it can help to

eliminate some high expenses related with personnel. Diving can be an expensive

activity; not removing the human presence from the underwater stage would only

aggravate an already demanding problem.

1.1.2 Underwater Acoustics

It is well known that ordinary transmissions based on Radio - Frequency (RF) sig-

nals, i.e., electromagnetic waves, are not dependable in aquatic scenarios because

this type of longitudinal wave is highly attenuated when propagating through that

medium. Alternatively, one could plan to have vehicles interconnected via cables

or have them surfacing and then use antennas to communicate wirelessly. Either

way restricts the vehicles’ range of applicability and could potentially result in

serious pitfalls in terms of setup design and mission costs. Cables, for instance,

are not a sensible design choice if one intends to cover long ranges and/or large

areas, as would be the case of bathymetry surveys, or if several AUVs are involved

in an operation that features intricate trajectories. In turn, surfacing may not be

an option in military, stealth-oriented missions, whose objective is to remain out

of enemy sight.

It is not surprising then that underwater wireless communications have re-

lied for the most part on acoustic waves propagating through the marine channel.

Indeed, the phenomena involving underwater acoustics have been known for cen-

turies, with the first written accounts tracing back to Leonardo da Vinci, who

realized that ships could be heard from afar by putting one end of a blowpipe in

the water and the other in one’s ear [MM10]. Five hundred years later, around

the end of the Second World War, the USA developed one of the first under-

water acoustic systems: a submarine communication system that used analogue

modulation in the 8−11 kHz band [HSZ11].
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Without belittling the importance of other underwater techniques, it is safe

to declare that acoustic based solutions are beyond any doubt the workhorse of

aquatic exploration. Nevertheless, the scientific community has spared no ef-

forts to complement acoustic techniques with vision-based systems. For instance,

underwater cable and pipeline tracking has been an active and beneficial field of

research: in [BTL+97], a system that uses visual data fused with other sensors was

proposed that is deemed suitable for carrying out routine maintenance operations

in predetermined areas; more recently, in [AHKH19], a nonlinear image-based vi-

sual servo control approach was presented for pipeline following of fully-actuated

AUVs. Some strategies have also proposed to extend the Simultaneous Local-

ization and Mapping (SLAM) problem to underwater scenarios, but visibility is

often limited due to turbidity and lighting [HB15].

Acoustic communications are limited physically by the speed of sound in

water, which changes nonlinearly in function of depth, and is much smaller than

the speed of light. This means that bit rates in underwater data transmissions are

fairly slow compared to the rates associated with RF signals. Transmission losses

also occur frequently due to the phenomenon of multipath, which is stronger

near the surface. Furthermore, there are several sources of ambient noise, such

as ocean turbulence, shipping, rain, etc, in addition to sources of reverberation

that include the bottom and even marine life [Hod10]. These drawbacks inherent

to the medium inspired researchers to develop digital modulation techniques to

increase the strength and detectability of acoustic signals.

Table 1.1 showcases a summary of acoustic techniques and representative

applications. The first part of this thesis focus on target localization using un-

derwater acoustic positioning systems. Such systems are typically divided into

three different classes: Long Baseline (LBL) acoustic positioning systems; USBL

acoustic positioning systems; and Short Baseline acoustic positioning systems.

An introductory exercise when reading about these systems consists in listing

their disadvantages and advantages but, ultimately, each system serves a specific
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purpose. In fact, determining which one is more suitable is one of the first steps

of mission design.

Table 1.1: Summary of acoustic techniques and representative applications
(abridged version of [Ett03]).

Acoustic Technique Applications
Image underwater features Detection and localization of objects.

Obstacle avoidance using forward-looking
sonars.
Navigation using echo sounders or sidescan
sonars.

Communicate information
via the oceanic waveguide

Acoustic transmission and reception of signals.
Navigation and docking guided by acoustic
transponders.
Release of moored instrumentation packages.

Measure oceanic properties Measurement of ocean volume and boundaries.
Acoustic monitoring of the marine environment.
Acoustic surveying of marine resources.

1.2 Nonlinear Attitude Estimation Techniques

To determine the location of an AUV in the problems of underwater tracking and

navigation is as important as determining the vehicle’s orientation in space. In

other words, the answers to the questions where are we located at? and where are

we heading to? are of equal significance. Moreover, certain robotic applications

consist in static setups where only rotational motions about a fixed point are

performed. This further draws the attention to the need for highly precise attitude

estimation algorithms, in particular because sensor measurements are inherently

corrupted by noises, and by internal and external disturbances.

In the second part of this thesis, novel, computationally efficient, and highly-

accurate algorithms are developed to estimate the attitude of a robotic platform

with just a set of triaxial gyroscopes and an additional vector measurement of a

constant inertial vector. Pertinent examples of viable applications include navi-

gation of submarines or large ships, assisting autonomous robots in precise ma-
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neuvers, platform stabilization, etc. By using high-grade gyroscopes sensitive to

the Earth’s spin, one can exploit the well-known information about the Earth’s

angular velocity. This poses a great advantage in terms of setup design and re-

duced mission costs since only one additional inertial measurement is required,

in contrast with existing solutions that require two of these.

Other solutions available in the literature have explored the usage of differ-

ent sources of information. For instance, the work in [BCSO13] considers using

range measurements to develop a nonlinear attitude observer that relies on ge-

ometric methods to guarantee almost global asymptotic stability of the desired

equilibrium point. In [BCV+11], the proposed attitude nonlinear observer fuses

angular velocity measurements with the information given by images of a planar

scene provided by an active vision system, and then derives a stabilizing feedback

law that guarantees exponential convergence to the origin of the estimation errors,

even in the presence of constant bias disturbances on the rate gyro measurements,

a scenario which is also addressed in this thesis.

On a side note, it is important to assert herein that in this thesis an un-

ambiguous distinction is made between filtering and estimation. Filtering is the

process through which the noise over measurements is reduced, whereas estimat-

ing consists in using (filtered or not) measurements to compute a certain quantity

that cannot be directly obtained from the available sensors. Hence, rotation ma-

trices are never assumed known nor are they ever algebraically reconstructed from

vector measurements.

1.2.1 Initial System Alignment

Despite the continual developments of Inertial Measurement Units (IMUs), their

raw performance is often not compatible with certain robotic applications which

require high levels of accuracy. For instance, strapdown Inertial Navigation Sys-

tems (INSs) rely on a precise initial alignment, i.e., initial rotation matrix, in order

to provide a sustained and reliable estimate of a vehicle’s position over time. In
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more practical terms, this means that an accurate initial alignment of the ve-

hicle’s pose is important for the subsequent navigation, which typically consists

in integrating the sensor measurements. Naturally, a straightforward integration

of these measurements will lead to deviations, which in turn will undermine the

navigation performance. For example, gyroscope readings contain errors which

are induced by such attributes as the sensor’s angle random walk, bias instabil-

ity, bias offset, etc. Depending on the kind of application, and on the quality

of the IMU sensor, integrating these errors may not even be a major drawback.

The work in [VSOG10] tackled the intrinsically integration issue by presenting

a navigation system architecture that is based on merging a high accuracy INS

with information obtained from the vehicle dynamics, which, using an extended

Kalman filter, is used to propagate the INS state estimates, therefore exploiting

the redundancy of information.

In this work however, notwithstanding a similar scope, the objective is not

to provide an initial alignment, but to provide instead a dynamic estimate of

the rotation matrix without the need for information about the vehicle’s initial

orientation. Nevertheless, the interested reader may still refer to works [DSS97,

PKL+98, GBZ+11, WZW+12], to cite just a few, for a further insight into the

theory of strapdown INS alignment.

1.2.2 Multiple Vector Measurements

Perhaps the most obvious strategy to reconstruct a rotation matrix is using mul-

tiple body vector measurements and their corresponding inertial representations,

which are typically assumed known and can be either constant or time-varying. A

pair consisting of a body-vector measurement and its inertial known counterpart

is henceforward called a reference vector. Solutions that use explicit informa-

tion of more than two reference vectors go a long way back, since Wahba first

stated the now classic problem of least squares estimation of satellite attitude

[Wah65]. Particularly in spacecraft/satellite attitude applications, two vectors
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generally employed in the determination of the rotation matrix are the unit vec-

tor to the Sun and the Earth’s magnetic field vector for coarse sun-mag attitude

determination or unit vectors to two stars tracked by two star trackers for fine

attitude determination [Mar98]. Despite the convenience of sun sensors and star

trackers in space, on Earth’s surface level, especially in indoor and underwater

environments, the two most common vectors are the direction of gravity and the

Earth’s magnetic field vector due to their independence of visual references. Fur-

thermore, these two vectors are of particular significance because their inertial

mapping is known with extreme precision and, most importantly, the IMUs that

provide these vectors are nowadays found to be relatively cheap and of reduced

dimensions.

Nevertheless, one can also resort to landmark measurements, as seen from

[VCSO10], where a nonlinear observer based on landmark measurements and

possibly biased velocity readings is proposed that is derived constructively using

a conveniently defined Lyapunov function, defined by the landmark estimation

error.

There exists a plethora of contributions in the literature for the problem of

attitude estimation using vector measurements. The work in [Mar99] rigorously

summarizes 30 years of proposed solutions that followed Wahba’s problem. More

recent solutions predominantly lean on the construction of nonlinear observers

that combine vector measurements with measurements from gyroscopes, a strat-

egy which is also pursued in this thesis. Indeed, combining measurements from

gyroscopes helps to deal with noise and other uncertainties corrupting the vec-

tor measurements. In [BRSO13], an attitude estimator based on a Set-Valued

Observer is proposed that considers uncertainties defined by polytopes, and that

guarantees the true state of the system is inside the estimated set as long as the

assumptions on the bounds on the measurements are satisfied.

Most noticeably, recently developed high-grade gyroscopes are sensitive

enough to perceive the Earth’s rotation. This remarkable fact is explored to
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a great extent in this thesis, where novel techniques are proposed that do not

require explicit information of two non-parallel vector measurements. Alterna-

tively, only one vector measurement is necessary, while the information of the

second one is implicitly available from the high-grade gyroscope readings.

1.2.3 Hybrid Solutions

When designing attitude observers, one of the first design choices lies in the rep-

resentation of the rotation matrix. The quaternion formulation has a ubiquitous

presence across most works in attitude estimation, even if sometimes only used for

stability analysis purposes. The rotation matrix that represents a transformation

on the special orthogonal group is often the most convenient representation due

to its practical structure. However, as shown in [BB00], mechanical systems with

rotational degrees of freedom cannot be globally asymptotically stabilized to a

rest configuration. Some authors embed the special orthogonal group in a linear

space, allowing therefore for the design of globally exponentially stable solutions

that do not evolve on the 2-sphere manifold [BSO12a, BSO12b].

Nevertheless, there have been some efforts to overcome the topological ob-

struction of the special orthogonal group. These efforts usually result in hybrid

solutions that evolve on the special orthogonal group and offer global guaran-

tees. In [WKL15] the key idea is to design a set of attitude error functions such

that attitude estimates are expelled from undesired equilibria to achieve global

asymptotic stability. In [BAT17], the authors propose an observer that relies on

a hysteresis-based switching between different configurations, with each observer

configuration being derived from a non-differentiable potential function on the

special orthogonal group.
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1.3 Thesis Outline, Contributions and Publica-

tions

The main contribution of this thesis are predominantly concerned with solutions

for tracking of subsea targets and attitude estimation techniques, and they can

be outlined as follows:

• Chapter 2: a full disclosure of the architecture of a portable robotic tool

for underwater navigation and localization is presented, followed by thor-

ough technical descriptions of the hardware components ensemble and of

the software development process. This portable tool provides the scien-

tific community with a versatile and high-performance low-cost solution for

underwater tracking of moving targets, by presenting a highly-configurable

array, in addition to enabling access to the physical variables of the system,

which, can be used in the design of novel tightly-coupled algorithms for

localization and navigation.

The results in this chapter are based on [RMB+16]:

J. Reis, M. Morgado, P. Batista, P. Oliveira, and C. Silvestre. Design and

Experimental Validation of a USBL Underwater Acoustic Positioning Sys-

tem. Sensors, 16(9):1491, September 2016

• Chapter 3: a novel filtering technique to estimate the position of a mov-

ing target based on discrete-time direction and velocity measurements is

proposed. Moreover, proofs regarding strong forms of observability, in par-

ticular uniform complete observability, are presented that render the error

dynamics associated with the final estimation solution Globally Exponen-

tially Stable (GES). A set of experimental results obtained from the afore-

mentioned tool is also presented that shows the proposed technique to be

robust even in the presence of harsh conditions imposed by the environment.
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The results in this chapter are based on [RBOS18b]:

J. Reis, P. Batista, P. Oliveira, and C. Silvestre. Source Localization Based

on Acoustic Single Direction Measurements. IEEE Transactions on Aerospace

and Electronic Systems, 54(6):2837–2852, December 2018

• Chapter 5: a novel attitude estimation solution, built on SO(3), is presented

that resorts to single measurements of a constant inertial vector, in addition

to angular velocity readings provided by a set of three high-grade fiber optic

rate gyros, which are assumed to be sensitive to the angular motion of the

Earth. This approach contrasts with typical attitude solutions that require

either a single but time-varying inertial vector, or measurements of two non-

collinear inertial vectors. The designed nonlinear observer features only one

tuning scalar parameter that, in view of the region of convergence of the

rotation matrix error, is shown to render the proposed solution almost glob-

ally asymptotically stable. Extensive simulation results with realistic noise,

including Monte Carlo, are presented that allow to assess the achievable

performance.

The results in this chapter are based on [RBOS19a, RBOS18a]:

J. Reis, P. Batista, P. Oliveira, and C. Silvestre. Nonlinear Observer on

SO(3) for Attitude Estimation on Rotating Earth Using Single Vector Mea-

surements. IEEE Control Systems Letters, 3(2):392–397, April 2019

J. Reis, P. Batista, P. Oliveira, and C. Silvestre. Nonlinear Attitude Ob-

server on SO(3) Based on Single Body-Vector Measurements. In Proceedings

of the 2nd IEEE Conference on Control Technology and Applications, pages

1319–1324, August 2018

• Chapter 6: building on the theoretical result attained in Chapter 5, in this

chapter a novel attitude estimation solution is presented that features a

time-varying adaptive gain. Built on the special orthogonal group, and

aided by angular velocity readings, the proposed nonlinear observer resorts
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to body-fixed measurements of only one constant inertial reference vector

in order to estimate the rotation matrix. The resulting observer design fea-

tures a sole tuning parameter in the form of a matrix gain. The latter stems

from a time-varying Kalman filter strategically applied to a uniformly ob-

servable Linear Time-Invariant (LTI) system obtained from the linearized

rotation matrix error dynamics. The nonlinear observer is proved to be

locally exponentially stable but, most noticeably, despite this local-based

inception, an extensive Monte Carlo analysis demonstrates the good prop-

erties of the observer in terms of convergence rate, tunning capability, and

large basin of attraction. Furthermore, extensive experimental results con-

firm the properties of the proposed technique and validate its usage in real

world applications.

The results in this chapter are based on:

J. Reis, P. Batista, P. Oliveira, C. Silvestre. Attitude estimation using

high-grade gyroscopes. Control Engineering Practice, accepted.

• Chapter 7: a discrete-time attitude estimation solution is presented featur-

ing a cascade of two Linear Time-Varying (LTV) Kalman filters. Under mild

assumptions, the cascade’s first filter resorts to body-fixed measurements

of angular velocity and of a constant inertial vector to yield an estimate

of Earth’s angular velocity. The latter, in addition to all previous mea-

surements, is fed to the second Kalman filter to obtain an estimate of the

rotation matrix. Although topological constructions are lifted, a last-step

projection operator is employed that maps the final rotation matrix esti-

mate onto the special orthogonal group. Briefly, two linear time-varying

systems are designed, with no linearisations whatsoever, that are shown

to be uniformly completely observable, thus rendering the overall solution

globally exponentially stable. Simulation results are presented that allow to

assess the performance of the cascaded Kalman filter duo. A set of experi-

mental results is also presented that validates the efficiency of the proposed
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solution and deems it a suitable attitude estimation choice for applications

where only one body-vector measurement is available.

The results in this chapter are based on:

J. Reis, P. Batista, P. Oliveira, C. Silvestre. Kalman filter cascade for

attitude estimation on rotating Earth. IEEE Transactions on Mechatronics,

in revision.

• Chapter 8 addresses the problem of estimating the attitude of a robotic

platform using biased measurements of: i) the direction of gravity; and, ii)

angular velocity provided by a set of high-grade gyroscopes sensitive to the

Earth’s rotation. A cascade solution is proposed that features a Kalman fil-

ter tied to a rotation matrix observer built on the special orthogonal group.

The Kalman filter, which is applied to an observable linear time-varying

system, yields estimates, expressed in the platform’s body-fixed frame, of

the Earth’s total angular velocity and of two sensor biases associated with

the measurements, in addition to noise-filtered accelerometer data. The

attitude observer is shown to be locally input-to-state stable with respect

to the Kalman filter errors, as well as almost globally asymptotically sta-

ble in nominal terms. A realistic simulation setup is outlined and results

are presented that allow to assess the performance of the proposed cascade

technique.

MATLAB software was used to perform all simulations, and to plot and ana-

lyze both simulated and real datasets. The experimental validation of the attitude

estimation algorithms was done resorting to a Motion Rate Table (MRT), which

provided highly accurate ground-truth data. The setup is thoroughly described

in Section 4.5, but, most importantly, sensor calibration had to be performed

a priori in order to eliminate inherent sources of error, such as bias offsets and

installation misalignments. Appendix C is dedicated to the calibration of high-

grade IMUs using a MRT, and the work reported therein is based on
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1.4 Notation

Throughout this thesis, a bold symbol stands for a multi-dimensional variable.

Accordingly, the symbol 0 denotes a matrix of zeros and I an identity matrix,

both of appropriate dimensions. When convenient, let 1m×n be a m×n matrix

(or vector) whose entries are all 1. A block diagonal matrix is represented as

diag(A1,...,An) and the set of unit vectors on R3 is denoted by S(2). The de-

terminant of a matrix is denoted by the operator | · |. A positive-definite matrix

M is identified as M� 0. In R3, the skew-symmetric matrix of a generic vector

a ∈ R3 is defined as S(a), such that for another generic vector b ∈ R3 one has

a×b = S(a)b, where

S(a) =


0 −az ay

az 0 −ax

−ay ax 0

 .

The orthogonality between vectors is represented by the symbol ⊥. The special

orthogonal group is denoted by SO(3) := {X∈R3×3 : XXT = XTX = I∧det(X) =

1}. The rotation matrix from a coordinate frame {A} to a coordinate frame {B}

is denoted by B
AR ∈ SO(3). A vector v whose coordinates are expressed in frame

{A} is denoted by Av. The Kronecker sum and product are represented by ⊕

and ⊗, respectively. N(µ,σ) stands for a multivariate normal distribution with

mean µ and standard deviation σ. For convenience, the transpose operator is

denoted by the superscript (·)T and the trace function by tr(·).

1.5 Statement of Originality

The work contained in this thesis has not been previously submitted for a degree

or diploma at any other higher education institution. To the best of the author’s

knowledge and belief, this thesis contains no material previously published or

written by another person except where due references are made.
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2.1 Introduction

Upon the advent of consumer-oriented marketing of navigation systems, e.g.,

the Global Positioning System (GPS), the topic of real-time localization

reached important areas of engineering, such as cost-efficient trajectory planning

and tracking of maritime, air or land vehicles. The endeavors to replicate the

same tasks in underwater scenarios are also noteworthy because the properties

of the medium preclude the use of GPS-based localization systems, i.e., operat-

ing scenarios like oceans, seas, rivers, estuaries, etc., present high attenuation to

electromagnetic signals. Positioning aided by RF communications is thus imprac-

tical and a non-viable option. The fact that water owns that intrinsic property,

often designated as opacity, makes acoustic signal propagation a viable alterna-

tive method. With respect to underwater telemetry, the progress in the field has

been widely reviewed in [KB00], while in [TDSW11] the main techniques and
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challenges posed by the underwater source localization problem are reported.

One of the key forerunners of underwater research expansion was deep sea

exploration, driven by oil and gas drilling ventures taking place predominantly

in remote (offshore) zones. Examining the risks undertaken, Remotely-Operated

Vehicles (ROVs) have become a liability; see [Con86, CCLP98, Rig09]. ROVs

are hefty machines mainly intended to perform bathymetry tasks, inspection and

robotic manipulation, which conduce to a better understanding of the sea-floor

bathymetry and how it may impact on marine life in the vicinity. Due to oper-

ational, safety and financial reasons, accurately perceiving the position of ROVs

with respect to the surface vessels is a major requirement, which can be accom-

plished by resorting to USBL acoustic systems. In light of the above, several

acoustic positioning solutions have been developed in the past. To name just a

few, see, for instance, the USBL positioning system called POSIDONIA [PPR98]

and the high-performance systems c©Sonardyne Ranger 2 [son] and c©iXBlue

GAPS [NCP05]. Nonetheless, Easytrak USBL systems from rApplied Acoustics

[app] and R-Series USBL [evo] from rEvoLogics also provide efficient solutions

for a wide range of subsea applications, albeit more compact than the previous

counterparts.

This sustained ambition of exploring in greater detail underwater environ-

ments has led to an increase in the production of AUVs. A detailed review of the

navigation and localization of AUVs is presented in [PSSL14], where the authors

overview both a myriad of sensor-based methods to acquire important measure-

ments, as well as a set of mathematical tools aiming at optimizing the robustness

of those same measurements.

Moreover, there has persisted a conscious need for diver localization strate-

gies that will allow a more accurate human intervention in underwater mission

scenarios [NGS15, MNSV13]. In turn, the past MAST/AM - advanced tracking

and telemetry methodologies to study marine animals - project, whose goal was

to endow the scientific community with new moderate cost robotic tools able to
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track multiple targets, resulted in the construction of the first underwater pro-

totype ([OSM+11, MOS10a]) at the Institute for Systems and Robotics (ISR),

Lisbon. Building upon these developments, a new enhanced concept, POrtable

Navigation Tool for Underwater Scenarios (PONTUS), is presented in this chap-

ter along with the details of its development process. The prototype consists of

an INS-aided USBL portable underwater robotic tool designed to be operated by

a scuba diver or to be mounted on a AUV, featuring a Graphical User Interface

(GUI) for visually-aided diver navigation.

Despite the advantages (and inherent disadvantages) offered by other acous-

tic positioning systems, such as the LBL and short baseline techniques, our choice

for the USBL technique was mainly motivated by reasons related to the design

of a low cost and fast deployable localization tool for underwater environments.

For instance, the LBL technique is known for being expensive and requires an

a priori calibration stage any time the operation area is changed. Moreover,

from a scuba diver’s perspective, the aim was to develop a fast-deployable and

highly-maneuverable prototype useful in target tracking scenarios. For example,

suppose a scuba diver wants to keep tracking the position of the mother-ship,

or vice versa [MNSV13]. In this case, resorting only to the proposed prototype

allows for a quick and convenient solution.

Hence, in light of the main objective underlying the development of PON-

TUS and as opposed to the aforementioned commercial solutions, the aim is to

provide the scientific community with a versatile and high-performance low-cost

tool for underwater tracking of moving targets, presenting a highly-configurable

array, in addition to enabling access to the physical variables of the system, which

can be used in the design of novel tightly-coupled algorithms for localization and

navigation, as will be shown in Chapter 3. Furthermore, the implemented acoustic

communications between the acoustic projectors and the USBL array (or arrays),

which relies on Direct Sequence Spread Spectrum (DSSS) modulated signals, al-

lows for operations consisting of multiple simultaneous users.
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The total cost of the construction and development of the prototype pre-

sented in this chapter was approximately $6,000, excluding labor. The labor costs

amounted to one year of a master student and one year of a PhD student. The

full concept was modeled in c©SolidWorks (Waltham, Massachusetts) and can be

seen in Figure 2.1.

SolidWorks Educational Edition.
 For Instructional Use Only.

Figure 2.1: PONTUS concept design in c©SolidWorks (Waltham,
Massachusetts).

2.1.1 Chapter Outline

Section 2.2 outlines the structure of PONTUS and the structural building ma-

terials. Section 2.3 details the mathematical background that provides the basis

for handling acoustic signals. Section 2.4 presents the electric and electronic

characteristics of the system and the hardware components that support it. Sec-

tion 2.5 starts by depicting the data networks of PONTUS and then clarifies the

development steps in implementing the GUI. Experimental results to assess the

performance of the prototype can be found in Section 2.6. Conclusions along

with further discussions are offered in Section 2.7.
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2.1.2 Brief Glossary

Some of the recurring terminology used in this chapter is succinctly described

below:

acoustic projector a device that converts an electrical signal into an acoustic

wave. 21, 23, 25, 31, 40, 41, 47

array a rigid mechanical structure comprising a certain number of hydrophones

and acoustic projectors. 21, 23–26, 28, 31–34, 36, 54, 55

baseline distance between a pair of hydrophones. 21, 24, 31, 54

hydrophone a device that converts an acoustic wave into an electrical signal.

23–26, 28, 30–33, 35, 38, 39, 46, 47

receiver the overall acoustic system when listening to acoustic waves propagating

in the underwater channel. 23, 27, 31, 36

source a target equipped with an acoustic projector (and, in some cases, also

with one hydrophone). 24, 27, 28, 31, 32, 34–36, 40, 46–48, 50, 51

transmitter the overall acoustic system when emitting an acoustic wave through

the underwater channel. 23, 27

Hence, in summary, PONTUS works both as a receiver and a transmitter,

in the sense that it can both listen to and emit acoustic waves, while housing a

USBL array that comprises a set of hydrophones and one acoustic projector.

2.2 Architecture of PONTUS

Conceptually, the goal is to design an underwater portable tool whose dimen-

sions and interfaces must allow for human handling and installation onboard
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AUVs. This section introduces the underwater sensor and proceeds to describe

the building process of the outer shell of PONTUS and how both are combined.

2.2.1 USBL Array

Determining non-ambiguous 3D source positions demands an array comprising at

least four hydrophones assembled in a non-planar configuration. The geometry

of this array, i.e., the baselines between pairs of hydrophones, depends mainly on

the signal wavelength. Furthermore, the hydrodynamics need to be taken into ac-

count (see [PPR98]), especially under quick maneuvers. Towards the established

goal, the number of hydrophones was chosen so as to obtain a simple yet effective

solution: a quartet of hydrophones was selected and arranged in a semi-spherical

configuration, as depicted in Figure 2.2. In [Ark13, Ark12], a different kind of

arrangement and a configuration based on a square-pyramid consisting of five

acoustic receivers were studied, respectively.

The specifications of the acoustic units implemented in PONTUS are in line

with the need to have a light and compact tool, allowing the hydrophones to be

a few centimeters apart in a highly configurable rigid structure. The maximum

horizontal/vertical baseline is 30 cm, whereas the shortest is 15 cm.
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Figure 2.2: Geometry of the USBL in c©SolidWorks (Waltham, Massachusetts).
Top/side view on the left; front view on the right.
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The array includes four High Tec, Inc HTI-96-MIN hydrophones (Long

Beach, Mississippi) (Figure 2.3a) and one ITC-1042 (Channel Technologies Group,

Santa Barbara, California) Spherical Omnidirectional acoustic projector (Figure

2.3b) located at the origin of the USBL sensor’s body frame. The hydrophones

offer a flat frequency response from 2 Hz up to 30 kHz while the acoustic projec-

tor presents a resonant frequency at 79 kHz. These acoustic devices were chosen

for their quality (in terms of omni-directionality and sensitivity) to price ratio,

in addition to their reduced dimensions. In terms of materials, the array is built

with c©Bosch-Rexroth (Lohr am Main, Germany) aluminum rods and connec-

tions. The resulting structure is coupled to a specially-designed circular device

machined in c©Delrin (Wilmington, Delaware) highly-resistant polymer plastic.

(a)HTI-96-MIN hydrophone. (b)ITC-1042 acoustic projector.

Figure 2.3: USBL’s acoustic elements.

2.2.2 Outer Shell

The cylindrical architecture, hereafter tube, is a popular shape since its circular

cross-section leads to an optimal distribution of pressure load along that sec-

tion, and for that reason, it was the one selected for housing the electronics and

power supplies. Furthermore, in order for the GUI to be accessed by the diver

during manned operations, the tube had to be transparent, while weight is also

an important factor influencing the handleability of the prototype. Therefore,

an acrylic glass (much lighter than aluminum) cylinder was selected, with 8 mm

in thickness, 142 mm in internal diameter and a total length of 380 mm. Each

opening of the tube is enclosed with an aluminum lid. For sealing purposes, both

25



lids have two parallel grooves around their circular surface, designed in a way

that two circular cross-section O-rings can be seated in their perimeter, as shown

in Figure 2.4.

SolidWorks Educational Edition.
 For Instructional Use Only.

Figure 2.4: Horizontal lid profile in c©SolidWorks. Dashed lines represent the
holes.

The fore lid (in contact with the array) houses four c©Impulse IE55 (Tele-

dyne Oil & Gas, Daytona Beach, Florida) connectors, one for each hydrophone.

Externally, the array is fixed onto this same lid through a set of six M4x25 hexag-

onal head screws displayed also under an hexagonal configuration. Internally, the

fore lid is screwed to an aluminum tray used as a platform to attach all of the

hardware.

In turn, the aft lid has two holes: one is for a Low Profile 9 Pin c©SubConn

(The MacArtney Underwater Technology Group, Esbjerg, Denmark) connector

providing outbound connections, whereas the second hole is used to pressurize

and depressurize the tube. Indeed, depressurization is what induces an inwards

force acting over both lids, therefore hermetically sealing PONTUS. Prior to any

underwater mission, the pressure value inside the tube is brought down to circa

0.5 bar, a value that must be monitored via the GUI. Based on pressure chamber

tests, the sealed tube has a maximum depth capability of 60 m (roughly seven

bars).

The handling is ensured by two rubber-covered aluminum handles linked by

two stainless steel rings surrounding the acrylic glass tube, as observed in Figure

2.1. In terms of mass, the center of gravity is displaced towards the fore lid, and

the fully equipped tool weighs around 60 N in the air. However, given its volume,

and the water density, the total equivalent water displacement is around 72 N,

resulting in a positive buoyancy.
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2.3 Algorithms within PONTUS

This section starts by introducing the different operation modes of PONTUS.

Later, it describes in detail the procedures on signal acquisition, generation and

processing, as well as on data processing, concluding with the presentation of the

techniques employed to obtain the bearing and range measurements from raw

data.

2.3.1 Modes of Operation

The versatile design of PONTUS allows for the following three modes of operation:

OpMo1 - Interrogation scheme: as a transmitter, PONTUS interrogates the

source (or sources), and then, as a receiver, waits for the reply and con-

sequently determines the range between the source and itself based on the

Round-trip Travel Time (RTT) of the acoustic signals. This notwithstand-

ing, there must be a known response delay time induced in the source’s

reply, which, upon reception of the signals, is subtracted by PONTUS from

its own RTT.

OpMo2 - Passive reception: this technique can be implemented when the avail-

able acoustic transmitters do not offer interrogation-based solutions, i.e., do

not allow for explicit range measurements. In order to overcome this prob-

lem, a new localization filtering technique applied to underwater scenarios

was proposed in [?] that determines the distances based on direction and

Doppler readings resorting exclusively to a single sensor.

OpMo3 - Synchronized reception: in the absence of interrogation schemes, if

PONTUS and the source (or sources) are connected to GPS antennas, a

synchronization between devices is made possible by resorting to the pulse-

per-second signal provided by a GPS receiver module. To avoid ambiguities,
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the travel time cannot exceed 1 s; hence, this configuration is only suitable

for operations where slant-ranges are below 1500 m.

Across all modes of operation, the determination of the corresponding Di-

rection of Arrival (DOA) is calculated from the USBL array readings, specifically

the Time Difference of Arrival (TDOA) measurements.

2.3.2 Acoustic Signals

From the many modulation techniques available in the literature, the DSSS mod-

ulation of acoustic signals was selected for an improved performance. DSSS

modulation presents high (ambient or jamming) noise immunity, thus yielding

a better Signal to Noise Ratio (SNR) in the aftermath of matched filters; see,

e.g., [BBM07, Mee99]. It also provides better multipath rejection, while offering

frequency and time diversity [LCF97], fundamental to track multiple targets si-

multaneously. For the particular case of PONTUS, the acoustic signals involved

in the operations consist of Binary Phase Shift Keying (B-PSK)-modulated DSSS

signals based on a 25-kHz sinusoidal carrier wave. A 127-chip Gold Code modu-

lates the carrier wave with a chip rate equal to one full period of the carrier wave,

spanning 5.08 ms in time.

2.3.3 Signal Processing

While listening to the underwater channel, the output of a single hydrophone

is processed in real time by a matched filter-based detection algorithm. When

the expected signal occurs, all data related to the remaining hydrophones are

included in this algorithm. A First In First Out (FIFO) buffer is implemented

for each hydrophone. In the following, the algorithm will be detailed for a single

source. In the case of multiple sources, the detection algorithm has to be run for

each one of them.

Let L be the number of samples that corresponds to the length of the
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expected acoustic signal. Each FIFO buffer is divided into three blocks, and for

data processing convenience, each block is of length L. Let sampling cycle denote

the time it takes to fill an entire block of a FIFO buffer, given by L/fs, where fs

is the sampling frequency. At each sampling cycle, the first in blocks are filled

with new samples, whereas the remaining are filled with samples shifted from

previous sampling cycles. The content of one first in block is fed to a matched

filter, whose output indicates whether or not part of the expected signal arrived

during that sampling cycle.

Hence, let x[n] be the sequence that represents the discrete-time input sig-

nal, and let X[k] be the corresponding Discrete Fourier Transform (DFT). The

DFT of the expected signal sequence h[n], which corresponds to the impulse re-

sponse of the matched filter, denoted by H[k], is stored in memory. Let y[n] be

the discrete-time output of the matched filter, with y[n] = h[n] ∗ x[n], where ∗

denotes the convolution operator. Convolutions are computationally heavy and

have a complexity of O(L2). However, the convolution theorem duality of the

DFT states that a convolution in time can be represented by a multiplication in

the frequency domain, and vice versa, whereby

Y [k] =H[k]X[k]. (2.1)

After the point-wise multiplication in (2.1), the inverse DFT of the sequence

Y [k] is computed in order to obtain y[n]. Globally, the calculations encompass

two DFTs, one point-wise multiplication and one inverse DFT. The algorithm

has a complexity of O(L log2(L)) if resorting to decimation-in-time Fast Fourier

Transform algorithms, as opposed to classical direct computation of DFTs, or

methods such as the Goertzel algorithm (O(L2)) [OS89].

Let max{y[n]} and ȳ denote the maximum and absolute average values

of y[n], respectively. The detectability criterion consists of comparing the ratio

r := max{y[n]}/ȳ with a user-defined threshold T . If r > T , then a detection has

been made.
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Nevertheless, after the first successful detection, the signal may be com-

pletely or just partially inside the block. Considering the latter scenario, the

determination of Times of Arrival (TOAs) could produce defective results. Such

uncertainty suggests that the first detection corresponds only to an intermedi-

ate step of the overall decision process since only after a second detection in the

consecutive sampling cycle is it possible to guarantee that the complete acous-

tic signal is contained within the FIFO buffer. It is only at this point that the

matched filter can be run over data obtained in two consecutive sampling cycles,

to obtain the exact TOA, which corresponds to max{y[n]}, of the incoming signal

at each hydrophone.

In short, the overall detection scheme follows the flowchart depicted in Fig-

ure 2.5.
		

Run Matched Filter 
and determine peak 
value and average 

Wait for FIFO 
buffer update 

PONTUS 
Data Processing 

Interrupt 
Sampling Process 

Max > threshold * average? 

Underwater Channel 

Wait for FIFO 
buffer update 

No 

Yes First or Second “Yes”? 

Determine range (if 
applicable) and 

direction 

Second 

First 

Restart sampling 
process 

Figure 2.5: Detection scheme flowchart.

Finally, the TDOA measurements are derived from the TOAs concerning
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all hydrophones, as explained in the sequel.

The implemented 127-chip Gold code allows for 129 simultaneous users,

each associated with a unique orthogonal code. In practice, this corresponds

to a mission setup resembling that of a GPS localization system, featuring a

constellation of 128 sources and one master receiver (more receivers could operate

in the field as long as they do not interrogate the acoustic projectors network).

Hence, assuming there are N sources , the software routines associated with the

detection scheme flowchart depicted in Figure 2.5 would have to be run N times,

with N different matched filters having to be stored in memory. Particularly for

this work, each matched filter consists of 1270 floats, i.e., 3810 bytes, which means

128 matched filters would theoretically represent 635 kilobytes, which poses no

challenge whatsoever to the storage hardware embedded in PONTUS. In terms of

computation time, the routine described in the aforementioned flowchart yields

an average running time of 4 ms. Thus, considering 128 sources, the total time

of computations would amount roughly to 512 ms, which is approximately half

of the default 1 s sampling time. Therefore, even when accounting for extra

computations and additional routines besides the one depicted in the flowchart,

the system is capable of handling 128 different orthogonal signals.

2.3.4 Data Processing

Sound waves generated by acoustic projectors propagate in water in a spherical

pattern, and their curvature impacts on the TDOAs. However, given the length

of the array baselines and the distance between the source and the hydrophones,

the arriving wave can, in general, be approximated by a Planar Wave (PW).

The problem of localization in a reference coordinate frame based on PW

and spherical interpolation methods was studied in [MOS10b], where the authors

concluded the PW technique to be more effective and less sensitive to sensor noise

when compared to the spherical interpolation. This conclusion holds as long as

the ratio between the baseline and the slant-range of the source is greater than
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4%. The problem setup, illustrated in Figure 2.6, can now be introduced.

Figure 2.6: Concept visualization of planar wave approximation.

Consider two frames, an inertial frame denoted by {I} and a body-fixed

frame denoted by {B}. The origin of {B} corresponds to the centroid of the array,

and the relation between both frames can be expressed by means of a translation

and a rotation matrix, IBR ∈ SO(3), denoting a rotation from {B} to {I}. Let

d ∈ R3 be a unit vector that represents the direction of the source expressed in

{B}. Suppose that there are N hydrophones and that their position with respect

to {B} is denoted by Bpn, where n∈N := {1,2, . . . ,N}. The TDOAmeasurements

between a pair of hydrophones, according to the PW approximation, are thus

given by

δ[i,j] = ti− tj =−1
c
dT

(
Bpi−Bpj

)
i,j ∈N, i 6= j, (2.2)

where tn is the TOA at hydrophone n and c is the speed of sound in water.

Let k be the number of the total two-combinations for N hydrophones, given by

k = N(N − 1)/2. Gathering all possible TDOA combinations between pairs of

hydrophones into a single vector gives

∆ =
[
δ[1,2] δ[1,3] . . . δ[N−1,N ]

]T
∈ Rk.

The direction vector can then be written as the solution of a least squares
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problem, resulting in

d =−cS+∆, (2.3)

where S+ =
(
STS

)−1
ST is the pseudo-inverse of S, with

S =



(
Bp1−Bp2

)T
(
Bp1−Bp3

)T
...(

BpN−1−BpN
)T


∈ Rk×3.

Monte Carlo simulations were carried out in order to assess the sensitivity

of the proposed sensor’s array given different DOA under the PW approxima-

tion. Specifically, a spacial scanning with a horizontal and vertical aperture of

180 degrees was implemented, considering a step angle of three degrees, total-

ing 3600 analysis points. For each point, 1000 randomized trials were run, with

the corresponding azimuth and elevation angles calculated from (2.3). In each

run, TDOA measurements were corrupted by additive white Gaussian noise with

zero-mean and standard deviation 0.01/c s. The speed of sound in water was

set to 1500 m/s. Regarding the nature of TDOA measurements, the added noise

expresses small deviations in the range induced by the sampling frequency of the

Analog-to-Digital Converterss (ADCs), set to 250 kHz, and by a misplacing of

the hydrophones. Hence, according to (2.2), the term 0.01/c stands for an aver-

age deviation of 1 cm (along the DOA) between two channels, which, given the

maximum length between two hydrophones (30 cm), corresponds to an error of

3.33%.

The mean error and the standard deviation error of both angles was deter-

mined and averaged over the 1000 runs. The results are presented in Figures 2.7

and 2.8 for elevation and azimuth, respectively.

Showing a good and consistent overall performance for most DOAs, an im-

mediate conclusion is that the array presents a greater sensitivity to noise in
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quadrant transition, i.e., at the ends of both horizontal and vertical apertures,

although the determination of the azimuth comprises larger errors when the ele-

vation is close to ±90 degrees. The physical explanation is intuitive: if the DOA is

approximately collinear with the array’s z axis, TDOA measurements concerning

the xy plane will be merely a product of ambient noise.This means that regard-

less of where PONTUS is facing and accounting for the PW approximation, it

is not possible to disambiguate the azimuth of the source, i.e., all its admissible

values (−180 to 180 degrees) are valid. This reflects a (well-known) singularity

associated with the geometry of the problem.

(a)Mean error (b)Standard deviation error

Figure 2.7: Elevation error analysis.

(a)Mean error (b)Standard deviation error

Figure 2.8: Azimuth error analysis.

Furthermore, resorting to the PW approximation and taking into account

that the origin of {B} coincides with the centroid of the array, the range from the

source to the origin of {B} can be approximated by averaging the range (ρ ∈ R)
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estimates from all hydrophones. The estimate for hydrophone n is computed

from ρn = ctn, and thus, averaging for all N hydrophones yields

ρ= c

N

N∑
n=1

tn.

Finally, the position of the source relative to {B}, s ∈ R3, expressed in {I}, is

given by
Is = ρIBRd. (2.4)

Note that the unfiltered position estimate given by (2.4) is directly achievable

only in operation modes OpMo1 and OpMo3.

2.3.5 System Calibration

Typical underwater missions are often concerned about georeferenced measure-

ments in an inertial coordinate system, as suggested by (2.4). The origin of such

frame is usually located at a fixed known position at the surface, with all sys-

tem measurements taken with respect to it. At this stage, unknown variables

need to be accounted for, such as the speed of sound in water or an installation

misalignment of the IMU due to a faulty assembly in the tube.

The calibration of PONTUS requires two sets of synchronized measure-

ments. For instance, with regards to the selection of a ground-truth reference,

GPS data with Real-Time Kinematic (RTK) corrections is an accurate option for

localization. Therefore, USBL measurements, with respect to the inertial frame,

should match the above GPS reference, the latter also expressed in the inertial

frame.

Hence, the two sets of n collected measurements, in addition to the calibra-

tion parameters that relate them, must obey

XT
GPS = αMXT

PONTUS + t1T ,
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where XGPS , XPONTUS ∈ Rn×3 are matrices holding the stacked measurements

(x, y, z coordinates) from the GPS and PONTUS systems, respectively, both

expressed in the PONTUS INS coordinate frame. Regarding the former, the

measurements correspond to the raw computed 3D inertial positions yielded by

the INS-aided USBL acoustic positioning system. In turn, α∈R is a scaling factor

that accounts for offsets on sound velocity propagation in water and Digital Signal

Processor (DSP) clock frequency (as the TDOA is measured resorting to the DSP

clock); M ∈ SO(3) is a rotation matrix that compensates for any installation

misalignment between the axes of the INS body frame and the axes of the USBL

array frame; t ∈ R3 is an offset vector that eliminates the misplacement of the

GPS antennas, which, for obvious reasons, cannot be immersed; finally, 1 ∈ Rn

is an auxiliary vector whose entries are all one.

The implemented calibration technique stems from the Extended Orthog-

onal Procrustes (EOP) analysis [SC70], whereby a least squares minimization

problem is solved in order to find the best estimates α̂, M̂ and t̂ that match the

cloud of points in XPONTUS onto the cloud in XGPS as close as possible. In

summary, the calibration algorithm is as follows: (1) place the USBL receiver

at a fixed known position and equip the source with GPS (preferably aided by

RTK corrections); (2) move the source along rich trajectories and collect mea-

surements from both the GPS and USBL systems; (3) run the EOP method to

find estimates of the three calibration parameters; (4) validate EOP results: if

errors are above a certain threshold, update new parameters and jump to (2).

Experimental results of the calibration procedures are presented in Sec-

tion 2.6.2.

2.4 System Hardware Ensemble

This section scrutinizes the blocks from Figure 2.9, as well as their relations.

Overall, the electric characteristics of the system are presented, and an analysis
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of the major hardware components is made. For a better understanding, signal

acquisition and signal generation stages are detailed in separate subsections. It

is of considerable importance to stress that the hardware components ultimately

chosen for this prototype were motivated by price-quality relationships and by

their appropriate dimensions.
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Figure 2.9: System diagram of PONTUS.

2.4.1 Power Supplies

The main power supply is a 236.8-Wh Lithium-Polymer (LiPo) rechargeable bat-

tery pack, assembled from four 16 Ah cells with 14.8 V nominal voltage each.

A BATtery MONITor (BATMONIT) board, developed in-house, monitors the

charge and discharge rates across the battery terminals and also the current,

therefore preventing short-circuits, overloads or full discharges that may cause

irreversible damages to the batteries. Moreover, the BATMONIT reads the out-

put of an electrical reed switch bonded to the internal wall of the acrylic tube,

providing an on/off toggle switch for PONTUS. This board monitors uninterrupt-

edly the system with a residual power consumption (shutdown operating current
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< 1µA) when compared to the overall current consumption of the system (> 1.5

A).

The batteries can be externally charged or, in the case that PONTUS is

mounted on a vehicle, power can be supplied by the vehicle. Since most electronic

components require a fixed DC voltage level, in order to avoid voltage drops

during operation, a galvanic isolated power converter is installed between the

battery pack, or the external power supply, and the electronics.

The DSP stack illustrated in Figure 2.9 requires both digital and analog

power supplies. This supply duo is provided by two different high-performance

small c©Traco Power DC-DC converters in an isolated circuit. Similarly, the

Voltage Gain Amplifiers (VGAmps) indicated in Figure 2.9 also need a bipolar

power supply, provided by a Switch Low Noise Power (SLNP) board developed

in-house. This board offers a maximum output current of 1.5 A (750 mA if using

a linear regulator) at each one of its three outputs (two of positive supply and

one of negative). The output voltage levels are configurable individually through

a resistive circuit, allowing for a range from 3 V to 24 V (−3 V to −24 V). In

addition, each hydrophone preamplifier requires a supply voltage above 9 V, thus,

for the sake of simplicity of circuit design, one can also feed the preamplifier with

a regulated positive voltage output. The SLNP power supply can range between

2.7 V and 24 V, allowing for a direct connection to the battery pack.

The visual display device that runs the GUI and the remaining digital cir-

cuits are all powered up by a third c©Traco Power DC-DC converter. Finally, the

Class D Power Amplifier depicted in Figure 2.9 is part of a signal amplification

stage that is directly powered up by the main power supply.

2.4.2 Phase with Signal Conditioning Stage

Before being digitally processed, the raw acoustic signals (one for each hydrophone)

are first passed through a bandpass second order Butterworth filter centered at

25 kHz. The resulting filtered signals are then passed through the VGAmps,
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whose gains are controlled via the digital to analog outputs of the DSP by re-

sorting either to their energy or their instant maximum values as the adjustment

criterion.

Recalling the diagram in Figure 2.9, the functionalities of the DSP stack

are: core processing; hydrophone data acquisition; data and code storage. The

stack consists of three boards, from the German manufacturer D.SignT, which

are portrayed in Figure 2.10. From all of the commercially available DSPs, the

one from D.SignT proved to be the most convenient, not only offering a flexible

integration with other peripherals, namely data acquisition and TCP/IP network

boards, but also excelling in its dimensions and specifications.

Figure 2.10: Core processing unit. From left to right: D.Module.C6713,
D.Module.ADDA16, D.Module.91C111.

The main board is a high performance 32-bit floating-point D.Module.C6713

that operates at 300 MHz, featuring a Direct Memory Access (DMA) controller,

which allows background data transfers to occur simultaneously with high-priority

computations. This board is coupled (through a self-stacking design) to the 16-bit

D.Module.ADDA16 board, which comprises four 16-bit resolution 250-kilo sam-

ples per second ADCs, in addition to four 16-bit resolution Digital-to-Analog Con-

verters (DACs). Each one of the four hydrophones is connected to one VGAmp,

whose output feeds the four ADC terminals on the D.Module.ADDA16. Given

the sampling frequency of the latter, each signal comprises L = 1270 samples in

a total of roughly 2.5 kilobytes per signal.
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2.4.3 Circuits for Acoustic Signal Generation

In operation mode OpMo1, PONTUS emits an acoustic signal in order to trigger

a reply from the source. The robustness and advanced design techniques of the

DSSS signals, previously discussed in Section 2.3.2, aim at improving the detec-

tion SNR. Moreover, the B-PSK modulation of the signals avoids abrupt changes

at the terminals of the acoustic projector because phase changes are synchronized

with the zero crossing of the voltage signal.

To interface the acoustic projector, a switched power amplifier in addition

to a step up voltage and impedance match circuit were required. For that matter,

a new board, called PwrAmpD - Power Amplifier Class-D -, was designed. In

brief, the impedance matching circuit consists of a simple RLC circuit that uses

a single solenoid (see Figure 2.11a), tuned to yield a very narrow band transfer

function around the new 25 kHz resonant frequency, as seen from Figure 2.11b.

(a)Acoustic projector model circuit.
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Figure 2.11: Impedance-matched transducer model.

In summary, PwrAmpD is a highly efficient class D switch mode amplifier

board in a full bridge configuration featuring an efficiency greater than 90% and

low signal distortion. Moreover, it is optimized to drive acoustic projectors and

to be driven by a Pulse Width-Modulated (PWM) waveform with a maximum

frequency of 1 MHz.

The D.Module.C6713 integrates a complex programmable logic device that

is used to implement a PWM modulator. Specifically, in the first stage of the

acoustic signal generator, the D.Module.C6713 generates a PWM signal with

an update rate of 250 kHz and a resolution of 1/200 levels. The resulting PWM
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signal drives the PwrAmpD and, consequently, the underwater acoustic projector.

Furthermore, using the impedance match circuit implemented in PwrAmpD, it is

possible to fine-tune both the latter board and the acoustic projector in order to

maximize the energy of the signal transmitted within the band of 20 to 30 kHz.

Nevertheless, amplification is just the first part of the signal emission opti-

mization process with the objective of minimizing the percentage of failures at the

reception side. To take advantage of the benefits of DSSS signals, the bandwidth

limitations and non-linearities of the acoustic projector should be taken into con-

sideration. Hence, taking full advantage of the works in [MOS11], it was decided

to implement the strategy depicted therein: a closed-loop design methodology

for underwater acoustic projectors pulse-shaping. Very briefly, the bandwidth

of spread spectrum signals does not lie completely within the bandwidth of the

acoustic projector; therefore, the emitted signals will never fully resemble the de-

sired ones. These sudden distortions at the transmission side will have negative

consequences later when running the matched filters at the reception side. The

idea exploited in [MOS11] is that of modifying the transmitted signal in such a

way that when passing through the acoustic projector, the dynamics of the latter

shape the signal, making it resemble more the expected signal. This process of

reverting the distortions is widely regarded as equalization, and its results applied

to underwater acoustic projector were successfully accomplished in [MOS11].

2.5 Networks and Software Development

This section presents a short description of the software modules that compose

PONTUS. It starts off with a brief look at the data networks across the hardware

modules, finishing with the presentation of the GUI.
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2.5.1 Communication Networks

PONTUS can communicate with external devices, for instance a console laptop,

as suggested in Figure 2.9, and it can also receive external power and signals.

Indeed, the c©SubConn connector introduced in Section 2.2.2 provides to the

outside:

1. an Ethernet connection for communications between the processing core

unit and a PC-based console laptop;

2. a power supply terminal to charge the batteries without opening the tube;

3. a single line for external synchronization with the pulse per second GPS-

generated signal, in operation mode OpMo3.

Owing to the DMA feature, while the FIFO buffers are being filled in the

background, the main code thread is running matched filters on recent blocks of

sampled data, further looking for events in the arriving signal. The subsequent

computed direction and range are either stored or transferred to another device

through the third card in the DSP stack. This card is an Ethernet Peripheral

D.Module.91C111, providing a full-duplex 10/100-Mbit Ethernet interface. It

allows data transfers between the DSP stack and the visual display device or a

console laptop, whereby one can remotely configure, update or even communicate

with PONTUS’ system without opening the tube.

Finally, there is yet another important set of measurements concerning the

INS: the rotation matrix I
BR. This matrix represents the attitude of PONTUS

with respect to the inertial frame, typically the North-East-Down (NED) frame.

A high-performance, miniature c©MicroStrain 3DM-GX3-25 (Williston, Vermont)

IMU was chosen as the attitude and heading reference system.
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2.5.2 Graphical User Interface

The GUI is an Android software-based application developed from scratch for

this project. Given the geometry and dimensions of the tube, the visual display

device should be slim and small, in addition to being light and having low power

consumption. An Android-based Samsung Galaxy S3 Model GT-I9305 (Suwon,

South Korea) was chosen as the hardware to run the GUI. Given all of its features

and its interoperability and accounting for its storage capacity, the Galaxy S3

proved to be a cost effective option at the time.

The GUI shows the current outputs from the USBL, namely direction and

range. These two measurements combined yield a 3D fixed position expressed in

{B}. It also provides temperature and pressure readings concerning the interior

of the tube. Moreover, for the sake of debugging, the current state of inter-

communications among devices is also displayed. Lastly, an alarm goes off if

either the pressure or the temperature inside the tube exceed a safety threshold,

specifically 0.7 bar and 40◦C, respectively. The GUI was not tested underwa-

ter because experiments with scuba divers were not carried out. However, its

performance was assessed and refined by using hardware-in-the-loop simulated

measurements, namely range and directions. Furthermore, the GUI was an es-

sential tool during the development stages, allowing one to check that a safe

pressure and temperature were verified inside PONTUS prior to its deployment.

The first step in developing the GUI was to establish an Ethernet commu-

nication between the Android device and the DSP stack. This was only possible

after replacing the native Android operating system with the Android open source

distribution released by c©CyanogenMod (open-source community).

Two permanent TCP/IP sockets were created in a server-client paradigm,

having the DSP stack acting as the server. One socket is used for communications

with the Android client and the second one allows the DSP stack to communicate

with an external console (client) installed in a generic laptop running MATLABr
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Software. This console also communicates with the Android device through a di-

rect link. That allows to: i) control the screen brightness; ii) download mission

data; and iii) manage the wireless network. For instance, through the last men-

tioned feature, one can command the Android device to launch a File Transfer

Protocol (FTP) server.

Besides Ethernet-based communications, the Android device reads the tem-

perature and the pressure through a serial port interface. These readings are

provided by a low-cost digital Bosch Barometric Pressure Sensor BMP085, which

excels in its small size. It provides a measuring range from 300 hPa to 1100

hPa with an absolute accuracy of down to 0.03 hPa. The interface with the

BMP085 is ensured by a board comprising an rAtmel AVR 8-Bit Microcontroller

AT90CAN128 (San Jose, California), as depicted in Figure 2.12. This board is

then connected to a c©Sparkfun XBee Explorer USB (Niwot, Colorado) so as to

enable USB connections. Hence, the Ethernet interface of the DSP stack had to

be redefined as an USB peripheral resorting to a USB/Ethernet adapter. In turn,

the Android device acts as a USB Host, and the unification of all USB connec-

tions is ensured by a Lindyr USB Hub, featuring four high-speed USB 2.0 ports

and a micro-B receptacle. Since the latter works only if connected to a host, the

Android device must act as a host. Therefore, USB peripherals can be attached

to (and powered up by) the Android device simply by using an On-the-Go (OTG)

cable.

USB 

	

AVR© 8-Bit 
Microcontroller 
AT90CAN128 

BMP085 Breakout Board Sparkfun© XBee Explorer 
USB 

Custom made in ISR 
board  

Figure 2.12: XBee diagram.

Consequently, the Android device, whose input data port is based on the

micro-B connector, will have its battery charged through the OTG cable. Un-

fortunately, OTG cables are fabricated as data receivers, thus disabling power
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charging capabilities. In order to tackle this design issue, a small change is im-

plemented in the OTG cable, as explained by the diagram in Figure 2.13. The

VCC and Ground pins are connected to the +5 V DC-DC converter, while the

Sense/ID pin (refer to micro-B protocol) is connected to Ground through a 68

kΩ resistor. The resistance value can be found by testing the range of possible

values concerning the USB standard. On a final note, it is important to stress

out that since the Android device can be powered up starting at 3.8 V, the +5

V from the DC-DC converter is a perfectly fit power source.

𝑽𝑪𝑪 (+5 V) 

	Data- 

Data+ 

Sense/ID 

Ground 

	

	

	

	

	

	 	

USB Receptacle 

DC-DC Converter 
+5 V 

68 kΩ 

Samsung 
Galaxy S3 

Model  GT-I9305 
with 

Micro-B receptacle 

Figure 2.13: OTG cable with charging capabilities.

With the Android device now available through an Ethernet port, com-

munications with the DSP stack and/or with an external console are attainable

through an Ethernet switch.

The detailed description of the power and data transfers is enclosed in Fig-

ure 2.14.

In summary, the USB hub provides power to the c©Sparkfun XBee Explorer

USB (Niwot, Colorado) and to the USB/Ethernet adapter, whereas a DC-DC

converter powers the Android device and the Ethernet switch. In turn, the An-

droid device powers the USB hub.
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5V Power Supply 
DC-DC Converter 

Android Device 
DSP Stack 

USB/Ethernet 
Adapter 

Ethernet Switch 

RJ-45 

RJ-45 

Outbound 

Figure 2.14: Visual display device and its dependencies. Green arrows represent
single power lines.

2.6 Experimental Results

This section presents two sets of static and dynamic experimental results under

operation mode OpMo1, wherein PONTUS and a source were placed underwa-

ter. Range and bearings were collected during the experiments. It is important

to stress that the aim of the static operation was to assess the repeatability

(test-retest reliability) of the USBL system. In other words, the precision of the

system was analyzed given different distances between PONTUS and a source,

both placed at the bottom of a lake. In turn, the dynamic test consisted of a

long-term operation for the evaluation of the overall USBL system in the pres-

ence of time-varying physical quantities, under harsh conditions imposed by the

environment. The final prototype can be seen in Figure 2.15.

The experiments reported herein rely on an transponder system that can

be described as a subset of the USBL system prototype. The transponder lis-

tens for ping requests sent by PONTUS and replies to them with a predefined

signal after a predefined delay. For this purpose, the transponder only needs a

receiving channel, therefore one hydrophone, and does not need the IMU nor a
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Figure 2.15: PONTUS prototype.

visual display interface. In summary, the transponder system inherits from the

previously described system the following blocks: the DSP stack with the three

modules depicted in Figure 2.10, one Automatic Gain Control amplifier board

designed at ISR, the emission power amplifier board PwrAmpD, a battery and a

bank of DC converters and, finally, one acoustic projector and one hydrophone.

Additional electronics were also added for coupling the transmitting and receiving

circuits to the same acoustic projector to avoid high transmission voltages across

the receiving AD converters when replying to the ping requests. For the sake of

comprehension, the by-product will henceforward be designated as source. Fig-

ure 2.16 shows this acoustic source (gray cylindrical shape) right before diving.

The ropes and the counterbalanced yellow tripod ensure that the position of the

device remains static when resting at the bottom of the selected location.

Figure 2.16: Acoustic source: the by-product of PONTUS.
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2.6.1 Static Operation

The position of PONTUS changed between trials, whereas the source remained

at the same location throughout the experiments. Due to the proximity of the

apparatus to the seabed, multipath was expected to corrupt every set of mea-

surements. Consequently, secondary trajectories associated with multipath could

be wrongly interpreted as valid detections. This problem of ambiguity in the

implementation of detection schemes is an active field of research, with many

contributions available in the literature; in particular, the reader is referred to

the works in [ZCL16, ZSC+16], which present new algorithms for underwater po-

sitioning based on an LBL configuration. Nonetheless, in order to overcome the

problem of multipath propagation, real-time data classification algorithms able

to detect invalid measurements were implemented. Specifically, by resorting to

the outliers removal algorithm presented in [MOS15], where its performance was

successfully validated within the scope of USBL acoustic positioning systems.

Hence, the results shown below have already been through a stage of outliers

removal, whereby all data considered to be corrupted were rejected. First, com-

pare the two histograms depicted in Figure 2.17. Since both acoustic elements

were placed at unknown fixed positions in the bottom, the comparison between

histograms illustrates the system performance in two distinct situations.
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Figure 2.17: Histogram of two stationary tests.

The set of points in Figure 2.17a is dispersed within a range of 20 cm,

whereas the set depicted in Figure 2.17b occupies a larger interval, around 30 cm.
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Moreover, in Figure 2.17b, the central value does not stand out as evidently as in

Figure 2.17a, i.e., it presents slightly large variation from the mean, thus a larger

standard deviation. These two observations combined suggest a deterioration in

the precision of the system with increasing distance, which is somehow expected

when accounting for signal to noise degradation and for multipath interference

that was not removed by the filter.

Overall, Table 2.18 incorporates a series of seven static tests, where range

measurements were collected and the mean µ and standard deviation σ were

subsequently determined. For instance, tests Number 2 and 4 reveal the biggest

standard deviations among the other tests, implying that either the number of

points was not enough to reduce the data dispersion or else the tests themselves

were greatly affected by multipath.

The difference in the number of test points is justified by a coherence in

terms of running time, i.e., each test lasted approximately the same time. More-

over, each one corresponds to a different location, therefore to a different geo-

metric configuration. As shown in Table 2.18, the shorter the distances are, the

more invalid measurements (outliers), thus less (valid) points, were collected (no-

tice that each test corresponds to 1200 cycles). Accordingly, a brief analysis of

the standard deviations indicated in Table 2.18 allows us to conclude that, in

particular for short ranges (< 100 m), the multipath is indeed a more important

factor than the increasing distance, since the number of invalid points carried is

more significant than the standard deviations. If any conclusion can be attained,

it is that outliers are more frequent when the distance shortens, not only because

the PW approximation weakens, but also because reflections from the bottom

grow stronger. Still, regarding only these valid measurements, PONTUS shows a

consistent performance despite the caveat of working in a shallow environment.

Since range measurements are not enough to evaluate the performance of

the USBL sensor, it is also fundamental to observe the results concerning direction

readings. In fact, these readings are a better indicator of the presence of multipath
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Table 2.18: Static range precision results.

No. No. of Points µ σ

1 93 11.403 m 56 mm
2 101 16.736 m 114 mm
3 197 18.708 m 29 mm
4 277 19.482 m 92 mm
5 216 19.677 m 38 mm
6 179 35.791 m 58 mm
7 1168 96.061 m 59 mm

in the underwater channel and also of its behavior. Observe now Figure 2.19,

which corresponds to test No. 4, where an XY scatter is represented to illustrate,

in two dimensions, the relative position of the source with respect to the body

frame of PONTUS, {B}, considering the PW approximation method. First of

all, if one were to approximate the scatter points with straight lines, clearly, there

are three standing regions of greater density. This fact is not surprising, and each

hop between two different contiguous regions is primarily related to the resolution

of the system in terms of range determination. Recall the 250 kHz sampling

frequency, which, when associated with the speed of sound in water, yields a

resolution of approximately 6 mm. This notwithstanding, these quasi-straight

lines are the result of a consistent multipath scenario and can be explained by

the bottom reflection. Nonetheless, in terms of directions, the system presents a

resolution close to the theoretical limit of resolution.

Figure 2.19: Position of the source according to the body-fixed frame of
PONTUS (Test No. 4).
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Furthermore, it is obvious that there are still some outliers depicted in

Figure 2.19, even after all corrupted data have been rejected. This means that

detectability algorithms (which are not flawless, i.e., not able to filter some false

positives) might need an adjustment in order to improve the multipath clustering.

Indeed, the direct path does not always imply greater energy, which means indi-

rect/secondary trajectories are being wrongfully determined as if resulting from a

direct path. Thus, even when accounting for the harsh conditions imposed by the

environment, these results show that PONTUS offers a reliable target tracking

solution.

2.6.2 Dynamic Operation

The dynamic experimental setup consisted of PONTUS placed at a fixed position

close to the surface while the source (recall Figure 2.16) was attached to a moving

kayak. Convenience in observing and acquiring data in real time motivated this

setup. The position in real time of the acoustic duo was provided by two GPS

antennas rigidly linked through two aluminum bars. Since the centroid of the

antennas did not coincide with the centroid of the acoustic systems, an offset had

to be estimated during the calibration phase, in addition to a scaling factor and

a rotation matrix, as explained in Section 2.3.5.

Both PONTUS and the source were approximately 1.5 m under the surface

(with close to zero relative depth). The experiments were carried out in a lake

of very shallow waters (maximum depth < 5 m) with mild currents. The kayak

described rich trajectories at mostly constant low speed (approximately 1 m/s).

Moreover, since the relative depth was practically zero, most results presented in

the sequel concern only the xy plane. It is important to stress that despite the

fact that PONTUS did not move, this empirical decision does not affect in any

way the obtained experimental results. Nevertheless, in order for the velocity of

PONTUS to have impact on the results, it would have to move at high speeds

that could cause cavitation.
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Within the scope of underwater missions, a sound velocity profile is usually

obtained prior to the experiments. For this particular set of trials, a plausible

value is initially assumed, specifically 1500 m/s, whose offset is then corrected

during the calibration phase. This notwithstanding, taking advantage of the fact

that one has access to the physical variables of the system, one can resort, for

instance, to a filtering technique where the speed of propagation of the acoustic

waves is explicitly estimated [Bat15a].

In the following, the number of valid collected measurements is indicated

by n. Results before and after calibration through the EOP analysis (see Section

2.3.5) can be seen in Figures 2.20 and 2.21. An obvious aspect that stands out

in Figure 2.20 is a correction of the installation rotation matrix due, almost cer-

tainly, to a faulty installation of the IMU. The corresponding bearing variation

was estimated to be 3.5 degrees, which, when associated with increasing ranges,

is responsible for greater data discrepancies following the aftermath of georefer-

encing. The scaling factor estimate, α̂, was 0.9985; therefore, the adjustment

observed in Figure 2.21 is mainly the result of an offset correction.
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Figure 2.20: XY scatter before and after the EOP-based calibration. n= 450.

In order to validate the EOP calibration process, one can use the estimated

parameters resulting from the first trial and apply them to a new set of measure-

ments collected during a second trial. The final results are depicted in Figures

2.22 and 2.23. Once again, the correction in the rotation matrix stands out as the

most important calibration parameter. Overall, using the previously estimated
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Figure 2.21: Range measurements before and after the EOP-based calibration.
n= 450.

parameters in a second trial proved to be consistent with the new post-processed

USBL measurements.
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Figure 2.22: XY scatter using estimated calibration parameters. n= 230.
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Figure 2.23: Range measurements using estimated calibration parameters.
n= 230.

To further assess the performance of PONTUS, Figure 2.24 shows a com-
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parison between GPS directions and USBL directions. For the sake of compre-

hension, the directions were decomposed into elevation and azimuth angles. The

corresponding range measurements are the ones depicted in Figure 2.21. As men-

tioned before, the relative depth was very close to zero, which means the elevation

angle must be also very close to zero, as is shown in Figure 2.24.

It is clear that when the range is too close to zero, the USBL measurements

are not reliable when compared to those of the GPS. This is due to the PW

approximation, which, as noted in Section 2.3.4, degrades when the ratio between

the baseline and the slant range of the target is less than for 4%. Since the

baseline of the USBL array is 30 cm, if ranges are shorter than 7.5 m, then

inaccurate direction measurements are expected. Hence, by discarding the values

up to the 100th time index, a brief statistical analysis shows that the mean values

of elevation and azimuth errors are 0.6787◦ and 0.0221◦, respectively. In turn,

the standard deviations of elevation and azimuth errors are 4.7436◦ and 1.4040◦,

respectively. Given the experimental setup conditions and the fact that the ranges

in some cases exceeded 100 m, these are good results.
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Figure 2.24: Comparison of elevation and azimuth angles.

2.7 Concluding remarks

This chapter presented the development of PONTUS, a prototype of an INS-

aided USBL acoustic positioning system equipped with a GUI for diver-aided
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navigation. The motivation behind PONTUS arises from an absence of commer-

cially available solutions that give access to the physical variables of the system,

which, in turn, allow for the design of novel tightly-coupled algorithms for local-

ization and navigation. Moreover, this chapter presents a versatile and highly-

configurable tool that can be used by divers or simply mounted on a vehicle.

In particular, the geometrical configuration of the USBL array can be adapted

to meet the requirements posed by the kind of mission that is performed. This

notwithstanding, the implementation of DSSS signals opens the road for future

applications consisting of complex underwater setups with multiple users, as well

as for new distributed algorithms for relative and absolute target navigation and

localization. Taking advantage of the access to the physical variables of the sys-

tem, future work may also include the development and testing of novel Kalman

filtering techniques to improve the outliers removal stage in both range and di-

rection estimation.

A step-by-step description of the outer shell of the tool, as well as of its

hardware ensemble and of its software, was detailed herein. A brief study on

the signals involved in the operations was made, having been further addressed

the techniques that allow their sampling and processing so that quantifiable mea-

surements may return a 3D relative position of a target. In order to assess the

repeatability of the USBL system, stationary experimental tests were conducted

at several distances to verify the precision of the sensor, which, although under

harsh conditions, was revealed to be consistent and in line with the expectations.

Dynamic tests were also carried out that allowed one to perform a system calibra-

tion and further validate its operation, using ground truth data for performance

evaluation.
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3.1 Introduction

The task of determining the position of a moving target poses many chal-

lenges, in particular in the fields of robotics, and control and estimation

theory, see, e.g., [BSKL02], [LJ03]. Real-world applications tend to lean on GPS-

based systems, which can provide accurate position and velocity measurements,

often improved with the help of real-time kinematic corrections. However, imprac-

ticality and unreliability of GPS signals in underwater and indoor environments,

respectively, affect the development of robotic systems, which, naturally, shifts to

more complex sensor integrating techniques. A recurring solution in the target

tracking paradigm, henceforward designated as source localization problem, con-

siders that the moving source emits signals that encode information about the

source’s absolute or relative motion. The decoded information can then be fed

to algorithms whose filtered output is an estimate of the position of the source
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with respect to a given frame.

This well-known problem of source localization has been given a consider-

able amount of attention, with topics ranging from passive bearings-only obser-

vations, see e.g., [Wan73], [Muš09], [PV10], to range-only measurements, see e.g.,

[BSO11b] and [Cao15], where the authors present a slight variation to the source

localization problem by achieving circumnavigation. Whereas bearing measure-

ments can be passive, range observations imply an exchange of information be-

tween the source and the receiver, often based on synchronized interrogation

schemes. However, velocity scaling and offsets, sensor position errors or syn-

chronization clock drifts are drawbacks common to both paradigms, as evidenced

in [SS02]. Correcting biases might prove useful in the design of estimation tech-

niques, see, e.g., [WH13], [Bat15b], especially when biases stem from the nonlinear

processing of non-perturbed measurements [JYA13].

Other approaches to the problem of source localization rely on the use of

multiple receivers, as shown in [LG78] and [GW92]. Moreover, besides bearings

and ranges, localization techniques can take advantage of a myriad of sensors and

observations, for instance multi-beam Doppler Velocity Logs [Sny10], Doppler

shifts [SBSA13] or wave energy [SH05].

Nonetheless, it is frequent to adapt the problem to search and rescue scenar-

ios consisting of a stationary source and a mobile agent that aims to estimate its

own relative position, see [DFDA09], where only the measured distance from the

source is available. By having a mobile agent, one is allowed to describe trajec-

tories that induce persistent excitations within the systems, therefore improving

the performance of the estimators. Optimizing the maneuvers described by the

receiver for bearings-only tracking is a topic addressed in [LCLM99]. In [HM93]

it is reported a study on the optimal observer trajectories for bearings-only track-

ing by minimizing the trace of the Cramér-Rao lower bound. Similarly, but using

range measurements instead, an optimal acoustic sensor placement technique for

underwater tracking in three dimensions is presented in [MSPA16].
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In this chapter, a discrete-time linear system is designed for the problem of

source localization based on discrete-time direction and velocity measurements.

The work presented in the sequel builds on previous results obtained by the au-

thors [BSO13a]. Also by Batista et al., see [BSO13b], in which the problem of

source localization based on direction measurements was studied in a continuous-

time setting; and [BSO15], where multiple bearing measurements are considered

as opposed to single reading, which, despite being theoretically more demand-

ing, deems the proposed solution more attractive from a practical point of view.

Notwithstanding, in this chapter, strong forms of observability, namely uniform

complete observability, are ensured through a condition that closely relates to the

motion of the source. Most noticeably, in spite of a mild assumption concern-

ing a discretization approach, no strong assumptions are made concerning the

velocity of the source, besides it being assumed bounded, whereby most types

of trajectories are permitted. The problem addressed in this chapter has also

been considered in [LBHMS15]. In a continuous-time framework, a nonlinear ob-

server for position and velocity bias estimation is presented that achieves global

practical stability.

In practice, bearing measurements consist in discrete-time samples, as is

the case of underwater applications. This is a reality that poses challenges both

in terms of observability analysis and filter design. In this chapter, resorting to a

Dicrete-Time Linear Time-Varying (DT-LTV) system, the design of an observer

follows naturally using classic estimation tools for linear systems. Thus, a Kalman

filter is proposed that achieves GES error dynamics.

3.1.1 Chapter Outline

Section 3.2 describes the framework of the problem and outlines the system dy-

namics. The filter design and proofs regarding observability properties of the

overall system are presented in Section 3.3. Section 3.4 includes simulation re-

sults along with Monte Carlo runs and a comparison with both the Extended
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Kalman Filter (EKF) and the Bayesian Cramér-Rao Bound (BCRB). Experi-

mental results within the scope of an underwater mission scenario are shown

in Section 3.5. Finally, conclusions and a summary of the main results of this

chapter are reported in Section 3.6.

3.2 Problem Statement

Consider a mission scenario wherein a moving source describes a trajectory whose

evolution in time is unknown. Let sk ∈ R3 be the position of the source at time

t = tk ∈ R, with tk+1 = tk +Tk, where k ∈ N0 is the time index, and Tk is the

sampling time, which is assumed time-varying. On the other hand, if Tk = T ,

for all k, then tk = t0 + kT , where t0 > 0 corresponds to the initial time. At

time t= tk, the source, whose position one aims to estimate, moves with inertial

velocity given by vk ∈R3. Suppose that, at each sampling instant, one has access

to readings of this inertial source velocity, denoted by vm,k ∈ R3 (subscript m

stands for measurement). The latter are corrupted by an unknown constant

inertial velocity bias, denoted by bk ∈ R3, such that vm,k = vk−bk, for all k.

Furthermore, assume that the direction of the source relatively to the origin of

the inertial frame is also measured, and given by

dk = sk
‖sk‖

∈ S(2). (3.1)

For the continuous-time case, the evolution of the source position is com-

puted by integrating the source velocity. Solving this integral is equivalent to

solve an ordinary first order differential equation with a given initial value. The

final solution for the discrete-time case is well approximated, under certain con-

ditions, by the explicit first order Euler method, which motivates the following

mild assumption:
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Assumption 3.1. The velocity of the source is such that

∀ tk ≤ t≤ tk+1 :
∫ t

tk
v(σ)dσ = (t− tk)vk. (3.2)

Hence, the velocity is assumed to remain constant during the sampling interval.

This assumption is commonplace. Naturally, it holds stronger when considering

short sampling intervals and/or slow maneuvers by the source, as is the case

with most underwater robotic operations. From (3.2), the evolution of the source

position is given by

sk+1 = sk +Tkvk. (3.3)

Thus, the nominal nonlinear discrete-time system dynamics for source localization

with velocity bias estimation can be written as



sk+1 = sk +Tkvk

bk+1 = bk

dk = sk‖sk‖−1

vm,k = vk−bk

. (3.4)

Using the dynamics in (3.4), the discrete propagation established in (3.3) can be

rewritten as

sk+1 = sk +Tkbk +Tkvm,k. (3.5)

To illustrate a practical situation, suppose the source is an AUV equipped

with an IMU in addition to an Acoustic Doppler current profiler. The latter

provides velocity readings, taken with respect to the fluid, which, when combined

with the IMU outputs, allow to compute a velocity expressed in the inertial frame,

i.e. vm,k. Suppose also that the velocity of the fluid (i.e., the ocean current) is

given by bk, and that the source emits an acoustic signal which encapsulates

vm,k. In turn, let there be at the origin of the inertial frame a receiver equipped,

for example, with a USBL acoustic positioning system. Upon signal detection,
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the receiver computes a bearing and simultaneously decodes the sampled signal,

thus unwrapping the vector vm,k that had been coded before.

In short, the problem of source localization considered in this chapter is that

of designing a filter with GES error dynamics for the nominal nonlinear system

(3.4), considering also additive sensor noise.

In order to validate some of the results derived in the remainder of this

chapter, the following assumption is also made:

Assumption 3.2. For all k, the motion kinematics of the source is such that

dTk dk+1 > 0.

Moreover, since all direction measurements are well defined and norm-bounded

by construction, it is implied from (3.1) that sk 6= 0. Notice that this is a mild

assumption, as a variation of 90 degrees or more in the direction measurements

between consecutive instants is not expected. Furthermore, the source cannot

physically coincide with the receiver.

3.3 Source Localization Filter Design

In the work presented in [BSO13a], the problem of source localization based on

discrete-time bearing measurements was addressed. A moving agent was con-

sidered that measures the direction from the source to itself, and has access to

velocity readings regarding its own dynamics. The output of the system was

redefined so that it could be regarded as linear.

This chapter follows a similar approach but assumes time-varying sampling

times and a passive tracking paradigm: there is no agent and the velocity mea-

surements correspond to the source. Furthermore, by considering the velocity as

an external input of the system, one can design a linear system that mimics both

the dynamics and observations of those presented in [BSO13a], hence being able

to provide a filtering solution based on a Kalman filter with GES error dynamics.
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3.3.1 System Augmentation

This section details the procedures in obtaining a linear system useful for the

design of an estimator for the nonlinear discrete-time system (3.4). In summary,

the range to the source is added to the system states vector, whereby the output,

based on this new augmented vector, is redesigned to become linear. Moreover,

velocity measurements are regarded as inputs to the system, which allows to write

the overall system dynamics as a function of both the whole states vector and

the system input.

Define as system states



x1,k := sk

x2,k := bk

x3,k := ‖sk‖

,

where the scalar x3,k corresponds to the distance from the source to the origin of

the frame. Then, from (3.4), the evolution of the first two states is simply given

by 
x1,k+1 = x1,k +Tkx2,k +Tkuk

x2,k+1 = x2,k

(3.6a)

with uk := vm,k. The less intuitive state propagation concerns x3,k, but by using

the definition of direction established in (3.1) it is possible to write

dk+1x3,k+1 = x1,k+1. (3.7)

Since dTk+1dk+1 = ‖dk+1‖2 = 1, applying the inner product of both sides in (3.7)

with dk+1 yields

x3,k+1 = dTk+1x1,k+1. (3.8)

Next, substitute (3.6a) in (3.8) and notice that x1,k = dkx3,k, which allows to
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rewrite (3.8) as

x3,k+1 = dTk+1dkx3,k +TkdTk+1x2,k +TkdTk+1uk.

This is an interesting result in the sense that it linearly expresses x3,k+1 as a

function of its previous state, x3,k, in addition to an external input.

Define now the augmented discrete-time state vector

xk :=


x1,k

x2,k

x3,k

 ∈ R3+3+1.

From (3.7), the following holds:

0 = x1,k+1−x3,k+1dk+1. (3.9)

The previous identity conveys that a vector of virtual null measurements is taken

in place of explicit direction measurements. Hence, with respect to the nomi-

nal nonlinear dynamics in (3.4), by considering (3.9), by discarding the original

nonlinear output (3.1), and by regarding the velocity measurements as an input

(instead of an output) to the system, one can write the DT-LTV system


xk+1 = Akxk +Bkuk

yk+1 = Ck+1xk+1

, (3.10)

where the dynamics matrix Ak ∈ R7×7 is given by

Ak =


I TkI 0

0 I 0

0 TkdTk+1 dTk+1dk

 , (3.11)
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the input matrix Bk ∈ R7×3 is written as

Bk =


TkI

0

TkdTk+1

 ,

and, finally, the observations matrix Ck ∈ R3×7 follows as

Ck =
[
I 0 −dk

]
. (3.12)

The following lemma is useful in the sequel.

Lemma 3.1. Three vectors v1,v2,v3 ∈R3 are linearly independent if and only if

∣∣∣∣∣∣∣∣∣∣∣∣

vT1 v1 vT1 v2 vT1 v3

vT2 v1 vT2 v2 vT2 v3

vT3 v1 vT3 v2 vT3 v3

∣∣∣∣∣∣∣∣∣∣∣∣
6= 0.

Proof. Define V := [v1 v2 v3]∈R3×3. The three vectors are linearly independent

if and only if rank(V) = 3. The latter is verified if and only if |V| 6= 0. In turn,

this is true if and only if |VT ||V|= |VTV| 6= 0. �

3.3.2 Observability analysis

Given k0, kf > 0, and letting kf ≥ k0 +1, if any initial state xk0 can be uniquely

determined from the sequences of inputs and outputs, {uk0 ,uk1 , . . . ,ukf−1} and

{yk0 ,yk1 , . . . ,ykf−1}, respectively, then the DT-LTV system (3.10) is said to be

observable on [k0,kf ] ([Rug96, Definition 25.8]). Therefore, the main concern lies

in selecting the shortest interval for observability. Straightforward computations

show that, for the DT-LTV system (3.10), three sets of measurements are enough,

under certain conditions, to determine the initial states vector xk0 , i.e., the system

is observable on [k,k+ 3] for a fixed k ≥ k0, with kf = k+ 3. The next theorem

sheds some light in developing a sufficient condition for the observability criterion.
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Under Assumption 3.2, and for any fixed k ≥ k0, the DT-LTV system

(3.10) is observable on [k,k+ 3] if and only if the set of vectors D :=

{dk,dk+1,dk+2} is linearly independent.

Theorem 3.1

Proof. From Lemma 3.1, and since ‖dk‖= 1, it follows that the DT-LTV system

(3.10) is observable if and only if

∣∣∣∣∣∣∣∣∣∣∣∣

1 dTk dk+1 dTk dk+2

dTk+1dk 1 dTk+1dk+2

dTk+2dk dTk+2dk+1 1

∣∣∣∣∣∣∣∣∣∣∣∣
> 0,

which is equivalent to

2dTk dk+1dTk dk+2dTk+1dk+2−
(
dTk dk+1

)2
−
(
dTk dk+2

)2
+ 1−

(
dTk+1dk+2

)2
> 0.

(3.13)

In the remainder of this chapter, (3.13) will be called the observability condition.

The proof of Theorem 3.1 resorts to the analysis of the observability ma-

trix O[k,k+ 3] associated with the pair (Ak,Ck) on [k,k+ 3], given by

O[k,k+ 3] =


Ck

Ck+1Ak

Ck+2Ak+1Ak

 ∈ R9×7. (3.14)

The DT-LTV system 3.10 is observable on [k,k+ 3] if and only if (3.14) is full

rank. Let c = [cT1 cT2 c3]T ∈R7 be a unit vector, with c1,c2 ∈R3 and c3 ∈R, and

write

O[k,k+ 3]c =


O1

O2

O3

 ∈ R3+3+3,
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with

O1 := c1−dkc3, (3.15)

O2 := c1−TkS2(dk+1)c2−
(
dTk+1dk

)
dk+1c3, (3.16)

and

O3 := c1 +
[
TkI−Tk+1S2(dk+2)

]
c2−dTk+2dk+1

[
TkdTk+1c2dk+2 + c3dTk dk+1dk+2

]
,

(3.17)

where the following projection operator was used:

S2(a) = aaT − I, a ∈ R3, ‖a‖= 1.

To prove that (3.13) is a necessary condition, suppose first that it does not

hold, i.e.,

2dTk dk+1dTk dk+2dTk+1dk+2−
(
dTk dk+1

)2
−
(
dTk dk+2

)2
+ 1−

(
dTk+1dk+2

)2
= 0.

(3.18)

Consider now two different cases:

• dk+1 = dk+2

Let c1 = 0, c2 = dk+2, and c3 = 0. Since S2(a)a = 0, substituting c in (3.15)-

(3.17) results in O[k,k+ 3]c = 0, which means that the observability matrix is

not full rank and hence the DT-LTV system (3.10) is not observable.

• dk+1 6= dk+2

Let c1 = dkc3,

c2 = α
c3

Tk +Tk+1
dk+1 + c3

Tk
S2(dk+1)dk, (3.19)
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with

α :=− dTk dk+1

1−
(
dTk+1dk+2

)2 −
Tk+1
Tk

(
dTk dk+2

)(
dTk+1dk+2

)
1−

(
dTk+1dk+2

)2

+
(

1+Tk+1
Tk

) (dTk dk+1
)(

dTk+1dk+2
)2

1−
(
dTk+1dk+2

)2 ,

(3.20)

and c3 6= 0. Again, substitute the unit vector c in (3.15)-(3.17). The terms O1

and O2 are easily shown to be zero, while O3, after tedious computations (see

A.1), can be written as

O3 = c3

1−
(
dTk+1dk+2

)2
Tk+1
Tk

(
dk
[(

dTk+2dk+1
)2
−1

]

+dk+1
[(

dTk+1dk
)
−
(
dTk+2dk

)(
dTk+2dk+1

)]
+dk+2

[(
dTk+2dk

)
−
(
dTk+2dk+1

)(
dTk+1dk

)])
.

(3.21)

Now, since (3.18) holds, i.e., D is linearly dependent, there are a,b ∈R such that

dk = adk+1 +bdk+2. Substituting this in (3.21) allows to show that O[k,k+3]c =

0, therefore the observability matrix is not full rank and hence the DT-LTV

system (3.10) is not observable. Thus, it has been shown that if (3.13) does not

hold, the DT-LTV system (3.10) is not observable on [k,k+3]. By contraposition,

if the DT-LTV system (3.10) is observable on [k,k+ 3], then (3.13) must hold,

thus concluding the proof of necessity.

The proof of sufficiency also follows by contraposition. Suppose that the

DT-LTV system (3.10) is not observable, which means there exists a unit vector

c such that O[k,k+ 3]c = 0. From (3.15) it must be

c1 = dkc3. (3.22)

Consider first that c3 = 0. Then, from (3.22) it must be also c1 = 0. Substituting

that in (3.16) allows to conclude that it must be c2 =±dk+1. Substituting c1 = 0,
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c2 =±dk+1, and c3 = 0 in (3.17) gives

(Tk +Tk+1)S2(dk+2)dk+1 = 0, (3.23)

whose only solution, under Assumption 3.2, is dk+1 = dk+2. With dk+1 = dk+2

it follows that the set of vectors is not linearly independent. Hence, it has been

shown that if a unit vector c exists, with c3 = 0, such that O[k,k+3]c = 0, then

(3.13) cannot hold. Consider now c3 6= 0 and substitute (3.22) in (3.16) to obtain

TkS2(dk+1)c2 = c3
[
dk−

(
dTk dk+1

)
dk+1

]
. (3.24)

Suppose first that c2 = 0. Then, from (3.24) it results

c3S2(dk+1)dk = 0,

whose only solution, with c3 6= 0 and under Assumption 3.2, is dk = dk+1,

which means that the set of vectors D is not linearly independent. Consider now

c3 6= 0, c2 6= 0, and decompose c2 as

c2 = β

Tk +Tk+1
dk+1 +c′2, (3.25)

where β ∈ R and c′2 ∈ R3 is orthogonal to dk+1. Substituting (3.25) in (3.24)

implies

c′2 = c3
Tk

S2(dk+1)dk,

which means that it must be

c2 = β

Tk +Tk+1
dk+1 + c3

Tk
S2(dk+1)dk, (3.26)

for some β ∈ R. Next, substitute (3.22) and (3.26) in (3.17) and apply further
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simplifications in order to get

−
(

1 + Tk+1
Tk

)
dTk dk+1c3S2(dk+2)dk+1 + Tk+1

Tk
c3S2(dk+2)dk−βS2(dk+2)dk+1 = 0.

(3.27)

Notice that (3.27) is a sum of terms projected into a plane orthogonal to dk+2.

Consequently, the inner product of the left side of (3.27) with dk+2 is always null,

regardless of β. Moreover, (3.27) is satisfied if and only if the inner product of

the left side of (3.27) with the remaining two direction vectors is null. Thus, by

computing the inner product of both sides of (3.27) with dk+1, one can write

β
{

1−
(
dTk+1dk+2

)2}
=
{
−Tk+1

Tk

(
dTk dk+2

)(
dTk+1dk+2

)
−dTk dk+1 +

(
1+Tk+1

Tk

)(
dTk dk+1

)(
dTk+1dk+2

)2
}
c3.

(3.28)

Since c2 6= 0 is the case under analysis, then from (3.28) it must be dk 6= dk+1. On

the other hand, if dk = dk+1, then the set of vectorsD is not linearly independent.

Suppose now that dk+1 6= dk+2. Then, it follows from (3.28) that it must be

β = αc3, (3.29)

with α as defined in (3.20). Substituting (3.29) in (3.27), computing the inner

product of both sides of (3.27) with dk, and simplifying allows one to conclude

that (3.18) holds, and hence the set of vectors D is not linearly independent.

On the other hand, if dk+1 = dk+2, then (3.18) also holds, resulting in the same

conclusion. Thus, it has been shown that if a unit vector c exists, with c3 6= 0, such

that O[k,k+ 3]c = 0, then the set of vectors D is not linearly independent. But

that had already been shown for c3 = 0. Hence, if a unit vector c exists such that

O[k,k+ 3]c = 0 or, equivalently, if the DT-LTV system (3.10) is not observable,

then the set of vectors D is not linearly independent. By contraposition, if the

set of vectors D is linearly independent, the DT-LTV system (3.10) is observable,

thus concluding the proof of sufficiency. �
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Hence, if (3.13) holds, then the initial state xk is uniquely determined by the

input and output sequences {uk,uk+1,uk+2} and {yk,yk+1,yk+2}, respectively.

Before proceeding, it is important to stress that the nonlinearities presented

in the original nonlinear discrete-time system (3.4) were replaced by a set of

virtual null measurements, as noted by (3.9). In addition, there is nothing im-

posing the initial condition of (3.4) to match that of the augmented DT-LTV

system (3.10). Consequently, regarding the observability properties derived for

the DT-LTV system (3.10), care must be taken when extrapolating the previous

conclusions to the nonlinear discrete-time system (3.4). The following theorem

addresses this issue.

Consider Assumption 3.2 and suppose that the observability condition

(3.13) holds. Then:

1. the initial condition of (3.10) matches that of (3.4), i.e.



x1,k0 = sk0

x2,k0 = bk0

x3,k0 = ‖sk0‖

; (3.30)

2. the discrete-time nonlinear system 3.4 is observable in the sense

that, given the system input uk and the output dk, for k = k0,

k0 + 1, k0 + 2, its initial condition is uniquely determined; and

3. an observer for the DT-LTV system (3.10) with GES error dynam-

ics is also an observer for the nonlinear system (3.4), whose error

converges exponentially fast to zero for all initial conditions.

Theorem 3.2

Proof. According to Theorem 3.1, the initial condition of the DT-LTV system

(3.10) is uniquely determined by the corresponding system output and input for

k = k0, k0 + 1, k0 + 2. Proving 1) consists in comparing the outputs of both
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the nonlinear system (3.4) and the DT-LTV system (3.10) as a function of their

initial state, and then show that (3.30) explains the system output, which is

zero for this particular DT-LTV system, as indicated by (3.9). First, let xk0 :=

[xT1,k0
xT2,k0

x3,k0 ]T . Write the output of (3.10) as function of the initial state xk0 ,

resulting in


yk0

yk0+1

yk0+2

=0=


Ck0

Ck0+1Ak0

Ck0+2Ak0+1Ak0

xk0+


0

Ck0+1Bk0

Ck0+2Ak0+1Bk0

uk0+


0

0

Ck0+2Bk0+1

uk0+1.

(3.31)

In light of Theorem 3.1, since the DT-LTV system (3.10) is observable, one

needs only to show that the initial condition (3.30) explains (3.31). If it does,

then, because the DT-LTV system is observable, there can be only one initial

condition to explain the system output and, therefore, (3.30) is unique. Hence,

substitute (3.30) in (3.31) to obtain the three following equations:

0 = sk0−dk0‖sk0‖; (3.32)

0 = sk0−S2(dk0+1)Tk0 (bk0 +uk0)−dk0+1dTk0+1dk0‖sk0‖; (3.33)

and, finally,

0 =sk0 +Tk0 (bk0 +uk0)−Tk0+1S2(dk0+2)(bk0 +uk0+1)

−dk0+2dTk0+2dk0+1dTk0+1 (dk0‖sk0‖+Tk0 (bk0 +uk0)) .
(3.34)

From (3.1) it follows that (3.32) is true. In turn, according also to (3.1),

equation (3.33) can be rewritten as

0 =−S2(dk0+1)(sk0 +Tk0 (bk0 +uk0)) ,

which, according to (3.5), yields 0 = −S2(dk0+1)sk0+1. As sk0+1 is aligned with

dk0+1, then (3.33) must also be true. Lastly, after simplifications, equation (3.34)
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becomes

0 =−S2(dk0+2)(sk0+1 +Tk0+1 (bk0 +uk0+1)) .

Once again, resorting to (3.5), and since bk0 = bk0+1, the previous result

yields 0 =−S2(dk0+2)sk0+2. Likewise, as sk0+2 is aligned with dk0+2, (3.34) must

be true, thus concluding the proof of 1). Regarding 2), in Theorem 3.1 the ini-

tial condition of the DT-LTV system (3.10) was shown to be uniquely determined.

Accordingly, due to the correspondence between both systems, the initial condi-

tion of (3.4) is also uniquely determined, and thus the proof of 2) is concluded.

The proof of 3) follows naturally: the estimates of an observer with GES error

dynamics applied to (3.10) approach the true state globally exponentially fast.

Notwithstanding, this true state has been shown to correspond to the state of

the nonlinear discrete-time system (3.4), therefore those estimates approach the

state of (3.4) globally exponentially fast, thus completing the proof. �

The previous analysis considered the shortest interval for observability.

Briefly, the observability condition (3.13) expresses that, considering three time

instants, the direction vectors ought to span R3. This is an expected result in

terms of compulsory motion, as for systems with linear dynamics the direction

measurements alone cannot render the system observable [WG09]. Nonetheless,

if larger intervals are considered, this condition can be relaxed, in particular the

direction measurements need only to span R2. This leads to a new observability

condition, which is enclosed in the following theorem.
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Consider the set of four consecutive and coplanar direction vectors D+ :=

{dk,dk+1,dk+2,dk+3}. Take constants a,b ∈ R such that

dk = adk+1 + bdk+2. (3.35)

Then, the DT-LTV system (3.10) is observable on [k,k+4] if and only if

dk+3 6=
a

c

Tk+2
Tk +Tk+1

dk+1 + b

c

Tk+1 +Tk+2
Tk

dk+2, (3.36)

Theorem 3.3

where c ∈ R is a normalizing constant such that the right side of (3.36) has unit

norm.

Proof. The proof follows similar steps to those of Theorem 3.1, only this time

resorting to the analysis of the observability matrix O[k,k+ 4]. Start by writing

O[k,k+ 4]c =
[
OT

1 OT
2 OT

3 OT
4

]T
∈ R3+3+3+3,

where O1, O2 and O3 are the same as in (3.15)-(3.17), respectively, O4 is given

by
O4 := c1−dk+3dTk+3dk+2dTk+2dk+1dTk+1dkc3

+
[
(Tk+Tk+1+Tk+2)I−Tkdk+3dTk+3dk+2dTk+2dk+1dTk+1

−Tk+1dk+3dTk+3dk+2dTk+2−Tk+2dk+3dTk+3
]
c2,

(3.37)

and c = [cT1 cT2 c3]T ∈ R7 is again a unit vector, with c1,c2 ∈ R3 and c3 ∈ R. To

prove necessity, suppose (3.36) does not hold, i.e.,

dk+3 = a

c

Tk+2
Tk +Tk+1

dk+1 + b

c

Tk+1 +Tk+2
Tk

dk+2. (3.38)

Let us consider now two different cases:

• dk+1 = dk+2
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Then, under Assumption 3.2, and given the definitions of dk (3.35) and

dk+3 (3.38), it must be dk = dk+1 = dk+2 = dk+3. Suppose now that c = [0 ±

dTk+2 0]T . Since dk = dk+1 = dk+2, it follows from Theorem 3.1 that O1 =

O2 = O3 = 0. Moreover, since dk+3 = dk+2 = dk+1, then O4 = 0. As result,

O[k,k+4]c = 0, which means that for the DT-LTV system (3.10) to be observable,

(3.36) must hold.

• dk+1 6= dk+2

Let c1 = dkc3, c2 be given by (3.19) and c3 6= 0. Suppose that a= 0, which

means that dk = dk+2 = dk+3, or, alternatively, suppose that b= 0, which means

that dk = dk+1 = dk+3. In both situations, it follows from Theorem 3.1 that

O1 = O2 = O3 = 0. As to O4, it can be verified by that it yields

O4 =


a

Tk+2
Tk +Tk+1

c3S2(dk+3)dk+1 = 0, b= 0

b
Tk+1 +Tk+2

Tk
c3S2(dk+3)dk+2 = 0, a= 0

.

This notwithstanding, with both a and b different from 0 it is also possible

to check by long, but straightforward computations that if (3.36) does not hold,

then O4 = 0, which means (3.10) is not observable. Therefore, for the DT-LTV

system (3.10) to be observable, (3.36) must hold.

Regarding the sufficiency of (3.36), suppose that it holds and that the DT-

LTV (3.10) is not observable, which is equivalent to say that there exists a unit

vector c such that O[k,k+ 4]c = 0. Thus, from (3.15) it must be c1 = dkc3. Let

c3 = 0, implying c1 = 0. For O2 to be zero, it must be c2 =±dk+1. Substituting c

in (3.17) leads to (3.23), whose only solution is, under Assumption 3.2, dk+1 =

dk+2. Now, given c and dk+1 = dk+2, setting (3.37) to zero yields S2(dk+3)dk+1 =

0, whose only solution, under Assumption 3.2, is dk+1 = dk+3, but this means

that dk+1 = dk+2 = dk+3, hence (3.36) cannot hold. Next, let c3 6= 0 and c2 = 0.

From (3.16) and (3.17) one gets dk = dk+1 and dk+1 = dk+2, respectively, but this

means that the observability condition (3.36) cannot hold. Thus, let c2 6= 0, more
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specifically decompose it as expressed by (3.26). Recall the proof of Theorem

3.1: it was shown that, given the current value of c, for O3 to be zero the

original observability condition (3.13) could not hold when assuming dk+1 6= dk+2.

However, having dk+1 = dk+2 does not prevent (3.36) from being verified. Still,

the only solution of O3 = 0 is dk = dk+2, but in this case (3.36) cannot hold. On

the other hand, when dk+1 6= dk+2, and further supposing that (3.13) does not

hold, one has O3 = 0 for c1 = dkc3, and c2 and β as given by (3.26) and (3.29),

respectively. Finally, make the appropriate substitutions in (3.37) and simplify

in order to obtain

O4
1−

(
dTk+2dk+1

)2

c3

Tk
Tk+1

=−
(

I− Tk+2
Tk +Tk+1

S2(dk+3)
)

dk+1dTk+1S2(dk+2)dk

+
(

1−
(
dTk+2dk+1

)2)[Tk+2
Tk+1

S2(dk+3)− I
]
dk−dk+3

(
dTk+3dk+2

)
dTk+2S2(dk+1)dk.

This previous result can be rewritten (see A.2) in a simpler format as

O4 = c3S2(dk+3)
[
adk+1

Tk+2
Tk+Tk+1

+bdk+2
Tk+1+Tk+2

Tk

]
. (3.39)

Due to Assumption 3.2 (two directions cannot be opposed) and to the

fact that dk+1 6= dk+2, the term

adk+1
Tk+2

Tk +Tk+1
+ bdk+2

Tk+1 +Tk+2
Tk

(3.40)

cannot be null, which means that for O4 to be zero, then (3.40) must be aligned

with dk+3, i.e.,

dk+3 = a

c

Tk+2
Tk +Tk+1

dk+1 + b

c

Tk+1 +Tk+2
Tk

dk+2,

where c is the normalizing constant that ensures ‖dk+3‖= 1. Hence, the relaxed

condition (3.36) cannot hold. Thus, it has been shown that if a unit vector c

exists, with c3 6= 0, such that O[k,k+ 4]c = 0, then (3.36) cannot hold. But
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that had already been shown for c3 = 0, which allows to conclude that if a unit

vector c exists such that O[k,k+4]c = 0 or, equivalently, if the DT-LTV system

(3.10) is not observable, then (3.36) cannot be true. Therefore, if (3.36) holds, the

DT-LTV system (3.10) is observable, thus concluding the proof of sufficiency. �

Remark 3.1. The previous theorem analyzed the observability of the DT-LTV

system (3.10) when four consecutive and coplanar direction vectors are consid-

ered. On the other hand, in the absence of coplanarity among these vectors, one

simply resorts to Theorem 3.1. Unfortunately, as opposed to Theorem 3.1,

the observability condition stated in Theorem 3.3 lacks an intuitive geometric

interpretation.

3.3.3 Kalman filter

Section 3.3.1 introduced a DT-LTV system for source localization based on di-

rection and velocity measurements. The observability of that system was then

studied in Section 3.3.2. Regarding linear estimators, the Kalman filter follows

as the natural estimation solution but, because it is widely known, its design

is omitted. The system dynamics, including additive system disturbances and

sensor noise, can be written as


x̂k+1 = Akx̂k +wk

ŷk+1 = Ck+1x̂k+1 +nk+1

,

where wk ∈ R7 is zero-mean white Gaussian noise, with E[wkwT
j ] = Qkδk−j , Qk

is the positive semi-definite covariance of the process noise, and where nk ∈ R3

is also zero-mean white Gaussian noise, with E[nknTj ] = Rkδk−j , R � 0 is the

covariance of the observation noise. The noises are assumed to be uncorrelated,

whereby E[wknTj ] = 0, for all k and j. Finally, in the Kalman filter, additive

noises are considered, despite the fact that it might not correspond to reality.

Thus, the proposed solution is regarded as sub-optimal.
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In order to ensure stability of the Kalman filter, stronger forms of observabil-

ity are required as this is a time-varying system, in particular, uniform complete

observability. As such, a new condition will be derived, closely related to the

one established in (3.13), but considering uniform bounds in time. Consequently,

for this new derivation which takes boundedness into account, Assumption 3.2

alone is not enough to support it, which motivates the following updated (but

still mild) assumption.

Assumption 3.3. Let there be constants τ1, τ2, δ1, δ2 > 0 such that for all k≥ k0

δ1 < dTk dk+1 < 1− δ2, and τ1 < Tk < τ2.

The following theorem introduces a sufficient condition that, if verified,

deems the DT-LTV system (3.10) uniformly completely observable (u.c.o.), thus

guaranteeing that the Kalman filter presents GES error dynamics.

Given an integer N , consider any three consecutive direction measure-

ments in the interval I := [k,k+N ], given by {dk+l,dk+l+1,dk+l+2},

with 0≤ l ≤N −2. Then, the DT-LTV system (3.10) is said to be u.c.o.

if

∃σ>0 ∀k≥k0 fObs ≥ σ, (3.41)

where

fObs := 1 + 2dTk+ldk+l+1dTk+ldk+l+2dTk+l+1dk+l+2

−
(
dTk+ldk+l+2

)2
−
(
dTk+ldk+l+1

)2
−
(
dTk+l+1dk+l+2

)2
.

Theorem 3.4

Proof. According to [Jaz70, Definition 7.153], the DT-LTV system (3.10) is u.c.o.

if

∃N>0
α>0
β>0

∀k≥k0 αI≤J [k+N,k]≤ βI, (3.42)
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with

J [k+N,k] =
k+N∑
i=k

ΦT [i,k+N ]CT
i CiΦ[i,k+N ],

where, for i ∈ [k,k+N ], the transition matrix Φ ∈ R7×7, associated with the

dynamics matrix Ak, is given by

Φ[k+N,i]=


k+N−i∏
l=1

Ak+N−l, i < k+N

I, i= k+N

. (3.43)

Regarding (3.43), it is a simple matter of computations to show that from (3.11)

one can write, for i < k+N ,

k+N−i∏
l=1

Ak+N−l =


I Φ12[i]I 0

0 I 0

0 Φ32[i] Φ33[i]

 ,

with

Φ12[i] :=
k+N−1∑
l=i

Tl, (3.44)

Φ32[i] := dTk+N

k+N−1∑
l=i

Tl
k+N−1−l∏
m=1

l≤k+N−2

dk+N−mdTk+N−m

 , (3.45)

and, finally,

Φ33[i] :=
k+N−i∏
l=1

dTk+N−l+1dk+N−l. (3.46)

Furthermore, under Assumption 3.2, and since Ak is invertible for every k,

notice that

Φ[i,k+N ] = Φ−1[k+N,i],
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which means, according to (3.44), (3.45) and (3.46), that it is possible to write

k+N−i∏
l=1

A−1
k+N−l =


I −Φ12[i]I 0

0 I 0

0 −Φ32[i]
Φ33[i]

1
Φ33[i]

 .

Now, let there be a unit vector u = [uT1 uT2 u3]T ∈R7, with u1,u2 ∈R3 and u3 ∈R,

such that, for all ‖u‖= 1, (3.42) can be rewritten as

α≤ uTJ [k+N,k]u =
k+N∑
i=k
‖CiΦ[i,k+N ]u‖2 ≤ β. (3.47)

The right inequality in (3.47) is easily shown to be always true since all matrices

involved are norm-bounded and well defined by construction. Regarding the left

inequality in (3.47), start by expanding the summation as follows

α≤‖CkΦ[k,k+N ]u‖2 + . . .+‖Ck+lΦ[k+ l,k+N ]u‖2

+‖Ck+l+1Φ[k+ l+ 1,k+N ]u‖2

+‖Ck+l+2Φ[k+ l+ 2,k+N ]u‖2 + . . .+‖Ck+Nu‖2.

Notice that, since all terms in the summation are nonnegative, it suffices to show

that the sum of three terms verifies the left inequality, for instance, the ones

corresponding to any three consecutive directions, as mentioned above. Hence,

the objective is to show

α≤ ‖Ck+lΦ[k+ l,k+N ]u‖2 +‖Ck+l+1Φ[k+ l+ 1,k+N ]u‖2

+‖Ck+l+2Φ[k+ l+ 2,k+N ]u‖2,

which, in view of the composition property of the transition matrix, can be rewrit-

ten as
α≤‖Ck+lΦ[k+ l,k+ l+ 2]Φ[k+ l+ 2,k+N ]u‖2

+‖Ck+l+1Φ[k+ l+ 1,k+ l+ 2]Φ[k+ l+ 2,k+N ]u‖2

+‖Ck+l+2Φ[k+ l+ 2,k+N ]u‖2.

(3.48)
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For the sake of simplicity and readability, let

c := Φ[k+ l+ 2,k+N ]u
‖Φ[k+ l+ 2,k+N ]u‖ ,

such that c = [cT1 cT2 c3]T ∈ R7 is a unit vector, with c1,c2 ∈ R3 and c3 ∈ R, and

define henceforward d1 := dk+l, d2 := dk+l+1, and d3 := dk+l+2. Notice that c is

well defined as the transition matrix is always invertible and u is a unit vector.

Likewise, let T1 := Tk+l and T2 := Tk+l+1. Accordingly, (3.48) becomes

ᾱ≤ J1 +J2 +J3,

where

ᾱ = α

‖Φ[k+ l+ 2,k+N ]u‖2
,

J1 = ‖c1−d3c3‖2 ,

J2 =
∥∥∥∥∥c1−

d2c3
dT3 d2

−T1

(
I− d2dT3

dT3 d2

)
c2

∥∥∥∥∥
2
,

and

J3 =

∥∥∥∥∥∥c1−
d1

dT3 d2dT2 d1
c3−

(T1 +T2)I−
d1dT3

(
T2I+T1d2dT2

)
dT3 d2dT2 d1

c2

∥∥∥∥∥∥
2

.

Resorting to a proof by contraposition, start by assuming that the DT-LTV

system (3.10) is not u.c.o.. In other words, based on (3.42) and Assumption

3.3, if it is true that

∀ᾱ>0 ∃ k≥k0
‖c‖=1

J1 +J2 +J3 < ᾱ,

then the condition (3.41) cannot be verified. From here onwards, as the proof

of sufficiency follows similar steps to Theorem 3.1, but considering uniformity

bounds, the remainder of the proof is omitted. �
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3.4 Simulation Results

A numerical simulation is presented and discussed in this section to evaluate the

achievable performance with the proposed solution for source localization with

velocity bias estimation based on direction and velocity measurements. The setup

considered in the simulations is described in Section 3.4.1. Furthermore, in order

to evaluate the performance of the proposed solution, the Bayesian Cramér-Rao

bound, briefly described in Section 3.4.2, is computed. The tuning of the Kalman

filter parameters for the proposed solution is addressed in Section 3.4.3. Finally,

Monte Carlo results are discussed in Section 3.4.4.

3.4.1 Setup

Consider an AUV, moving in the presence of ocean currents, that emits period-

ically an acoustic signal. This signal can be sampled, for instance, by a receiver

equipped with a USBL acoustic positioning system placed at the origin of the

inertial reference frame. The initial position of the vehicle is set to sk=k0 =

[−100 −50 0]T m, while the ocean current velocity is set to b = [1.2 −0.5 0.1]T

m/s, both expressed in inertial coordinates. The vehicle describes a trajectory as

shown in Figure 3.1, where one can notice its rich behaviour, hence ensuring that

uniform complete observability is attained.

A sampling period of T = 1 s was employed for the direction and velocity

measurements. The direction measurements were rotated about random vectors

of an angle that follows a zero-mean white Gaussian noise distribution, with

standard deviation of 1◦. In turn, the velocity measurements are assumed to be

corrupted by additive zero-mean white Gaussian noise, with standard deviation of

0.01 m/s. Upon sampling, direction measurements are assigned to the output yk

of the DT-LTV system (3.10) in the form of (3.9), whereas velocity measurements

are assigned to the input uk.
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Figure 3.1: Simulated trajectory described by the source.

3.4.2 Bayesian Cramér-Rao Bound

The Kalman filter introduced in Section 3.3.3 for the DT-LTV system (3.10) is

sub-optimal in the sense that noise sequences considered herein may not be ad-

ditive in reality. Moreover, since the final linear filter design stems from the orig-

inal nonlinear discrete-time system (3.4), a comparison in terms of performance

between the proposed solution and an estimator for (3.4) is appropriate. For

instance, the EKF is one of the most widely used tools to approach the design of

estimators for nonlinear systems, however without guarantees of stability. Over-

all, the design of estimators for nonlinear systems still poses multiple challenges

and remains an active field of research. Most noticeably, there exist some theo-

retical bounds on achievable performance in some cases. Recall the discrete-time

system with linear process and nonlinear output introduced in (3.4). For this

particular system, while considering additive white Gaussian noise, the BCRB

can be computed, thus providing a lower bound on the covariance matrix of any

given causal (realizable) unbiased estimator [VTB07].
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Consider the general discrete-time system


xk+1 = Fkxk +Bkuk +nk

yk = h(xk) +wk

, (3.49)

where xk is the state vector; uk is a deterministic system input; yk is the system

output, which depends on the state vector through the nonlinear function h(xk);

nk follows a zero-mean Gaussian distribution with covariance Qk; and wk follows

a zero-mean Gaussian distribution with covariance Rk. The implementation of

the EKF resorts to a recursion which can be achieved in a almost identical way for

the case of the BCRB, except that the Jacobian of h(xk+1) is evaluated at the true

state (see [VTB07, Section 2.3.3]). Using the information matrix representation,

the BCRB lower bound Bk is given by

Bk = J−1
k ,

where Jk satisfies the recursion

Jk+1 =
(
Qk +FkJ−1

k FT
k

)−1
+Pk+1.

The covariance reduction due to the measurements is denoted by Pk+1, which

corresponds to an expected value determined as

Pk+1 = Exk+1

{
H̃T (xk+1)R−1

k+1H̃(xk+1)
}
, (3.50)

where H̃(xk+1) is the Jacobian of the nonlinear observation function evaluated

at xk+1.

The computation of the expected value presented in (3.50) is made with

respect to the state vector xk+1. In view of this circumstance, the computation

is often evaluated by resorting to Monte Carlo simulations. However, when de-

signing estimators for nonlinear systems, evaluating the achievable performance
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along specific or nominal trajectories x̄k can be of interest. Since this chapter

addresses that procedure, the term Pk+1 can be simplified to

Pk+1 = H̃T (x̄k+1)R−1
k+1H̃(x̄k+1) ,

which allows for the assessment of the achievable performance for any tracker

or estimator given the specific underlying problem structure. As explained in

[VTB07], the EKF differs from the BCRB only in terms of Jacobians, which,

regarding the lower bound, are computed at the nominal trajectories x̄k instead

of at the estimated trajectories. As to the resulting set of equations, they are

analogous to the information-filter version of the EKF. Considering additive noise

in the velocity measurements collected from the source, and further considering

that the direction measurements are rotated about random vectors of an angle

that follows a zero-mean white Gaussian noise distribution, with standard devi-

ation of 1◦, the discrete-time nonlinear system (3.4) can be written in the form

of (3.49). Hence, Bk can be computed, and it is shown in the sequel.

3.4.3 Kalman Filter application

Following the results presented in Section 3.3, a Kalman filter is applied to the

DT-LTV system (3.10), which yields GES error dynamics. Regarding the tuning

of the Kalman filter parameters, the state disturbance covariance matrix Q was

chosen as diag(10−4I, 10−4I, 9), while the output noise covariance matrix R was

set to 10I. These values were chosen empirically to adjust the performance of the

proposed solution. The initial condition of the filter was set to zero for all system

states. By doing so, the filter is initialized with large position and range errors,

and it practically holds no information whatsoever on the unknown parameter

that corresponds to the velocity bias. In turn, the initial covariance of the filter,

Pk=k0 , was set to diag(104I, 10I, 104).

The initial convergence of the position and velocity errors is depicted in
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Figure 3.2. As seen from both plots, the convergence rate of the filter is mod-

erate for this kind of application, which is in line with the expectations when

accounting for the chosen (realistic) sampling time of 1 s. Notwithstanding, the

error converges to the neighborhood of 0. Only due to the presence of sensor

noise do the errors not converge to 0. The detailed evolutions of the position and

velocity errors are depicted in Figure 3.3. In this plot the 1σ bounds obtained

from the covariance of the Kalman filter (corresponding to the square root of the

diagonal elements of the Kalman filter’s covariance matrix Pk) are depicted in

dashed lines. Finally, the 1σ BCRB (more specifically, the square root of the

diagonal elements of Bk) is plotted in solid thicker lines.
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Figure 3.2: Initial convergence of errors (Kalman filter).

For the sake of completeness, the evolution of the range errors is shown in

Figure 3.4. As seen from the plot, the rate of convergence for this particular state
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Figure 3.3: Steady-state evolution of errors (Kalman filter).

error is quite high, and most noticeably, in steady-state, the error remains below

0.5 m. The dashed lines again depict the 1σ bounds obtained from the covariance

of the Kalman filter (corresponding to the square root of the last diagonal element

of matrix Q). Since the range is not explicitly estimated for the nonlinear case,

the BCRB for this state is not applicable.

3.4.4 Performance Comparison

The proposed solution was compared to the performance achieved by an EKF

applied to the original nonlinear system (3.4). Due to the existence of a singularity

in the EKF when the source position is zero, the initial condition for the position

was set at x̂1
k=k0

= [100 100 0] m, while the velocity bias was set to zero. In
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Figure 3.4: Evolution of range errors (Kalman filter).

order to attain a good performance, the state disturbance matrix Q was set to

diag(10−4I,10−6I) and the output noise covariance matrix R was set to 10−4I.

The filter was initiated with covariance Pk=k0 set to diag(105I,10I).

The initial convergences of the position and velocity bias errors are de-

picted in Figure 3.5. Compared to the proposed solution, given the same initial

conditions, the EKF exhibits a much slower convergence and much larger initial

transients. The detailed evolutions of the position and velocity errors are depicted

in Figure 3.6, along with the 1σ bounds obtained from the EKF covariance matrix

Pk and from the lower bound Bk. The EKF performs, in steady-state, rather

similar to the proposed solution, although presenting slightly larger deviations.

Nevertheless, the EKF does not offer global convergence guarantees.

Finally, in order to better evaluate the performance of the proposed solution,
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Figure 3.5: Initial convergence of EKF errors.

the Monte Carlo method was applied: 1000 simulations were carried out with

different, randomly generated noise signals. The standard deviations of the errors

were computed in steady state (for k ≥ 500) for each simulation and averaged

over the set of simulations. The results are depicted in Table 3.7, along with

the corresponding outcome of the EKF. Additionally, the average steady-state

1σ lower bound Bk was computed (for k ≥ 500), as also shown in the table.

In terms of averaged steady-state performance, the EKF exhibits larger

standard deviations for all errors, while the proposed solution achieves a perfor-

mance that behaves closer to that of the BCRB.
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Figure 3.6: Steady-state evolution of EKF errors.

Table 3.7: Standard deviation of the steady-state estimation error, averaged
over 1000 runs of the simulation.

Variable (Units) Kalman filter EKF BCRB
s̃x (m) 0.7718 1.3815 0.4292
s̃y (m) 0.9613 1.5350 0.3911
s̃z (m) 0.1545 0.5189 0.0599
b̃x (mm/s) 1.9 4.8 2.1
b̃y (mm/s) 7.0 12.6 2.2
b̃z (mm/s) 1.5 5.1 0.5

3.5 Experimental Results

This section presents and discusses experimental results that allow evaluation of

the achievable performance of the proposed filtering technique in a real world
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application.

The planning of trajectories must take into account Assumptions 3.1 and

3.2 in particular; the claims of both Theorems 3.1 and 3.3; and, the fact

that the characteristics of the real noise differ from the ones assumed in this

work. In summary, under these conditions, a trajectory spanning a confined

three-dimensional space and featuring time-varying velocities should yield a good

estimation performance.

Briefly, while in pursuit of a typical underwater mission scenario, a set

of trials was carried out in a shallow enclosed lake wherein a surface vehicle

equipped with a submerged acoustic transponder described a trajectory as seen

in Figure 3.8.
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Figure 3.8: Trajectory described by the source. Color gradient indicates
evolution in time: light yellow - start; dark blue - end.

The surface vehicle was equipped with a GPS antenna in order to obtain ground-

truth position and velocity measurements. In turn, direction measurements were

taken with respect to a fixed USBL acoustic receiver, whose position was re-

garded as the origin of the frame. This receiver consisted of PONTUS, as seen

in Figure 2.15. It is important to remark that the purpose of this experiment

is to assess a posteriori the performance of the proposed linear estimator in the

presence of real data, more specifically direction measurements based on acoustic

signal propagation and GPS velocities. Notwithstanding, given the properties of
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the lake and the fact that both the receiver and the transponder were at the same

depth, the linear estimator was applied considering a two-dimensional framework.

In addition to the previous considerations, a constant bias (b = [0.33 0.66]T ) was

added over the GPS velocity readings to emulate water currents, which were ab-

sent in the lake. The sampling times associated with the measurements are shown

in Figure 3.9.
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Figure 3.9: Sampling times during the experiment.

The variation of the sampling time is fairly evident, with a few occurrences

above 5 s, which influences the performance of the filter in light of Assumption

3.1. The time-varying sampling time is justified mainly by the lake properties

combined with the system’s default sampling rate of 1 Hz. Shallow waters and

bottom shoals are responsible for an increase in the number of invalid measure-

ments by causing strong multi-path reflections which, due to their nature, are

rejected by an on-line outlier removal tool.

The initial condition for the position was set at x̂1
k=k0

= [100 100]T m,

while states corresponding to the velocity bias and the range were set to zero.

To tune the Kalman filter, diag(10−2I, 10−2I, 10−2) was assigned to the state

disturbance covariance matrix Q, and the output noise covariance matrix R was

set to 10I. The initial convergence of the position and velocity errors is depicted
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in Figure 3.10, while the detailed evolutions of the position and velocity errors are

depicted in Figure 3.11, along with the 1σ bounds obtained from the covariance

matrix P, represented in dashed lines. For the sake of completeness, the evolution

of the range errors is shown in Figure 3.12. Overall, the filter presents a good rate

of convergence for both the position and velocity bias errors. Most noticeable

is that the position and velocity bias errors remain, most of the time, below

2 m and 0.01 m/s, respectively, which are quite good results considering the

harsh conditions imposed by the environment, specially when accounting for time-

varying sampling rates, which strongly influence the quality of the estimation.

The spikes observed in the plots are related to larger sampling intervals, when

the filter holds to the same estimate for a long period of time.
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Figure 3.10: Convergence of errors.
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Figure 3.11: Steady-state evolution of errors.

3.6 Concluding remarks

This chapter addressed the problem of source localization and velocity bias es-

timation based on direction and velocity measurements. A discrete-time aug-

mented linear system was derived whose observability was addressed resorting to

a necessary and sufficient condition that is related to the motion of the source.

Moreover, based on the boundedness of this same condition, a stronger form of

observability was ensured, in particular the system was shown to be u.c.o., hence

allowing the design of a linear estimator with GES error dynamics. A Kalman fil-

ter was implemented and its good performance was thoroughly assessed resorting

to realistic simulations considering additive white noise. The proposed solution

was then compared to both an EKF and the BCRB via Monte Carlo runs, ex-
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Figure 3.12: Evolution of range errors.

hibiting a performance akin to that of the BCRB. Finally, a set of experimental

results was featured that validates the proposed filtering technique as a viable

option for underwater tracking solutions.
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PART II

ATTITUDE OBSERVERS
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Chapter No. 4

Core Concepts in Design of Attitude Observers
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4.1 Introduction

In this chapter, a theoretical framework is unveiled that serves as a basis for

the development of attitude observers presented in the succeeding chapters.

Moreover, and in order to avoid duplicate content throughout the remainder of

this document, an experimental setup and an almost identical simulation setup

are outlined to support the testing and validation of the proposed attitude esti-

mation techniques.

4.2 Problem statement

Consider a vehicle or a robotic platform describing a three-dimensional rotational

motion in a dynamic environment. Further assume that the vehicle is equipped

with a set of three high-grade, orthogonally mounted rate gyros that are accurate

enough to be sensitive to the angular velocity of the planet, e.g., the commercial

off-the-shelf premium high-performance KVHR© DSP-1775 IMU available from
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KVH Industries, Inc., which includes a trio of Fiber Optic Gyros (FOGs) enclosed

in a compact design, weighing in total approximately 700 grams. Furthermore,

consider two frames, one inertial and another fixed to the vehicle’s body. Suppose

that the vehicle is also equipped with a sensor capable of measuring a reference

vector, expressed on the body frame, that is constant when expressed in inertial

coordinates. The magnetic vector field is an apt example of a body measurement

that has a constant inertial counterpart. Nevertheless, as convincingly argued in

[MHP08], since the gravitational field is much larger than the body acceleration

for typical maneuvers, one can also assume the accelerometer measurements are

constant when expressed in the inertial frame.

Since the KVH 1775 IMU features a set of both tri-axial magnetometers and

accelerometers, it wholly comprehends the group of measurements required by

this problem. Therefore, using this sensor ensemble, the objective is to determine

the rotation matrix from the body frame to the inertial one using angular velocity

readings from the high-grade gyros, which implicitly measure the speed of Earth’s

revolution, in addition to the body-fixed measurements of one reference vector.

As opposed to most solutions found in the literature, the observers pre-

sented in the following chapters resort to just one measured body-fixed vector.

Simultaneously, two of the proposed solutions preserve topological properties,

which corresponds to a remarkable achievement in terms of simplified setup de-

sign. Moreover, the body-fixed vector that is measured is actually constant in

inertial coordinates.

4.3 Preface to attitude observer design

Let R(t) ∈ SO(3) denote the rotation matrix from a body-fixed frame {B} to

a local inertial coordinate reference frame {I}. The derivative of this matrix

evolves according to

Ṙ(t) = R(t)S[ω(t)], (4.1)
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where ω(t) ∈ R3 is the angular velocity of frame {B} with respect to frame {I},

expressed in frame {B}. The measurements ωm(t) ∈R3 collected from the set of

three high-grade, orthogonally mounted rate gyros are given by

ωm(t) = ω(t) +ωE(t), (4.2)

where ωE(t) ∈ R3 is the angular velocity of the Earth around its own axis, ex-

pressed in {B}. The body-fixed measurements of the constant inertial reference

vector are denoted as m(t)∈R3. Both ωE(t) and m(t) are constant (and known)

when expressed in inertial coordinates. Hence, let IωE and Im correspond to

their inertial vector counterparts, such that IωE = R(t)ωE(t) and, in particular,

m(t) = RT (t)Im, (4.3)

for all t≥ 0. For ease of notation, the upper leading superscripts of the body-fixed

vectors were dropped, i.e., ωE ≡ BωE .

From (4.2), the continuous matrix differential equation (4.1) can be rewrit-

ten as

Ṙ(t) = R(t)S[ ωm(t)︸ ︷︷ ︸
measured

−
implicitly measured︷ ︸︸ ︷

ωE(t) ]. (4.4)

This last equation is the backbone of the attitude observers developed in Chapters

5 and 6 to the extent that the dynamic estimate of R(t), henceforward denoted by

R̂(t), also evolves on the special orthogonal group as consequence of an observer

design which, through mimicking of (4.4), preserves the topological properties of

the manifold. Despite the inception of the attitude estimation solution presented

in Chapter 7 stemming from (4.4) as well, the topological properties of SO(3)

are lifted to accommodate the implementation of a Kalman filter cascade, which

is used to explicitly estimate R(t).

The following assumptions are considered throughout Chapters 5, 6 and 7.

Assumption 4.1. (Geometric) The constant inertial vectors IωE and Im are
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not collinear, i.e., IωE× Im 6= 0.

This assumption concerns observability purposes. It is easily attainable in prac-

tical terms, since both vectors depend uniquely on the geographical location. In

particular, it ensures that one can extract unequivocal information on direction-

ality from the two vectors involved as long as they define a plane.

Assumption 4.2. (Practical) The rate gyro measurements are bounded for all

time, i.e., there exists a positive scalar σ > 0 such that, for all t > 0, ‖ωm(t)‖≤ σ.

This is a practical assumption verified across all rate gyro devices since angular

velocity readings do not grow unbounded.

A stylized concept comprising the NED frames and vectorial quantities in-

volved in this problem is depicted in Figure 4.1.

{I}

E{I}

N{I}

D{I}

Im

IωE

{B}

E{B}

N{B}

D{B}

θ

Figure 4.1: Visual conceptualization of the problem statement.
Earth’s curvature depicted as dashed lines.

4.4 Simulation setup

In this section, a realistic scenario, which will be enacted across the three chapters

in the sequel, is simulated within the scope of attitude estimation of robotic

platforms when high accuracy is a crucial demand. This typically concerns either
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smooth vehicle trajectories, where accelerations clearly are dominated by the

gravitational field and where magnetometer readings can be heavily corrupted by

hard- and soft-iron effects, or mission scenarios involving quick maneuvers that

give rise to high vehicle accelerations, but where measurements of the magnetic

field are highly reliable.

Start by considering a robotic platform describing a rotational motion in

a three-dimensional space, with this motion being characterized by an angular

velocity designed to evolve according to

ω(t) = π

180

[
5sin

(
6 π

180t
)

sin
(
π

180t
)
−2sin

(
6
5
π

180t
)]T

rad/s.

Further suppose that the platform is located at a latitude of ϕ = 38.777816◦,

a longitude of ψ = 9.097570◦, and at sea level. Taking into account the length

of time known as sidereal day, the corresponding norm of the Earth’s angular

velocity is approximately
∥∥∥IωE∥∥∥ = 7.2921159× 10−5 rad/s, roughly 15 deg/h,

while its vectorial representation in the NED frame is given by

IωE =
∥∥∥IωE∥∥∥[cos(ϕ) 0 sin(ϕ)

]T
.

Consider now that the robotic platform is equipped with the commercial off

the shelf high-performance FOG IMU KVHR© DSP-1775, featuring an integrated

three-axis magnetometer that provides magnetic field sensing, and a triaxial ac-

celerometer that collects body-vector measurements of the acceleration of gravity.

However, as stated above, the new class of proposed observers exploits the utiliza-

tion of only one reference vector, which means that one source of measurements

must be precluded from the setup. Depending on the choice made between grav-

itational or magnetic field, the rest of the simulation setup shall be sketched in

view of either one of two options as described below.

Magnetic Field - in light of the sea level and of the latitude and longitude

indicated above, and according to the 12th generation of the International
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Geomagnetic Reference Field model, the components of the inertial mag-

netic field are given by

Im = [26505.6 1092.9 34864.0]T nT.

To emulate this unit’s magnetometer worst specifications, a zero-mean white

Gaussian noise sequence with standard deviation of 200 nT is added in

simulation over the device measurements, assuming a 25 Hz sampling rate.

Gravitational Field - in light of the sea level and of the latitude indicated

above, and according to the International Gravity Formula 1980, the com-

ponents of the inertial acceleration due to gravity are given by

Im = [0 0 9.800611]T m/s2.

To emulate this unit’s accelerometer worst case specifications, which are

characterized by a Velocity Random Walk of 0.12 mg/
√
Hz, a zero-mean

white Gaussian noise sequence with standard deviation of 0.0059 m/s2 is

added over the accelerometer measurements across all simulations, assuming

a sampling frequency of 25 Hz.

Most noticeable, regardless of what reference vector is chosen, one easily asserts

that IωE× Im 6= 0, which satisfies Assumption 4.1.

Regarding the angular velocity readings, they were assumed to be collected

from the high-grade rate gyros also embedded in the KVH 1775 FOG IMU.

According to the manufacturer, the rate gyro measurements, with digital output,

are corrupted by an Angle Random Walk (ARW) noise of 0.7 deg/h/
√
Hz, which

was taken into account in the simulations. For a sampling frequency of 25 Hz, and

given a rate-integrating configuration, this ARW noise translates roughly into a

standard deviation of 0.972 millidegrees per second.
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4.5 Experimental setup

In order to validate the observers developed in Chapters 6 and 7, an experiment

was carried out using a tri-axial high-grade FOG IMU KVHR© 1775 mounted

on a Ideal Aerosmith Model 2103HT Three-Axis Positioning and MRT, which is

designed to provide precise position, rate, and acceleration motion, for instance,

for the development and/or production testing and calibration of IMUs and INSs.

The ground-truth data from the MRT is characterized by a rate accuracy of

0.5%± 0.0005 deg/s on its limited rotation axes (y and z) and 0.01%± 0.0005

deg/s on its unlimited rotation axis (x), and by a position accuracy of 30 arc

sec on all axes. The final experimental setup, whose location in terms of Earth

coordinates is approximately the same as indicated in Section 4.4, is depicted in

Figure 4.2.

Figure 4.2: Experimental setup for attitude estimation.

The FOG IMU provides tri-axial angular velocity, acceleration and magne-

tomer readings. However, due to the unreliability of the tri-axial magnetometer,

which is greatly affected, in this particular case, by hard- and soft-iron effects

caused by the MRT, as well as the magnetic fields generated by the electric mo-

tors, its usage has been precluded. Instead, we resorted to accelerometer measure-

ments, i.e., we consider slow rotational maneuvers to ensure that the magnitude

of the gravitational field is the dominant acceleration term. At room temperature,
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this FOG IMU’s accelerometer is characterized by a Velocity Random Walk of

0.12 mg/
√
Hz, which corresponds to the same noise considered in the simulation

setup previously illustrated. A calibration procedure was implemented before-

hand that determined a matrix of constant scaling factors, a constant bias and a

corresponding inertial vector (with respect to the MRT’s own local NED inertial

frame) for both the rate gyro and accelerometer (vide Appendix C). Data acquired

from the MRT was sampled at 128 Hz, and later appropriately down-sampled to

25 Hz to match the sampling frequency of the FOG IMU.

In order to assess the performance of the proposed attitude estimation tech-

niques, the MRT was programmed to describe a rotational maneuver lasting ap-

proximately one hour. Figure 4.3 shows the ground-truth data corresponding to

the angular velocity of the MRT, as expressed on its own reference frame.
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Figure 4.3: MRT angular velocity on body-frame.
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5.1 Introduction

The ceaseless and widespread developments of robotic platforms have cre-

ated, over the past years, an increasing demand for more accurate and

robust algorithms, particularly those concerned with attitude estimation, which

play a key role, for instance, in the design of advanced control strategies for au-

tonomous vehicles. Since the release of Wahba’s seminal work [Wah65], which

proposed, for the first time, an optimality based approach, increasingly many

contributions to the problem of attitude determination have been made that

broadened the extent of practical applications, including, nowadays, spacecraft,

ballistic missiles, and underwater vessels, to name just a few.

Universal progresses made in terms of low-cost sensors, such as strapdown

accelerometers and gyroscopes, further drew the attention of the scientific com-

munity to the problem, see [MS10], [VCS+11] and references therein.

According to the survey in [CMC07], the strategies for addressing attitude
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determination rely commonly on variations of the celebrated EKF, but its sensi-

tivity to initial conditions, which can sometimes raise divergence issues, prompted

a search for other types of observers. Despite these drawbacks, the EKF remains

an actively research field. In particular, the authors in [BB17] have recently shown

that the invariant EKF, when used as a deterministic observer for a novel class

of problems on Lie groups, is shown to possess theoretical stability guarantees

under the simple and natural hypotheses of the linear case.

Overall, the solutions found in the literature can be typically divided into

two sets: one set consisting of strategies complying with the topological con-

straints of SO(3), where the attitude evolves in the form of a rotation matrix,

see, e.g., [MHP08], [Mar06] and [BSO14b]; and, another set featuring solutions

that, despite neglecting the properties of the 2-sphere manifold, offer guarantees

of stability and asymptotic convergence, see, for instance [LLA11] and [BSO14a].

The major pitfall inherent to the solutions of the first set lies in the fact that a con-

tinuous time dynamical system evolving on a state space that has the structure of

a vector bundle on a compact manifold possesses no globally asymptotically stable

equilibrium [BB00]. This, however, is not a deterrent to practical implementa-

tions of these algorithms. In [KGDC+17], authors propose a model predictive

control law that is able to achieve global asymptotic stability on SO(3) because

the law may be discontinuous. Furthermore, the recent work in [BAT17] also

managed to circumvent the topological constraints of SO(3) and achieve global

stability by adopting a hybrid solution that makes use of potential functions with

specific properties.

Nonetheless, a recurrent challenge in the development of attitude estimators

consists in resorting to a least possible number of sensors in pursuit of simplified

setups, thus greatly reducing implementation costs.

In this chapter, a nonlinear attitude observer is proposed where only one

vector measurement is employed, an approach also considered in both [LLA11]

and [BN17]. But, whereas in these two works the inertial counterpart of the
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vector measurement is time-varying, herein the problem is confined to the ag-

gravated case where it is constant. Indeed, in [BN17] an observability condition

is imposed that requires a persistent change of the reference vector measured in

the inertial frame. Moreover, in this work the Earth’s rotation is taken into ac-

count in the design of the observer, a trait also pursued in [BB15], as well as in

past work by the authors, see [BSO14a]. In contrast to the latter, the technique

proposed in this chapter is computationally less complex and, instead of multiple

tuning parameters, features just one scalar gain that is shown to render the non-

linear attitude observer Almost Globally Asymptotically Stable (AGAS). More

importantly, while with two vectors one can obtain a good initial estimate of the

attitude, in this case that is not possible (the initial error can be very large),

hence the significance of AGAS guarantees.

Most noticeably, these features preclude the need for a gyrocompass, a de-

vice which is nonetheless a feat of engineering, capable of indicating the true north

while being unaffected by the magnetic field. While some past gyrocompass-based

solutions had to remain relatively insensitive to pitch and roll movements in order

to obtain accurate attitude information [SXG13], recent strap-down technologi-

cal and algorithmic developments have managed to overcome that caveat, as it

is the case of the compact iXblue Octans Survey-Grade Surface Gyrocompass.

However, the observer developed in this work does not require an initial still-

ness period while finding north and, since it dynamically estimates the rotation

matrix, as opposed to direct integration of measurements, drift problems do not

occur over time.

5.1.1 Chapter Outline

In Section 5.2, the steps leading to the proposed attitude observer are presented.

In Section 5.3, the main result of the chapter is developed, where the attitude ob-

server is shown to be AGAS. Section 5.4 features simulation results, including an

extensive Monte Carlo analysis, that allow to assess the achievable performance
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of the nonlinear attitude estimation solution for all possible initial conditions in

the presence of realistic noise corresponding to the sensor’s worst-case specifica-

tions.. Finally, Section 5.5 elaborates upon a few conclusions and comments on

this work.

5.2 Design of attitude observer

Based on the theoretical background established in Section 4.3, consider the fol-

lowing observer for the rotation matrix:

˙̂R(t) = R̂(t)S
[
ωm(t)−R̂T (t)IωE +αm(t)×

(
R̂T (t)Im

)]
, R̂(0) ∈ SO(3),

(5.1)

with α > 0. Define also the error variable

R̃(t) := R(t)R̂T (t) ∈ SO(3), (5.2)

whose dynamics are given by

˙̃R(t) =Ṙ(t)R̂T (t) +R(t) ˙̂RT (t)

=R(t)S[ωm(t)−ωE(t)]R̂T (t)+

−R(t)S
[
ωm(t)− R̂T (t)IωE +αm(t)×

(
R̂T (t)Im

)]
R̂T (t).

Isolating the terms associated with the Earth’s angular velocity, and further notic-

ing that the terms corresponding to the measurements of angular velocity cancel

each other, allows to write

˙̃R(t) =−R(t)S
[(

RT (t)− R̂T (t)
)
IωE

]
R̂T (t)+

−R(t)S
[
α
(
RT (t)Im

)
×
(
R̂T (t)Im

)]
R̂T (t).
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Since RT (t)R(t) = I, the previous result can be rewritten as

˙̃R(t) =−R(t)S
[(

RT (t)− R̂T (t)
)
IωE

]
RT (t)R(t)R̂T (t)+

−R(t)S
[
α
(
RT (t)Im

)
×
(
R̂T (t)Im

)]
RT (t)R(t)R̂T (t).

(5.3)

Recall the error definition in (5.2), and employ the property

R(t)S[a]RT (t) = S[R(t)a], a ∈ R3,

to help simplifying (5.3) as

˙̃R(t) =−S
[(

R(t)RT (t)−R(t)R̂T (t)
)
IωE

]
R̃(t)+

−S
[
R(t)α

(
RT (t)Im

)
×
(
R̂T (t)Im

)]
R̃(t).

Finally, rearrange to obtain the autonomous system

˙̃R(t) =−S
[(

I− R̃(t)
)
IωE + R̃(t)α

(
R̃T (t)Im

)
× Im

]
R̃(t)

= R̃(t)S
[(

I− R̃T (t)
)
IωE−α

(
R̃T (t)Im

)
× Im

]
.

(5.4)

This last result poses a highly nonlinear relationship, whereby classical tools from

the linear system theory cannot be applied. However, the angle-axis representa-

tion of the nonlinear error dynamics (5.4) proves extremely convenient, as attested

by the stability analysis conducted in the next section, where any positive gain

α is shown to drive the observer error to zero, i.e., drive the error matrix R̃(t) to

an identity, according to (5.2).

5.3 Stability Analysis

Start by defining the domain D := [0, π], and consider the Euler angle-axis rep-

resentation of the error associated with the rotation matrix,

R̃(t) = I+ sin
(
θ̃(t)

)
S[ṽ(t)] +

[
1− cos

(
θ̃(t)

)]
S2 [ṽ(t)] , (5.5)
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where θ̃(t) ∈ D and ṽ(t) ∈ S(2) form the Euler angle-axis pair. In the sequel,

consider as well the square of (5.5), which also consists in a rotation matrix, and

is given by

R̃2(t) = I+ sin
(
2θ̃(t)

)
S [ṽ(t)] + 2sin2

(
θ̃(t)

)
S2[ṽ(t)]. (5.6)

The following theorem is the main result of this chapter.

Consider the attitude observer (5.1), along with the error definition (5.2)

and the set of measurements including body-fixed readings of both the an-

gular velocity, as given by (4.2), and the constant inertial reference vector,

as given by (4.3). Further suppose that both Assumptions 4.1 and 4.2

are verified and define the set Ω⊂ SO(3) as Ω =
{
R̃(t) | tr

(
R̃(t)

)
=−1

}
.

Then: i) the set Ω is forward invariant and unstable with respect to the

observer dynamics (5.1); and, ii) the rotation matrix error R̃(t) converges

locally exponentially fast to I, and is AGAS to I as well.

Theorem 5.1

Proof. Let V : D→ R be a positive bounded Lyapunov-like candidate function

given by

V
(
θ̃(t)

)
= 1− cos

(
θ̃(t)

)
= 1

2tr
(
I− R̃(t)

)
.

The derivative of V
(
θ̃(t)

)
results in

V̇ =−1
2tr

( ˙̃R(t)
)
. (5.7)

Substituting (5.4) in (5.7) and noticing that

tr
(
R̃(t)S

[(
I− R̃T (t)

)
IωE

])
= 0

112



allows to rewrite (5.7) as

V̇ = α

2 tr
(
R̃(t)S

[(
R̃T (t)Im

)
× Im

])
. (5.8)

Now, since (
R̃T (t)Im

)
× Im = S

[
R̃T (t)Im

]
Im,

the cross-product property

S [S [a]b] = baT −abT

helps to simplify (5.8) as

V̇ = α

2 tr
(
R̃(t)ImImT R̃(t)− ImImT

)
= α

2

[
tr
(
R̃(t)ImImT R̃(t)

)
−
∥∥∥Im∥∥∥2]

=−α2
∥∥∥Im∥∥∥2

+ α

2 tr
(
ImImT R̃2(t)

)
,

(5.9)

where a few related properties were employed. Next, substitute (5.6) in (5.9),

and further simplify in order to obtain

V̇ = α sin2
(
θ̃(t)

)
tr
(
ImImTS2[ṽ(t)]

)
+ α

2 sin
(
2θ̃(t)

)
tr
(
ImImTS[ṽ(t)]

)
. (5.10)

Since ImImT is symmetric and S[ṽ(t)] is skew-symmetric, it follows that

tr
(
ImImTS[ṽ(t)]

)
= 0.

Furthermore, given that

S2[ṽ(t)] = ṽ(t)ṽT (t)− I,
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the result in (5.10) can be written as

V̇ = α sin2
(
θ̃(t)

)[(
ImT ṽ(t)

)2
−
∥∥∥Im∥∥∥2]

≤ 0.

Hence, equation V̇ = 0 is satisfied on three occasions, when:

1) θ̃(t) = π, which, according to (5.5), corresponds to the condition tr
(
R̃(t)

)
=

−1, with R̃(t) = R̃T (t);

2) θ̃(t) = 0, which means R̃(t) = I; or,

3) ṽ(t) =±Im/
∥∥∥Im∥∥∥, which implies either that R̃(t)Im = Im or R̃T (t)Im =

Im.

Notice first that system trajectories associated with the third case are not invari-

ant in the sense that they do not correspond to an equilibrium point of the error

dynamics (5.4). As a result, the latter can be written as

˙̃R(t) = R̃(t)S
[
IωE

]
−S

[
IωE

]
R̃(t),

which, according to (5.5), and by using ṽ(t) =±Im/‖Im‖, is equivalent to

˙̃R(t) =±sin θ̃(t)
‖Im‖

S
[
Im× IωE

]
± 1− cos(θ̃(t))

‖Im‖2
S
[(
IωE× Im

)
× Im

]
.

Therefore, since Assumption 4.1 holds, and since Im× IωE is orthogonal to(
IωE× Im

)
× Im, it follows that ˙̃R(t) 6= 0.

The next steps consist in showing that the set Ω is indeed forward invariant

with respect to the error dynamics (5.4). The derivative of tr
(
R̃(t)

)
can be

computed as

d

dt
tr
(
R̃(t)

)
= tr

( ˙̃R(t)
)

= tr
(
R̃(t)S

[
IωE

]
−S

[
IωE

]
R̃(t)

)
= 0,

which asserts forward invariance of the set Ω. Accordingly, by applying LaSalle’s
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principle to the solutions of the proposed observer dynamics (5.1), one concludes

that R̃(t) converges asymptotically to either I or some rotation matrix belonging

to Ω.

In Section B.2 in appendix, local exponential stability of the isolated equi-

librium point I is shown through the linearization of the rotation error dynamics

(5.4), thus proving the theorem’s second statement. The companion step consists

in showing that the set Ω is unstable, which shall be done resorting to the quater-

nion representation of the rotation matrix error (see Section B.1 in appendix),

as given by (B.2). According to this quaternion formulation, the forward in-

variant set Ω associated with the rotation error dynamics (5.4) is described by

Ω =
{

(s̃, r̃) | s̃= 0, r̃T r̃ = 1
}
. Then, from (B.4), the dynamics of s̃(t) follows as

˙̃s(t) = α
[∥∥∥Im∥∥∥2

‖r̃(t)‖2−
(
ImT r̃(t)

)2]
s̃(t),

which is clearly unstable for any point s̃ 6= 0, given that, based on (B.3),

d

dt
ImT r̃(t) = ImT ˙̃r(t) =−ImTS

[
IωE

]
r̃(t) +α

(
ImT r̃(t)

)∥∥∥Im× r̃(t)
∥∥∥2
,

which, in view of Assumption 4.1 can never be identically zero. Therefore, s̃(t)

is a strictly increasing function for all t≥ 0, which means set Ω corresponds to an

unstable equilibrium point. This proves the theorem’s first statement and thus

the overall proof is complete. �

Remark 5.1. Despite stability guarantees, the rate of convergence of the observer

has not been properly addressed. In fact, unless one solves the nonlinear equation

(5.4), to infer something about this rate is an extremely intricate exercise.

5.4 Simulation Results

The simulations implemented in this section follow the generic setup reported in

Section 4.4, taking into account a reference vector associated with the Magnetic
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Field. In particular, a sampling frequency of 100 Hz was considered and the

fourth-order Runge-Kutta method was employed in all simulations. Finally, the

scalar gain was set, after an empirical tuning process, to α = 1.5×10−4/
∥∥∥Im∥∥∥2

.

This value is associated with the overall best performance that was attained, in

general, given any possible initial condition.

5.4.1 Single Practical Example

Resorting to Euler angles to describe the orientation of the platform, its initial

attitude was set to 150, −90, and 140 degrees of yaw, pitch and roll, respectively.

The initial attitude estimate of the platform was set as R̂(0) = I. In terms of the

angle-axis representation expressed by (5.5), it follows that θ̃(0)≈ 109.2◦.

The 24-hour evolution of the angle error is shown in Figure 5.1. As seen from

the main plot, despite the time window being insufficient to allow the estimator

to enter steady-state, after roughly 15 hours the angle error is already below 5◦,

a correction of over 100◦ from the original deviation. In turn, the zoomed-in plot

shows that, for t > 22 h, the deviation is still converging and moving towards

values below 0.4◦, which hints at a good overall performance for this kind of

application. It is important to stress out that this level of convergence time is

typical for space applications, where very high accuracy is required.
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Figure 5.1: Angle error evolution for θ̃(0)≈ 109.2◦.
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For the sake of completeness, the corresponding evolution of the entries as-

sociated with the rotation matrix error is displayed in Figure 5.2. Recall that this

matrix, according to the error definition (5.2), evolves on the 2-sphere manifold,

thus preserving the topological structure, even in the presence of noise.
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Figure 5.2: Evolution of R̃ entries for θ̃(0)≈ 109.2◦.
Upper right corner: diagonal entries of R̃.

5.4.2 Monte Carlo Statistical Analysis

In order to assess the overall robustness of the proposed nonlinear observer, a

Monte Carlo analysis was conducted. In terms of the angle-axis representation

(5.5), for every initial angle error θ̃(0) ∈ {1,2, . . . ,179} (degrees), 10 runs were

performed, each featuring: i) an initial axis error ṽ(0) generated from a sequence

of normally distributed random numbers; and, ii) randomly generated additive

white Gaussian noise sequences. Each 10 runs corresponding to the same initial

angle deviation were then averaged, with the final result shown in Figure 5.3.

The mean error evolution, computed by averaging these resulting 179 convergent

sequences, was also computed and is marked in red.

As naturally expected, larger initial angle deviations correspond typically

to longer convergence times, although the initial axis deviation also has some

influence during the transient evolution, as noticeable from a few intersecting

lines. Furthermore, Figure 5.4 illustrates the set of initial axis deviations covering

117



Figure 5.3: Angle error evolution for θ̃(0) = 1,2, . . .179 (degrees).
Mean error evolution marked with thick red color.

the unit sphere, demonstrating that the nonlinear observer was properly tested

for (almost) all admissible initial conditions.

Figure 5.4: Set of 1790 axis initializations on 3D unit sphere.

The evolution over time of the mean and standard deviation associated with

θ̃(t), for t > 24 h and θ̃(0)< 90◦, are shown in Figures 5.5 and 5.6, respectively.

At t = 48 h, both the mean and standard deviation were averaged across

the 90 different sequences of θ̃(t). The final results yielded 0.0279◦ and 0.008◦

for mean and standard deviation, respectively, which are very good results for

high-grate attitude determination systems.

In the context of attitude estimation in SO(3), there exist alternative deter-

ministic methods to design observers based on optimality criteria, for instance,

the minimum-energy approach, as seen from [ZTM13], where an optimal attitude

solution is obtained from minimizing a cost function. Herein the performance
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Figure 5.5: Mean angle error in function of time (t > 24h) and initial angle error
θ̃(0).

Figure 5.6: 1σ of angle error in function of time (t > 24h) and initial angle error
θ̃(0).

evaluation and observer parameter tunning is based on a Monte Carlo statistical

analysis.

On a final note, in spite of the slow convergence times, it is important to

stress out how extremely useful these results are when no knowledge whatsoever

about the initial orientation is available, i.e., when the initial error may be very

large.

5.5 Concluding remarks

In this chapter, a nonlinear attitude observer built on SO(3) was proposed that

takes into account the Earth’s rotation and resorts exclusively to measurements

of one constant inertial vector, in addition to angular velocity readings. Besides

guarantees of local exponential stability, the proposed attitude estimation solution
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was also shown to be AGAS. Despite its slow convergence rates, this kind of

observer is compatible with high-grade attitude determination systems, which

take a long time to converge but exhibit a very good performance in terms of

accuracy. Possible directions for future work will be along a performance and

stability analysis when the reference vector is time-varying.
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Chapter No. 6

Attitude Estimation on Spherical Rotating Earth using a

Kalman-based Observer on SO(3)
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6.1 Introduction

The Kalman filter has been the workhorse of a plethora of invaluable con-

tributions to the scientific community, persistently finding its application

virtually in all engineering domains [GA10]. The branch of attitude estimation

is arguably where the Kalman filter became the most prolific, thanks in part to

its quick dissemination and extraordinary achievements in the period known as

Space Race. Indeed, during the two decades that followed Wahba’s seminal satel-

lite attitude determination problem [Wah65], several techniques were developed

for spacecraft attitude estimation that relied on the celebrated Kalman filter and

its variations [LMS82]. Soon after this, the advent of affordable unnamed vehi-

cles and the production of commercial low-cost sensors triggered a new wave of

attitude estimation techniques based on the Kalman filter that has endured until

the present day. Among a wide literature on the subject, see, e.g., the works in
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[CBIO06, BS08, Sab11, dMPGSE12, CHL16] and references therein.

Conceptually, the rotation matrix cannot be uniquely determined with only

one reference vector. In order to resolve the orientation ambiguity, a second ref-

erence vector is required. In attitude estimation/filtering problems, the objective

consists typically in determining the rotation matrix between two frames using

inertial information of at least two non-collinear reference vectors and their re-

spective measurements; see, for instance, the works in [Mar98, OM99, GFJS12,

BSO12c, CQL15, WZG+18]. Accelerometers and magnetometers, despite their

inherent limitations [BYB07], are recurrent sensors used extensively across nu-

merous applications mainly due to their reduced dimensions, performance, and

the fact that the gravitational and magnetic fields are known with extreme pre-

cision. Gyro-compasses also pose an attractive choice, as they can find the true

North direction based on Earth’s rotation, and are immune to magnetic field

anomalies.

However, it might occur that only one reference vector is available, for

instance, in scenarios where vehicles, equipped with both accelerometers and

magnetometers, either describe highly accelerated trajectories or happen to be

within range of strong magnetic anomalies, therefore preventing the simultaneous

use of two reference vectors. In that case, one can use the Kalman filter to

overcome the single vector drawback, although it does not guarantee asymptotic

stability or even boundedness of errors [KN12]. Moreover, the structural nature

of the Kalman filter forces the lifting of topological constraints, whereby attitude

estimations do not evolve on the special orthogonal group, also known as the

rotational group. In [BB17] the authors analyze the convergence aspects of the

invariant EKF when it is used as a deterministic nonlinear observer on Lie groups.

More recently, in the paper [SJFS18], a multiplicative exogenous Kalman filter is

presented that employs an attitude representation of minimal degree; offers global

exponential stability guarantees; and, contrasts with its extended counterpart by

linearizing the nonlinear model about an exogenous signal, therefore replacing the
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potentially destabilizing feedback with a feedforward from an auxiliary estimator.

The Kalman-based attitude estimation solutions that are available in the

literature invariably end up being some modification of the renowned algorithm.

To the best of the author’s knowledge, there exist no solutions, developed on the

special orthogonal group, that resort solely to the theory of the linear Kalman

filter while simultaneously using explicit information about only one reference

vector.

In this chapter, building upon the work developed in previous chapters

(based on [RBOS18a] and [RBOS19b]), a novel observer is presented that esti-

mates the rotation matrix based on explicit measurements of one constant iner-

tial reference vector in addition to implicit measurements of the Earth’s rotation.

Furthermore, the observer’s correction term is affected by a gain that can be

computed through the application of a linear Kalman filter. The Luenberger

like nature of the observer proposed in [RBOS18a] and [RBOS19b] yields a more

straightforward gain tuning, without any reference to a Riccati differential equa-

tion. However, the performance of that observer is extremely slow, exhibiting

convergence rates of up to a dozen of hours.

The algorithm developed in this chapter is nonetheless simple and easy to

tune as well, excelling in its performance, which outdoes the performances illus-

trated in both [BSO19b] and [BSO19a]. In the former, a globally exponentially

stable cascade observer explicitly estimates the Earth’s angular velocity, and then

estimates the rotation matrix without topological constraints. In [BSO19a], a

cascade semi-global attitude observer built on the special orthogonal group was

presented that is also based on explicit measurements of a single body-fixed vec-

tor. Most noticeably, whereas in both [BSO19b] and [BSO19a] a set of piecewise

observer gains had to be tuned in order to ensure both fast convergence speed

and good steady-state performance, the Kalman filter in this chapter entails a

much simpler and straightforward tuning process through its covariance matrices,

therefore bypassing the need for piecewise gains. Moreover, much faster conver-
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gence is still achieved with the solution proposed herein. However, due to the

intricate process of analytically computing a closed-form solution of the Riccati

differential matrix equation, only local exponential stability guarantees are pro-

vided in this chapter. Nevertheless, extensive simulation and experimental results

are given that demonstrate the effectiveness of the proposed observer with a very

large basin of attraction. Still, it urges to emphasize that, in [BSO19b], the ob-

servability analysis of the system was already carried out, with the system shown

to be observable.

6.1.1 Chapter Outline

In Section 6.2, the steps leading to the proposed nonlinear attitude estimation

solution are described. Section 6.3 shows how to compute the observer gain,

specifically how the gain can be obtained from the solution of the Riccati differ-

ential matrix equation, and addresses the local stability properties of the observer.

In Section 6.4, an extensive performance analysis is carried out through a set of

simulations that include Monte Carlo runs. Section 6.5 includes experimental re-

sults that further validate the effectiveness of the proposed observer when tested

under real world mission scenarios. Finally, conclusions and some discussions are

presented in Section 6.6.

6.2 Design of attitude observer

Based on the theoretical background established in Section 4.3, consider the fol-

lowing observer for the rotation matrix:

˙̂R(t) = R̂(t)S
[
ωm(t)− R̂T (t)IωE +K(t)

(
m(t)×

(
R̂T (t)Im

))]
, R̂(0) ∈ SO(3),

(6.1)

with

K(t) := R̂T (t)K̄(t)R̂(t) ∈ R3×3, (6.2)
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where K̄(t) ∈ R3×3 is a continuous matrix gain to be determined. R̂(t) ∈ SO(3)

denotes the estimates of the rotation matrix that evolve on the manifold. Fur-

thermore, for some κ > 0, let
∥∥∥K̄(t)

∥∥∥ ≤ κ, for all t ≥ 0, therefore implying that

K(t) is also norm-bounded by κ since, by construction,
∥∥∥R̂(t)

∥∥∥ = 1 . Define the

error variable

R̃(t) := R(t)R̂T (t) ∈ SO(3), (6.3)

whose dynamics are given by

˙̃R(t) =Ṙ(t)R̂T (t) +R(t) ˙̂RT (t)

=R(t)S[ωm(t)−ωE(t)]R̂T (t)+

+R(t)
R̂(t)S

[
ωm(t)− R̂T (t)IωE +K(t)

(
m(t)×

(
R̂T (t)Im

))]T

=R(t)S[ωm(t)−ωE(t)]R̂T (t)+

−R(t)S
[
ωm(t)− R̂T (t)IωE +K(t)

(
m(t)×

(
R̂T (t)Im

))]
R̂T (t).

Isolating the terms associated with the Earth’s angular velocity, and further notic-

ing that the terms corresponding to the measurements of angular velocity cancel

each other, allows writing

˙̃R(t) =−R(t)S
[
ωE(t)− R̂T (t)IωE

]
R̂T (t)+

−R(t)S
[
K(t)

(
m(t)×

(
R̂T (t)Im

))]
R̂T (t)

=−R(t)S
[(

RT (t)− R̂T (t)
)
IωE

]
R̂T (t)+

−R(t)S
[
K(t)

((
RT(t)Im

)
×
(
R̂T (t)Im

))]
R̂T (t).

Since RT (t)R(t) = I, the previous result can be rewritten as

˙̃R(t) =−R(t)S
[(

RT (t)− R̂T (t)
)
IωE

]
RT (t)R(t)R̂T (t)

−R(t)S
[
K(t)

((
RT (t)Im

)
×
(
R̂T (t)Im

))]
RT (t)R(t)R̂T (t).

(6.4)
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Recall the error definition in (6.3), and employ the property

R(t)S[a]RT (t) = S[R(t)a], a ∈ R3,

to help to simplify (6.4) as

˙̃R(t) =−S
[(

R(t)RT (t)−R(t)R̂T (t)
)
IωE

]
R̃(t)+

−S
[
R(t)K(t)

(
RT (t)Im× R̂T (t)Im

)]
R̃(t).

Finally, replace (6.2) in the previous equation to obtain

˙̃R(t) =−S
[(

I− R̃(t)
)
IωE + R̃(t)K̄(t)

(
R̃T (t)Im× Im

)]
R̃(t)

=R̃(t)S
[(

I− R̃T (t)
)
IωE− K̄(t)

(
R̃T (t)Im× Im

)]
.

(6.5)

This last result poses a highly nonlinear relationship, whereby classical tools from

linear system theory cannot be applied. But before moving on to the stability

analysis of the nonlinear error dynamics (6.5), one must find a suitable matrix

gain K̄(t) to drive the estimation error to zero, i.e., to asymptotically drive the

error matrix R̃(t) to an identity, as suggested by (6.3).

6.3 Computation of Observer Gain K̄(t)

6.3.1 Local stability analysis

A simple strategy is proposed to determine K̄(t). It is based on the results from

previous chapter (see also [RBOS19b]), and arises from considering only small

perturbations of the rotation matrix.

Hence, start by recalling the linearization of the rotation matrix error as

given by (B.5). Then, substitute in (6.5) all terms denoted by R̃(t) and simplify
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in order to obtain

˙̃R(t)≈(I+S[x(t)])S
[
S[x(t)]IωE + K̄(t)

((
S[x(t)]Im

)
× Im

)]
=(I+S[x(t)])S

[
−S

[
IωE

]
x(t) + K̄(t)S2

[
Im

]
x(t)

]
.

Neglecting once more all second-order terms results in

˙̃R(t)≈−S
[
S
[
IωE

]
x(t)− K̄(t)S2

[
Im

]
x(t)

]
,

which, by comparison with ˙̃R(t)≈ S [ẋ(t)], as suggested by (B.5), allows to write

the linear differential equation

ẋ(t) = A(t)x(t), (6.6)

where A(t) :=−S
[
IωE

]
+ K̄(t)S2

[
Im

]
.

The key target will now consist in determining K̄(t) such that (6.6) con-

verges globally exponentially fast to zero. If K̄(t) were constant, it would suffice

to make A(t)≡A Hurwitz, i.e., to ensure that the real part of all eigenvalues of

A is negative, which can be attained if the pair
(
S
[
IωE

]
,S2

[
Im

])
is observable.

However, since stability criteria of LTI systems do not apply to LTV systems,

one must attempt a different approach, in particular by taking advantage of the

Luenberger-like structure of the matrix A(t). Indeed, the differential equation

(6.6) can be regarded as the dynamics of a state estimation error corresponding

to an auxiliary system where K̄(t) multiplies a feedback term on a pseudo esti-

mation error. The reader familiar with the design of state observers immediately

perceives that K̄(t) is optimal (in the sense that minimizes the variance of the

pseudo estimation error) when associated with a Kalman filter.

Further details on the structure of this auxiliary system, as well as on the

computation of K̄(t), are presented in the sequel.
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6.3.2 Kalman filter application

Consider the following continuous-time LTI system


ẋ(t) = Ax(t) +w(t)

y(t) = Cx(t) +v(t)
, (6.7)

where x(t) ∈R3 represents the state vector, y(t) ∈R3 is the observations vector,

and where A =−S
[
IωE

]
and C =−S2

[
Im

]
are the dynamics and observations

matrices, respectively. Let w(t) and v(t) denote additive white Gaussian noise

sequences associated with the process and the measurements, respectively, such

that w(t) ∼N (0,Q) and v(t) ∼N (0,R). Q ∈ R3×3 and R ∈ R3×3 are both

assumed constant, symmetric, bounded, positive definite covariance matrices,

each corresponding to a zero mean multivariate normal distribution.

Lemma 6.1. Under Assumption 4.1, the continuous-time LTI system (6.7) is

observable.

Proof. The continuous-time LTI system (6.7) is observable if and only if the

observability matrixO ∈R9×3 associated with the pair (A, C) is full rank (rank=

3), with

O =


C

CA

CA2

=


−S2

[
Im

]
S2
[
Im

]
S
[
IωE

]
−S2

[
Im

]
S2
[
IωE

]

 .

By contradiction, suppose that Assumption 4.1 holds and that the LTI system

(6.7) is not observable. This implication corresponds to the matrix O not being

full rank, which means Ov = 0, for some unit vector v ∈R3, with ‖v‖= 1. From

−S2
[
Im

]
v = 0 it follows that v = ±Im/‖Im‖. In turn, S2

[
Im

]
S
[
IωE

]
v = 0

implies either that v = ±IωE/‖IωE‖ or that IωE ×v = ±Im. However, since,

according to Assumption 4.1, IωE is not collinear with Im, the only possible

solution of Ov = 0 is v = 0, but that contradicts the claim whereby v is a unit
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vector. Therefore, O is always full rank and the LTI system (6.7) is observable.

�

A classic continuous-time Kalman filter follows as the natural estimation

solution for the LTI system (6.7). The design of the filter is omitted as it is widely-

known. Hence, let x̂(t) denote the Kalman filter estimates of x(t). Accordingly,

the dynamics of x̂(t) are governed by

˙̂x(t) = Ax̂(t) + K̄(t)(y(t)−Cx̂(t)) . (6.8)

Define now the error variable e(t) := x(t)− x̂(t). From (6.7) and (6.8), one con-

cludes that the nominal error dynamics obey

ė(t) =
(
A− K̄(t)C

)
e(t), (6.9)

which has a direct correspondence to (6.6). In turn, the computation of the

matrix gain K̄(t) stems inherently from the solution of the Riccati differential

matrix equation,

Ṗ(t) =−P(t)CTR−1CP(t) +AP(t) +P(t)AT +Q, (6.10)

with P(t= t0) = P0 � 0, and is thus given by

K̄(t) = P(t)CTR−1. (6.11)

According to [Rug96, Definition 18.30], the LTI system is detectable because

(6.9) is exponentially stable. Nevertheless, on account of the pair (A, C) being

observable, the same conclusion could have been inferred because detectability

is a weaker condition than observability. If a system is observable, then it is

also detectable and, therefore, according to [Kuč73, Theorem 8], the solution

of the Riccati equation (6.10) is bounded for all time, which complies with the
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established assumption that
∥∥∥K̄(t)

∥∥∥≤ κ, for some κ > 0. With P(t) bounded, it

follows from (6.10) that Ṗ(t) is also bounded.

Remark 6.1. The Kalman gain, as given by (6.11), will be employed in the non-

linear observer (6.1). An obvious advantage of this implementation is that one

simply has to tune the matrices Q� 0 and R� 0 while guided by a paramount in-

sight provided by the LTI system (6.7). Most noticeably, on account of the system

being observable, the error term e(t), i.e., x(t) as given by (6.6), is guaranteed

to converge globally exponentially fast to zero, which, at this stage, automatically

renders the proposed nonlinear observer (6.1) locally exponentially stable [Kha02,

Theorem 4.13].

6.4 Performance Analysis

In this section, several simulation tests will be conducted, including Monte Carlo

runs. The first set of simulations will validate the efficiency of the proposed

attitude estimation solution in terms of its local performance, for which expo-

nential stability has been ensured. Then, in order to understand the range of

applicability of the nonlinear observer (6.1) in the absence of global asymptotic

stability guarantees, additional tests will take into account a set of admissible

initial conditions uniformly distributed in SO(3), whereby Monte Carlo runs will

help assessing the repeatability of the system’s behavior.

6.4.1 Simulation Setup

The simulations implemented in this section follows the generic setup reported

in Section 4.4, taking into account a reference vector associated with the Gravi-

tational Field. The initial attitude of the platform was always set to R(0) = I.

Once again, consider the Euler angle-axis representation of the error associated
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with the rotation matrix,

R̃(t) = I+ sin
(
θ̃(t)

)
S[ṽ(t)] +

[
1− cos

(
θ̃(t)

)]
S2 [ṽ(t)] , (6.12)

where θ̃(t) ∈D and ṽ(t) ∈ S(2) form the Euler angle-axis pair.

6.4.2 Local Dynamic Behavior Evaluation

The first order approximation of R̃(t), given by (B.5), is often regarded as the

small angles approximation of the rotation matrix error, which stems from (6.12)

by setting sin(θ̃(t))≈ θ̃(t) and cos(θ̃(t))≈ 1. In order to remain below 1% in terms

of relative error of the small angles approximation, this local evaluation should

abide by initial conditions where θ̃(t = 0) < 14◦. Hence, resorting to the Monte

Carlo method, 100 runs were performed for every initial angle error θ̃(t = 0) in

the interval {0.5,1,1.5, . . .14} (degrees). Each Monte Carlo run features randomly

generated noise sequences and initial axes of rotation. Figure 6.1 illustrates the

nicely covered unit sphere containing all axes ṽ(t = 0) associated with the total

28×100 Monte Carlo runs.

Figure 6.1: Initial axes of rotation on the unit sphere (local evaluation).
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Regarding the simulation parameters, the covariance matrices of the filter,

that were seen as tuning knobs, were adjusted empirically for the best achievable

results. More specifically, the covariance of the process noise was set to Q = 5×

10−9I; the covariance of the observations noise was set to R= 10−2I; and, a large

initial covariance estimate of P(0) = 0.05I was used to ensure fast convergence.

The evolution of θ̃(t) for each of the 28 initial conditions is shown in Figure 6.2,

where it is possible to immediately infer an obvious consistency between initial

deviation and convergence time. Meanwhile, in steady-state, all errors remain

below 0.4◦ after just 10 minutes, which corresponds to a very good performance

in the presence of realistic sensor noise.

Figure 6.2: Time evolution of θ̃(t) for θ̃(0) = 0.5 . . .14 degrees (local evaluation).

Furthermore, there is an almost unnoticeable swift convergence that takes

place during the first few sampling instants. The initial deviation, despite span-

ning angles between 0.5◦ and 14◦, seems to never surpass 8◦. This is a consequence

of the time-varying nature of the observer gain, which is inherently interconnected

with the solution of the Riccati equation (6.10). That solution also displays a

rapid transition resulting from the choice of gains and, as shown in the next sec-

tion, its time-varying nature is of the utmost importance for attaining the fastest

achievable performance.

The mean and standard deviation values were also computed and averaged
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for each set of 100 runs. The results are depicted in Figures 6.3 and 6.4, respec-

tively. The growth pattern of both accumulated values is consistent with the

initial deviation and displays a decreasing trend.

Figure 6.3: Steady state mean of θ̃(t) for t≥ 10 minutes (local evaluation).

Figure 6.4: Steady state standard deviation of θ̃(t) for t≥ 10 minutes (local
evaluation).
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6.4.3 On the attainable performance consider-

ing Ṗ(t) = 0.

In many practical applications to reduce the computational burden associated to

the Riccati equation, it is common to resort to the algebraic solution P of

0 =−PCTR−1CP+AP+PAT +Q. (6.13)

This solution, under similar conditions, guarantees a stable filter behavior. Nev-

ertheless, due to its simplicity and low computational power requirements, it is

relevant to investigate how the nature of this solution can impact the performance

of the proposed observer. In other words, can the steady state matrix P, solu-

tion of (6.13), attain similar performance as its time-varying counterpart, which

results from solving (6.10)? The answer, in the absence of analytic expressions,

will have to resort exclusively to simulation results. Therefore, a similar Monte

Carlo analysis will be implemented, only this time using a steady-state matrix P,

which can be easily computed from (6.13) by resorting to the MATLAB function

care(AT ,CT ,Q,R,0,I). The covariance of the observations noise was set empiri-

cally to R= 10−4I for an overall best performance. The final results are shown in

Figure 6.5, which contains the error evolution of 14 sequences, each corresponding

to an initial angle deviation θ̃(0) in the interval {1,2 . . .14} (degrees). The overall

convergence behavior is indeed quite similar to the one displayed in Figure 6.2, al-

though convergence times are now extremely slow, taking approximately 24 hours

for the filter to reach steady-state. This was a somewhat expected result, in line

with the performance of the nonlinear observer presented in Chapter 5. When

the Kalman filter gain is assumed constant, the performance of the observer is

essentially dictated by the fixed eigenvalues of the matrix A, as shown in (6.6).

Furthermore, without the time-varying nature of its gain, the Kalman filter is, to

some extent, limited to the implicit directionality of both vectors IωE and Im.
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Notice, either from (6.6) or (6.9), how the former vector is not even affected by

the gain, which hints towards a much more intricate role of P(t) in the observer

performance.

Figure 6.5: Time evolution of θ̃(t) for θ̃(0) = 1,2 . . .14 degrees (local evaluation
with Ṗ(t) = 0).

6.4.4 Observer performance beyond local restric-

tions

Although the time varying filtering solution, with feedback gain K̄(t) provided by

the Kalman filter, stabilizes the linear error dynamics (6.9), care must be taken

when extrapolating these statements from R3 to SO(3), where, by definition,

‖x(t)‖ ≤ 1 for all t≥ 0.

In the previous section, it was shown that the time-varying nature of the

Kalman gain remarkably improves the local performance of the proposed ob-

server, reducing convergence times from several hours down to a few minutes.

What remains to check is whether the attitude observer (6.1) behaves well for

initial deviations up to θ̃(t= 0)< 180◦. To assess that, a new Monte Carlo anal-

ysis will be conducted, consisting basically in an extension of the one carried out

in Section 6.4.2. Only the initial covariance of the error was updated to P(0) = 5I

to ensure a fast initial transient for all error sequences.
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Figure 6.6 illustrates the practically covered unit sphere containing all initial

axes of rotation ṽ(t= 0), which, along with the interval of initial angle deviations,

helps corroborating the claim that the proposed nonlinear observer works, under

the established assumptions, for a large basin of attraction. This claim is fur-

ther validated by the outstanding results displayed in Figure 6.7, which shows,

for each θ̃(t = 0) ∈ [1,179] (degrees), the averaged evolution of the correspond-

ing 100 Monte Carlo runs. The initial transient is roughly under 2 minutes for

all sequences, with convergence times being function of the initial deviation, as

expected.

Figure 6.6: Initial axes of rotation on the unit sphere.

Going into more detail, Figures 6.8 and 6.9 exhibit the steady-state behavior

of both the averaged mean and averaged standard deviation, for t≥ 10 minutes,

as a function of θ̃(t). The two plots hint the performance level that can be

attained by the proposed filter, with means and standard deviations consistently

lower than 0.25◦ and 0.2◦, respectively. This level of accuracy, together with fast

convergence times, deems the proposed nonlinear observer a suitable choice across

many application scenarios, for example, in space applications and submarine

operations.
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Figure 6.7: Time evolution of θ̃(t) for θ̃(0) = 1,2, . . .179 degrees.

Figure 6.8: Steady state mean of θ̃(t) for t≥ 10 minutes.

Figure 6.9: Steady state standard deviation of θ̃(t) for t≥ 10 minutes.
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6.5 Experimental Results

The data collected from the experimental trial described in Section 4.5 was fed

to the nonlinear attitude observer (6.1), which was run 100 times, each iteration

using a randomly generated initial rotation matrix estimate, computed as the

exponential matrix of a random vector. The spacial distribution of the resulting

axes of rotation associated with the 100 estimates is depicted in Figure 6.10.

For the sake of completeness, the 100 initial angle errors corresponding to the

randomly generated rotation matrices are shown, sorted in increasing order, in

Figure 6.11.

Figure 6.10: Initial axes of rotation on the sphere.
(Experimental Evaluation)

The plot with the final attitude estimation results, which consist in an

average over time of the 100 observer iterations, is displayed in Figure 6.12. Con-

vergence can be seen to reach steady-state after around 10 minutes, following an

unconventional transient characterized by somewhat large oscillations. We recall

that the role of P(t) in the observer remains partly unknown; the only certainty

is that P(t) indeed converges asymptotically to a positive-definite symmetric ma-

138



10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Figure 6.11: Initial angle deviations.
(Experimental Evaluation)

trix, which can actually be computed a priori. Convergence of the solution of

the Ricatti differential equation (6.10) to the algebraic Riccati equation solution,

for LTI systems, has been studied before, with several results found in the liter-

ature. The reader is referred to, for instance, [BG91, Theorem 10.10]. Moreover,

this covariance matrix is independent of the trajectory described by the MRT,

which means it can be computed offline. Most noticeably, the averaged angle

error remains most of the time below 1 degree, with mean and standard devia-

tion, computed for t ≥ 30 min, equal to 0.4664 and 0.2561 degrees, respectively.

These experimental results, which compare fairly similar to the ones obtained

in simulation, as seen from Table 6.13, confirm the performance of the proposed

solution, which can be used in many ocean, air, and ground robotic applications,

even when accounting for changes in geographical location, i.e., translational mo-

tion, since the reference vector variation is only slightly affected. Indeed, at the

surface of the planet, a 100 km displacement corresponds roughly to covering a

1 degree arc length.

6.6 Concluding remarks

In this chapter, a nonlinear attitude observer built on SO(3) was proposed that

takes into account the Earth’s rotational velocity and resorts exclusively to single
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Figure 6.12: Averaged angle error evolution.

Table 6.13: Summary of results: averaged mean (µ) and standard deviation (σ)
of all angle error sequences, for t≥ 30 min.

Measure Simulation Experimental
µ (degrees) 0.1408 0.4664
σ (degrees) 0.2619 0.2561

body measurements of a constant inertial reference vector, in addition to angular

velocity readings. In view of the highly nonlinear structure of the attitude error

dynamics, a linearization was carried out that resulted in the establishment of

an LTV system. This LTV system was in turn shown to have a direct correspon-

dence to an LTV Luenberger observer for an LTI system, which was proved to

be observable. A Kalman filter followed as the natural estimation solution, ren-

dering the nonlinear observer locally exponentially stable. Extensive simulation

and experimental results have allowed to assess the performance of the observer

to a great extent. Indeed, the error associated to the nonlinear attitude observer

converges to zero for all initial conditions up to the critical angle deviation of

180 degrees, therefore demonstrating the applicability of the proposed nonlinear

attitude in real world ocean, air and ground vehicular applications.
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Chapter No. 7

Kalman filter cascade for attitude estimation on rotating

Earth
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7.1 Introduction

Determining the attitude of a rigid body allows to describe how it is ori-

ented in its enclosing space. Attitude measurements, often expressed by

rotation matrices with respect to a known inertial reference frame, represent cru-

cial information across important engineering fields, for instance, in the control

of earth-orbiting satellites and spacecrafts, see [DBI01] and [LLA11], in navi-

gation problems, see [GFJS12] and [CZQ17], and in mobile robot applications,

see [RH04] and [ZSY+18], among a plethora of other references available in the

literature.

The Wahba’s problem, one of the first approaches to the now classic problem

of satellite attitude estimation, proposed a means of determining the best least

squares fit over two sets of observed points as to obtain a proper orthogonal

matrix [Wah65]. Being purely algebraic, the solution to this problem does not
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include steps of noise removal and reduction, thus leaving the door open for

the development of filters and observers capable of smoothing estimated data,

while simultaneously using complementary information from a set of appropriate

sensors.

Soon, the celebrated EKF became a frequent and easy solution for nonlinear

attitude estimation applied to a broad range of applications. Amid an extensive

literature on this subject, the reader is referred, for example, to the works in

[LMS82] and [PMP90], which raised the awareness for the pitfall associated with

linearizations of propagation equations and with model inaccuracies.

There have been, however, efforts to detour around these two major draw-

backs. Particularly, in [MMS07] an optimal linear attitude estimator is presented

that applies the Caley conformal mapping over the rotation matrix in order to

build a linear unconstrained problem; and, the work in [ISSK15] proposes a

discrete-time attitude observer, where no knowledge of the attitude dynamics

model is assumed, based on a discretized Lagrangian inspired by Wahba’s prob-

lem.

Nevertheless, despite its inherent limitations, the EKF remained a popular

choice in terms of nonlinear estimators, and is still actively researched today.

Recently, the work in [BB17] presented, in a deterministic context, a solution

based on symmetry preserving observers and on the invariant EKF, which, under

certain observability conditions, is shown to be an asymptotic observer. From

the same authors, in [BB15] a class of simple filters is proposed, on Lie groups,

whose discrete-time error’s evolution is independent of the system’s trajectory.

In one of the application examples illustrated therein, the rotation of the Earth

is taken into account, an interesting practical scenario which is studied in this

chapter as well.

Typically in most mission layouts, the angular velocity of the rotating body’s

is available through rate gyro measurements. This notwithstanding, in light of

recent advances in the development of high-grade rate gyroscopes, such as the
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commercial off-the-shelf FOG IMU KVHR© 1775, the Earth’s instantaneous rota-

tion vector can also be perceived with precision, although not explicitly.

This fact motivated the previous work by the authors, presented in [BSO14a]

and [BSO14b]. In the former, a GES observer was developed that resorts to sin-

gle body-fixed vector measurements of a constant inertial vector and of a triaxial

high-grade rate gyro; then, an auxiliary observer is designed that yields an es-

timate of the Earth’s angular velocity, which is used to determine a rotation

matrix without topological constraints. Alternatively, in the companion work

[BSO14b], a cascade observer is proposed that yields a rotation matrix evolving

on the 2-sphere manifold.

With knowledge about two vectors, including, for example, an estimate of

the Earth’s instantaneous rotation vector, it is ensured, under a mild geometrical

assumption between said vectors, that the attitude can be uniquely determined at

every time instant. This method consisting in estimating a second vectorial mea-

surement has recently been addressed in the construction of a discrete attitude

observer for fusing monocular vision with GPS velocity measurements [KCRM17],

and was also studied in [LLA11] to solve an attitude control problem by output

feedback. In [VMBM15], an attitude estimation algorithm is proposed, focused

on ground-based robots subjected to low body-accelerations, using accelerometer

readings and rate gyro sensors.

This chapter, building upon the theory developed in [BSO14a], proposes a

cascade of two DT-LTV Kalman filters for the problem of attitude estimation

considering a full discrete-time setting, as opposed to systems with continuous-

time models and discrete-time observations [BB15]. The objective of the first

filter is to obtain an estimate of the Earth’s angular velocity, which will be used

by the second filter to determine a rotation matrix. Most noticeably, there is no

linearization involved in the design of the proposed cascade, as it stems from an

exact discretization of the system dynamics proposed in [BSO14a]. Despite not

evolving on the special orthogonal group, the second Kalman filter’s estimates
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are shown to converge globally exponentially fast to elements of this manifold,

as the underlying linear system is proved to be uniformly completely observable

(u.c.o).

7.1.1 Chapter Outline

In Section 7.2, the design of the first Kalman filter to estimate the Earth’s angular

velocity is presented. In Section 7.3, the construction of the cascade is completed

with the design of the second Kalman filter, which yields an estimate of the

rotation matrix. Both Sections 7.2 and 7.3 also feature, in a similar fashion,

an extensive observability analysis. Section 7.4 includes simulation results that

allow to validate the performance of the Kalman filter cascade. In Section 7.5, an

experimental setup is described and its results reported, further allowing to assess

the effectiveness of the proposed solution in real world applications. Finally, a

summary of the main results is drawn in Section 7.6.

7.2 Estimation of Earth’s Angular Velocity

In this section, a Kalman filter to estimate the Earth’s angular velocity is de-

signed, providing the basis for the development of an attitude estimator.

7.2.1 Continuous-time preface to the problem

statement

As previously argued, prior to unequivocally computing an estimate of the ro-

tation matrix, one needs to determine a second vector, in addition to the one

measured, m(t). In order to do so, define as system states x1(t) := m(t) and

x2(t) := ωE(t)×m(t). Notice that state x2(t) closely relates to the Earth’s an-

gular velocity, and further notice that x1(t), albeit known, will undergo a noise-

filtering procedure. Finally, ωE(t) shall be explicitly determined resorting to the
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filtered measurements of m(t) and to the estimates of the auxiliary vector x2(t).

A few additional steps are required to write the linear differential equations

associated with the system states. However, since these steps have already been

thoroughly sketched in Section 4.3 (and, particularly, [BSO14a]), they are herein

omitted. Without further ado, consider the nominal continuous-time linear time-

varying system


ẋ1(t) =−S[ωm(t)]x1(t) + x2(t)

ẋ2(t) = A21x1(t)−S[ωm(t)−A22m(t)]x2(t)
, (7.1)

where

A21 :=

((
ImT

)
IωE

)2

‖Im‖2
−
∥∥∥IωE∥∥∥2

∈ R,

and

A22 :=

((
ImT

)
IωE

)∥∥∥IωE× Im
∥∥∥2

‖Im× (IωE× Im)‖2
∈ R.

Proceed to define the general system state vector as x(t) := [xT1 (t) xT2 (t)]T ∈

R6. Accordingly, the continuous-time linear time-varying system in (7.1) can be

written in a more compact form as

ẋ(t) = A(t)x(t), (7.2)

where

A(t) =

−S[ωm(t)] I

A21I −S[ωm(t)−A22m(t)]

 ∈ R6×6.

The objective now is to find an exact DT-LTV version of (7.2).

Based on Assumption 4.1, and recalling Figure 4.1, let θ denote the angle

between the two constant inertial vectors, such that 0<θ<π, which consequently

allows to write A21 =−sin2(θ)‖IωE‖2 < 0 and A22 = ‖IωE‖/‖Im‖cos(θ).

The following assumption is also considered throughout the remainder of

this chapter.
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Assumption 7.1. (Computational) The angular velocity ωm(t) and the vector

m(t) remain constant between sampling instants.

This last assumption bridges the gap of information between two consecutive

sampling instants. In general, it becomes closer to reality as the overall sampling

period gets reduced, i.e., the sampling frequency increases.

7.2.2 Designing the cascade’s first Kalman filter

Let Tk ∈ R denote the sampling time between consecutive instants tk and tk+1,

i.e., Tk = tk+1− tk > 0. Bearing Assumption 7.1 in mind, it is easy to compute

the exact discrete-time solution of the differential equation (7.2), which allows to

establish a relationship between the system state at time tk, xk, and at time tk+1,

xk+1. On that account, the discrete-time solution of (7.2) evolves according to

xk+1 = eAkTkxk, (7.3)

where

Ak =

−S[ωmk] I

A21I −S[ωmk−A22mk]

 ∈ R6×6. (7.4)

Similar to the continuous-time version, here one has xk = [xT1k xT2k]T , with x1k =

mk and x2k = ωEk×mk. Finally, ωmk corresponds to the measurement of the

angular velocity taken at time tk.

Solving the 6×6 matrix exponential in (7.3) is relatively simple and rather

fast if one resorts, for instance, to the function expm from MATLAB. However, a

closed-form expression would be a more elegant and, at the same time, more prac-

tical solution if one is interested in applying the proposed algorithm on low-end

digital systems other than on arbitrarily fast and numerically precise computers

equipped with MATLAB or with other powerful numerical computing environ-

ments. Hence, the matrix in (7.4) needs to be somehow reorganized in a more

convenient and familiar arrangement in order to avoid computations involving the
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series expansion of the matrix exponential. Moreover, by achieving a closed-form

solution for the expression in (7.3), one is indeed paving the way for a simpler

and unequivocal observability analysis of the system.

Notice that, since x1k = mk, it must be S[mk]x1k = 0. Therefore, without

changing the nominal dynamics of the system, Ak can be rewritten as

Ak =

−S[ωmk−A22mk] I

A21I −S[ωmk−A22mk]

 ,

which, in turn, can be rewritten as the Kronecker direct sum of two matrices:

one constant and one block diagonal. It follows that

Ak = Ā⊕Dk = Ā⊗ I3 + I2⊗Dk,

where

Ā =

−1 1

A21 −1

 ∈ R2×2 and Dk = I−S[ωmk−A22mk] ∈ R3×3.

Next, [Ber09, Proposition 11.1.7] states that eA⊕B = eA⊗ eB, which allows to

rewrite (7.3) as

xk+1 = eTkĀ⊗ eTkDkxk.

Recall now the well-known Rodrigues’ rotation formula for computing the

exponential map, exp: so(3)→ SO(3), from skew-symmetric matrices to orthog-

onal matrices, given by

eS[v] =


I+ sin(‖v‖)

‖v‖
S[v] + 1− cos(‖v‖)

‖v‖2
S2[v], v 6= 0

I, v = 0
(7.5)

for any vector v ∈ R3. Then, and since matrix multiplications with the identity
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are commutative, it follows from (7.5) that

eTkDk = eTkI−TkS[ωmk−A22mk] = eTkIe−TkS[ωmk−A22mk]

= eTk

I− sin(‖Tk (ωmk−A22mk‖)
‖ωmk−A22mk‖

S[ωmk−A22mk]

+ 1−cos(‖Tk (ωmk−A22mk)‖)
‖ωmk−A22mk‖2

S2[ωmk−A22mk]


(7.6)

if ωmk 6= A22mk, or eTkDk = eTkI if ωmk = A22mk. For ease of representation

throughout the remainder of this chapter, define ψk :=ωmk−A22mk. Therefore,

the interesting result achieved in (7.6) expresses a rotation of magnitude ‖Tkψk‖

around the unit rotation vector −ψk/‖ψk‖, followed by a scaling factor equal to

eTk . Hence, equation (7.6) ought to be written in a more accessible composition,

for example, as

eTkDk = eTkR∗k,

where R∗k is a proper orthogonal rotation matrix, i.e., R∗k ∈ SO(3), with R∗k = I

if ψk = 0, or

R∗k := I− sin(‖Tkψk‖)
‖ψk‖

S[ψk] + 1− cos(‖Tkψk‖)
‖ψk‖2

S2[ψk]

if ψk 6= 0. Finally, compute the exponential of the 2× 2 matrix TkĀ, which,

taking into account the fact that A21 < 0, as suggested by Assumption 4.1, is

given by

eTkĀ = e−Tk∆k, (7.7)

where

∆k :=

 cos(δk) sin(δk)√
|A21|

−
√
|A21|sin(δk) cos(δk)

 , det(∆k) = 1, (7.8)

with δk = Tk
√
|A21| > 0. For further details, the reader is referred to [Ber09,
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Corollary 11.3.3]. The inverse of (7.8), useful in the sequel, is simply given by

∆−1
k =

 cos(δk) − sin(δk)√
|A21|√

|A21|sin(δk) cos(δk)

 .

The previous buildup helps writing the propagation equation of the system

state vector, whose term x1k = mk corresponds to the single body-vector mea-

surements as well. Thus, regarding x1k as an output, one can complete the full

definition of the auxiliary DT-LTV system by writing


xk+1 = Φkxk +wk

yk = Cxk +nk
, (7.9)

where

Φk = ∆k⊗R∗k ∈ R6×6 (7.10)

is the transition matrix that drives the system from tk to tk+1, C = [I 0] ∈ R3×6

is the constant observations matrix that relates the output of the system to the

system state, wk is the process noise, here assumed to correspond to a zero

mean multivariate normal distribution with covariance Qk, and, finally, nk is

also assumed to be a zero mean multivariate normal distribution with covariance

Nk, corresponding to the measurements noise mk.

7.2.3 Observability Analysis

The following assumption is used throughout the remainder of this chapter.

Assumption 7.2. (Practical) The sampling rate Tk is bounded from above and

below. In particular, there exist positive constants ε1, ε2 ∈R such that ε1<Tk<ε2.

The classic Kalman filter is the natural solution for the DT-LTV system

(7.9). Through its implementation, the noise over measurements mk is filtered,

while, simultaneously, a vector that is closely related to the Earth’s angular ve-
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locity is estimated. If the system is u.c.o., then the resulting error estimates are

shown to be GES [Jaz70]. The following theorem encloses the first part of the

main result of this work.

The DT-LTV system (7.9) is observable for all k ≥ k0. Moreover, given

Assumption 7.2 and assuming ε2<<π/
√
|A21|, the system is also u.c.o.,

which means the estimates of a Kalman filter synthesized from (7.9) con-

verge globally exponentially fast to the actual values.

Theorem 7.1

Proof. When considering the minimum interval of sampling times for observ-

ability, the observability matrix associated with the pair (Φk,C), denoted by

O[k,k+ 2], is given by

O[k,k+ 2] =

 C

CΦk

=

 I 0

cos(δk)R∗k
sin(δk)√
|A21|

R∗k

 . (7.11)

First, note that R∗k is always non-singular by definition. Then, according to

Assumptions 4.1 and 7.2, it must be δk 6= 0. Still, sin(δk) = 0 =⇒ δk = mπ,

for m∈N>0, which means (7.11) is not full rank when Tk =mπ/
√
|A21|, for some

m ∈ N>0, but, based on Assumption 7.2, Tk < ε2 << π/
√
|A21|. Hence, under

the conditions established above, the observability matrixO[k,k+2] is always full

rank, thus implying that the DT-LTV system (7.9) is observable for all k ≥ k0.

According to [Jaz70, Definition 7.153], the DT-LTV system (7.9) is u.c.o. if

∃N>0
α>0
β>0

∀k≥k0 αI≤J [k+N,k]≤ βI, (7.12)

with

J [k+N,k] =
k+N∑
i=k

ΞT [i,k+N ]CTCΞ[i,k+N ],

where, for i∈ [k,k+N ], the term Ξ[k+N,i] corresponds to the transition matrix

150



that drives the system from ti to tk+N , and is given by

Ξ[k+N,i]=


k+N−i∏
l=1

Φk+N−l, i < k+N

I, i= k+N

. (7.13)

One of the properties of the transition matrix asserts that

Ξ[i,k+N ] = Ξ[k+N,i]−1.

Moreover, based on (7.10), one can write, making use of the mixed-product prop-

erty of the Kronecker product,

k+N−i∏
l=1

Φk+N−l =
k+N−i∏

l=1
∆k+N−l

⊗
k+N−i∏

l=1
R∗k+N−l

 .

Notice that both matrices in the previous Kronecker product are invertible.

Therefore, for i < k+N , the inverse of (7.13) satisfies

Ξ[i,k+N ] =
k+N−1∏

l=i
∆−1
l

⊗
k+N−1∏

l=i
(R∗l )

−1
 , (7.14)

where the invertible product property of the Kronecker product was employed.

The inverse of a rotation matrix equals its transpose. Therefore, as the right side

of (7.14) expresses a Kronecker product between a matrix of scaling factors and

a rotation matrix, it can be simplified, for i < k+N , as

Ξ[i,k+N ] = Fi⊗ R̄i.
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Specifically, from the result stated in (7.7), one has

Fi =
k+N−1∏
l=i

e−Tle−TlĀ = e−τie−τiĀ

=

 cos
(
τi
√
|A21|

)
−

sin
(
τi

√
|A21|

)
√
|A21|√

|A21|sin
(
τi
√
|A21|

)
cos

(
τi
√
|A21|

)
 ,

with

τi :=
k+N−1∑
l=i

Tl > (k+N − i)ε1 > 0.

Regarding R̄i, since only its properties are of interest in the remainder

of the proof, it is not explicitly determined. Next, let there be a unit vector

c = [cT1 cT2 ]T ∈ R6, with c1,c2 ∈ R3, and left and right multiply it with all terms

in (7.12) to convert the matrix expression into an equivalent scalar one, resulting

in

α≤ cTJ [k+N,k]c = ‖c1‖2 +
k+N−1∑
i=k

∥∥∥C(
Fi⊗ R̄i

)
c
∥∥∥2
≤ β. (7.15)

Regarding the right inequality, the upper bound is always satisfied as all matrices

involved are norm-bounded, and in particular

k+N−1∑
i=k

∥∥∥C(
Fi⊗ R̄i

)
c
∥∥∥2
≤
k+N−1∑
i=k

‖C‖2
∥∥∥(Fi⊗ R̄i

)∥∥∥2
‖c‖2

≤
k+N−1∑
i=k

∥∥∥(Fi⊗ R̄i

)∥∥∥2

=
k+N−1∑
i=k

‖Fi‖2 =
k+N−1∑
i=k

σ2
max(Fi)

≤
k+N−1∑
i=k

‖Fi‖2F .

Since the squared Frobenius norm of matrix Fi is given by

‖Fi‖2F = tr
(
FiFT

i

)
=

2|A21|+ sin2
(
τi
√
|A21|

)
(1−|A21|)

|A21|
,

it follows that 2 ≤ ‖Fi‖2F ≤ (1 + |A21|)/|A21|, which allows to set β = 1 +N(1 +
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|A21|)/|A21| as a suitable upper bound. Notice that β >> ε2.

On the other hand, regarding the left inequality in (7.15), isolate the last

two terms of the series under a new term denoted by Γ to obtain

α≤ Γ +
k+N−2∑
i=k

∥∥∥∥∥∥∥cos
(
τi
√
|A21|

)
c1−

sin
(
τi
√
|A21|

)
√
|A21|

c2

∥∥∥∥∥∥∥
2

,

with

Γ = ‖c1‖2 +

∥∥∥∥∥∥∥cos
(
τk+N−1

√
|A21|

)
c1−

sin
(
τk+N−1

√
|A21|

)
√
|A21|

c2

∥∥∥∥∥∥∥
2

.

The previous result can be rewritten in quadratic form as Γ = cT (Υ⊗ I)c, with

Υ :=


1 + cos2

(
τk+N−1

√
|A21|

)
−

sin
(

2τk+N−1
√
|A21|

)
2
√
|A21|

−
sin
(

2τk+N−1
√
|A21|

)
2
√
|A21|

sin2
(
τk+N−1

√
|A21|

)
|A21|

 . (7.16)

As τk+N−1 = Tk+N−1, then, in light of the statement of the theorem,

Tk+N−1
√
|A21|<< π,

whereby Υ is a positive-definite symmetric matrix, with determinant given by

sin2(τk+N−1
√
|A21|)/|A21|> 0.

Thus, it follows that Γ ≥ λmin(Υ) > 0, where λmin(Υ) stands for the minimum

eigenvalue of (7.16). Furthermore, Tk+N−1
√
|A21|<< π also validates the small-

angle approximation in (7.16), resulting in

Υ≈

 2 −Tk+N−1

−Tk+N−1 T 2
k+N−1

 .

Hence, λmin(Υ) =T 2
k+N−1/2>ε21/2. Therefore, by setting α= ε21/2, and by finally

noticing that α < β, one concludes the proof. �
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Remark 7.1. In the statement of Theorem 7.1, the upper bound ε2 was set

to be much smaller than π/
√
|A21|. Contextually, when taking into account the

speed of Earth’s rotation, herein set according to the sidereal day, i.e.,
∥∥∥IωE∥∥∥ =

7.2921150× 10−5 rad/s, the value expressed by π/
√
|A21| would correspond to

absurd and impractical sampling times. Therefore, claiming that ε2 << π/
√
|A21|

does not, by any means, compromise the feasibility of the proposed solution.

7.2.4 Cascade’s first Kalman filter implementa-

tion

Let x̂k = [x̂T1k x̂T2k]T denote the state estimate, at time tk, provided by a Kalman

filter applied to the auxiliary DT-LTV system (7.9).

Herein it is important to stress out that S[mk]x̂1k is no longer identically

zero, as there is nothing imposing the estimates of mk, expressed by x̂1k, to be

collinear with the corresponding measurements. This has to be carefully taken

into account when tuning the Kalman filter’s covariance matrix of the process

noise.

According to [BSO14a], an estimate of the angular velocity of the Earth can

be determined as

ω̂Ek = A22x̂1k + x̂1k× x̂2k
‖Im‖2

. (7.17)

Naturally, as both x̂1k and x̂2k have GES error dynamics, the estimates ω̂Ek also

converge exponentially fast to zero for any given initial condition.

This brings to an end the design of the first Kalman filter in the proposed

cascade for attitude estimation. In the next section, a second Kalman filter will

be derived to obtain an estimate of the rotation matrix Rk, aided by the estimates

(7.17).
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7.3 Estimation of Rotation Matrix

The second Kalman filter in the cascade will resort to: i) the body angular

velocity readings from the triaxial high-grade rate gyro, ωmk; ii) the filtered

measurements yielded by the first Kalman filter, x̂1k; and, iii) the estimates of

the Earth’s angular velocity, ω̂Ek. Combining these three vector quantities under

a second DT-LTV system, and further considering the state estimate vector x̂k as

part of a new set of observations will allow to estimate the corresponding rotation

matrix, whose entries will converge asymptotically to elements of SO(3).

Remark 7.2. For this second DT-LTV system, the nominal values of the dy-

namics matrix and of the output are not available. Instead, one can only access

estimates of these quantities. However, since the rate of decay of their associated

error dynamics was shown to be exponential, one may assume these estimates to

be, in fact, nominal values subjected to perturbations that decay exponentially fast

with time. Furthermore, if the nominal system is u.c.o., and if the state and the

matrices of the system are bounded, then a Kalman filter is a suitable estimator,

as it was shown in [VBOS16], on a continuous-time framework. However, these

results are analogous to the discrete-time formulation, since they rely exclusively

on Kalman filtering theory, including solutions of the Riccati matrix equation and

observability gramians, which entails a direct correspondence between continuous-

and discrete-time settings [SR78].

7.3.1 Discrete-time attitude KF design

As suggested in [BSO14a], start by considering a stacked column representation

of the rotation matrix R(t), given by

z(t) =
[
rT1 (t) rT2 (t) rT3 (t)

]T
∈ R9,
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where

R(t) =


rT1 (t)

rT2 (t)

rT3 (t)

 ∈ R3×3.

In nominal terms, and according to 4.4, it follows that

ż(t) =−S3[ωm(t)−ωE(t)]z(t),

where S3[x] := diag(S[x], S[x], S[x]). Similar to what was described at the be-

ginning of Section 7.2.2, solving this differential equation is straightforward if

bearing in mind all the assumptions established. Thus, based on (7.5), one ob-

tains zk+1 = R̄3,kzk, where

R̄3,k = e−TkS3[ωmk−ωEk] = diag(R̄z,k, R̄z,k, R̄z,k),

with
R̄z,k = I− sin(‖Tk (ωmk−ωEk‖)

‖ωmk−ωEk‖
S[ωmk−ωEk]

+ 1−cos(‖Tk (ωmk−ωEk)‖)
‖ωmk−ωEk‖2

S2[ωmk−ωEk]

for ωmk 6= ωEk, or R̄z,k = I for ωmk = ωEk. Define now the observations as

vk = C2zk, where

vk =


x1k

x2k

x1k×x2k

 ∈ R9

and

C2 =


ImT(

IωE× Im
)T

(
Im×

(
IωE× Im

))T

⊗ I ∈ R9×9.
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Hence, the DT-LTV system for attitude estimation can be written as


zk+1 = R̄3,kzk +wz,k

vk = C2zk +nz,k

, (7.18)

where wz,k ∼ N(0,Qz,k) and nz,k ∼ N(0,Nz,k). Both matrices Qz,k and Nz,k

are positive definite, representing the covariances of the process and observations

noises, respectively. Once again, a Kalman filter follows as the natural solution

for (7.18), with the nominal values x1k, x2k and ωEk being replaced by their

estimates x̂1k, x̂2k and ω̂Ek, respectively.

The output of this Kalman filter provides an estimate of the rotation matrix

Rk with GES error dynamics. However, these resulting estimates do not belong

to SO(3) as the Kalman filter ignores topological constructions. Nevertheless,

the rotation matrix estimates, henceforward denoted by R̂k, can be projected

on SO(3) a posteriori, for instance, through the technique described in [Moa02,

Proposition 3.5], which stems from the Singular Value Decomposition (SVD) of

a matrix. Defining R̂e,k as the projection of the estimated rotation matrix onto

the manifold, it follows that

R̂e,k = R̂kUdiag
(

1√
Λ1
,

1√
Λ2
,
s√
Λ3

)
UT , (7.19)

such that
(
R̂T
k R̂k

)2
= UTdiag(Λ1,Λ2,Λ3)U and s = 1 if det(R̂k) > 0 or, else, if

s=−1, then det(R̂k)< 0.

In general, if all elements of the estimated rotation matrix R̂k are sufficiently

close to elements of SO(3), the projection operator (7.19) is an efficient technique.

Otherwise, as it is the case when det(R̂k) = 0, one can always resort to an open

loop integration on SO(3) of the previous attitude estimate.

The final scheme of the Kalman filter cascade is depicted in Figure 7.1,

where the SO(3) block consists in a direct application of the projection expressed

by (7.19). This implementation requires a light computational workload.
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Figure 7.1: Implementation scheme of the Kalman filter cascade.

7.3.2 Observability Analysis of Attitude Esti-

mation Problem

This section encloses the second part of the main result of this work.

The DT-LTV system (7.18) is u.c.o., which means the Kalman filter esti-

mates of the rotation matrix converge globally exponentially fast to the

actual values.

Theorem 7.2

Proof. Following the same steps presented in 7.2.3, according to [Jaz70, Definition

7.153], the DT-LTV system (7.18) is u.c.o. if

∃N̄>0
ᾱ>0
β̄>0

∀k≥k0 ᾱI≤J2[k+ N̄ ,k]≤ β̄I, (7.20)

with

J2[k+ N̄ ,k] =
k+N̄∑
i=k

ΞT
2 [i,k+N̄ ]CT

2 C2Ξ2[i,k+N̄ ],

where, for i∈ [k,k+N̄ ], the term Ξ2[k+N̄ , i] corresponds to the transition matrix,

associated with pair
(
R̄3,k,C2

)
, that drives the system from ti to tk+N̄ , and is
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given by

Ξ2[k+ N̄ , i]=


k+N̄−i∏
l=1

R̄3,k+N−l, i < k+ N̄

I, i= k+ N̄

.

Note that, for i < k+ N̄ , the matrix Ξ2[k+ N̄ , i] preserves the structure of R̄3, a

block diagonal of rotation matrices. Therefore, the inverse of Ξ2[k+ N̄ , i] is also

a block diagonal of rotation matrices. Furthermore, let there be a unit vector

d = [dT1 dT2 dT3 ]T ∈ R9, with d1,d2,d3 ∈ R3, and left and right multiply it with

all terms in (7.20) to obtain

ᾱ≤
k+N̄∑
i=k

∥∥∥C2Ξ2[i,k+N̄ ]d
∥∥∥2
≤ β̄. (7.21)

Define d̄i := Ξ2[i,k+N̄ ]d as a unit vector that results from rotating d, with

d̄k+N̄ = d. Inequality (7.21) becomes

ᾱ≤
k+N̄∑
i=k

∥∥∥C2d̄i
∥∥∥2
≤ β̄. (7.22)

An obvious upper bound is related to the spectral norm of C2, whereby one

can set β̄ = (N̄ + 1)‖C2‖2. In regard to the lower bound, start by noticing

that the summation consists entirely of non-negative terms. Moreover, based on

Assumption 4.1 and on the properties of the Kronecker product, the matrix

C2 is shown to be full rank, as indicated below:

rank(C2) = rank




ImT(

IωE× Im
)T

(
Im×

(
IωE× Im

))T



rank(I) = 9.

This means that the homogeneous system C2d̄i = 0 is only verified by the trivial

solution d̄i = 0, but that contradicts the fact that ‖d̄i‖ = 1 for all i. Therefore,

a suitable lower bound is ᾱ= ‖C2d‖2, which corresponds to the last term of the

summation presented in (7.22), or, more specifically, to the square of the smallest
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singular value of C2. Specifically, by resorting to the SVD of C2, one easily

deduces that the smallest singular value of C2 is given by

min
(∥∥∥Im∥∥∥2

,
∥∥∥IωE× Im

∥∥∥2
,
∥∥∥Im×(IωE× Im

)∥∥∥2)
,

thus concluding the proof. �

7.4 Simulation Results

The simulations implemented in this section follow the generic setup reported

in Section 4.4, taking into account a reference vector associated with the Mag-

netic Field. However, since this attitude estimation solution corresponds to a

discrete realization, the angular velocity, in order to comply with Assumption

7.1, follows a discrete-time sequence given by

ωk =


5sin

(
2π
60k

)
sin
(

2π
180k

)
−2sin

(
2π
300k

)

 deg/s, for k = 0,1,2, . . . .

The sampling instants k correspond to instances when measurements are col-

lected. Changes in other variables involved in the simulation are assumed to

occur synchronized with these instants as well. In case data from different sen-

sors were unsynchronized, i.e., low bandwidth measurements being fused with

high bandwidth ones, complementary filtering techniques can be of assistance;

for further details please refer to [MHP05].

The covariance matrices of the initial estimation error, process and obser-

vations noises of each Kalman filter were set according to Table 7.2.

Since the measurements of the second Kalman filter correspond, in fact, to

the estimates of the first one, the covariance matrix of the error concerning these

estimates was feedforwarded to the second filter to act as covariance matrix of

the observations noise. However, this only allows to obtain the covariance of the
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Table 7.2: Covariance Matrices of the two Kalman filters.

Covariance of the: KF for ω̂E KF for R̂

Initial error 100×diag(I, I) 100×diag(I, I, I);
Process noise 10−23×diag(I, I) 10−2×diag(I, I, I)
Observations noise (200×10−9)2I *

error regarding x̂1 and x̂2. Unfortunately, the covariance of the error associated

with x̂1× x̂2 is not provided by the first filter, and its computation is not trivial.

Therefore, through an empirical process, this covariance was set to 10−22I, for

which the best results were obtained. The initial estimates of the first Kalman

filter were set to zero, while the initial estimates of the second one were set

to correspond to an initial attitude estimate R̂k=0 = diag(−1,1,− 1), which is

equivalent to a maximum angle error of 180◦. The sampling time was set to a

constant value of Tk = 0.1 s in the simulations.

The plots with both the initial convergence and steady-state evolution of

the estimation errors of x̂1, x̂2 and ω̂E are displayed in Figures 7.3, 7.4 and

7.5, respectively. Henceforward, and in the same order, refer to x̃1 := x1− x̂1,

x̃2 := x2− x̂2 and ω̃E := ωE − ω̂E as the estimation errors of the first Kalman

filter.

Overall, the cascade’s first filter shows a very fast performance and, as op-

posed to the observer presented in [BSO14a], does not require a set of piecewise

constant gains, which eases the burden of tuning gains. In steady-state, computed

for k≥4200 (t≥7 min), the standard deviation of the Earth angular velocity error

is [0.2384 0.2362 0.1848]T ◦/h in the NED frame, which is a good result when com-

pared to the real sidereal angular velocity of 15.0411 ◦/h. Likewise, for the same

steady-state region, the standard deviations of the errors x̃1 and x̃2, in the NED

frame, are [67.4882 172.0970 161.3318]T nT and [0.0496 0.0505 0.0535]T nT/s,

respectively, which compare well with the magnitude of the corresponding real

values, that is ‖x1‖= 4.3809×104 nT and ‖x2‖= 3.1935 nT/s.
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Figure 7.3: x̃1 - Estimation error of x̂1.
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Figure 7.4: x̃2 - Estimation error of x̂2.
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Figure 7.5: ω̃E - Estimation error of ω̂E .

Regarding the second filter, let z̃ := z− ẑ be the error associated with the

estimates of the rotation matrix. The plot of this error is shown in Figure 7.6,

from where an evaluation is difficult to grasp. Instead, consider the axis-angle
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representation associated with the rotation matrix error, given by

ζk = 180
π

cos−1
(
tr(RT

k R̂e,k)−1
2

)
degrees,

and observe the resulting plot, in Figure 7.7, for the evolution of the angle er-

ror. The initial rotation matrix estimate chosen before ensures that the angle

error starts from its maximum deviation, 180◦. Although the performance of this

second filter is not as fast as the first one in the cascade, exhibiting initial con-

vergence times of around 200 seconds, as seen from both Figures 7.6 and 7.7, the

mean angle error, computed for k≥ 6000 (t≥ 10 min), is 0.8123◦ with a standard

deviation of 0.3353◦, which deem the proposed solution a suitable choice for the

problem of attitude estimation.

Figure 7.6: z̃ - Estimation error of ẑ.
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Figure 7.7: Angle representation error.
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Table 7.8: Experimental covariance Matrices of the two Kalman filters.

Covariance of the: KF for ω̂E KF for R̂

Initial error diag(103I,106I) 104×diag(I, I, I);
Process noise diag(10−4I,10−10I) 10−8×diag(I, I, I)

Observations noise diag(

(9.695×10−3)2

(3.047×10−2)2

(2.902×10−2)2

) *

7.5 Experimental Results

The data collected from the experimental trial described in Section 4.5 was used

to validate the robustness of the proposed Kalman filter cascade.

The covariance matrices of the initial estimation error, process and obser-

vations noises of each Kalman filter were set according to Table 7.8. The values

differ from those in Table 7.2 mainly due to the nature of the measurements.

Furthermore, noises which, in simulation, were assumed additive white Gaussian

sequences, may not exactly share the properties of normal distributions in prac-

tice. In particular, the covariance of the observations noise was determined after

a statistical analysis of the signals involved.

The plots with both the initial convergence and steady-state evolution of

the estimation errors of x̂1, x̂2 and ω̂E are displayed in Figures 7.9, 7.10 and

7.11, respectively. The magnitude of the steady-state error in Figure 7.11 is

similar to that of Figure 7.5, which indicates a good performance in practice.

Initial convergence times are almost unnoticeable, but that, compared to the

simulated scenario, is somewhat expected in the sense that the sampling rate in

the experiments is 2.5 times faster than in simulation. Once again, in steady-

state, this time computed for k≥60000 (t≥40 min), the standard deviation of the

Earth angular velocity error is [0.1856 0.4074 0.3226]T ◦/hour in the NED frame.

The computed standard deviations of the errors x̃1 and x̃2, also in the NED

frame, are [0.0086 0.0178 0.0188]T m/s2 and 10−5[0.0900 0.1975 0.1564]T m/s3,
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respectively, which compare very well with the magnitude of the corresponding

real values, that is ‖x1‖= 9.80061 m/s2 and ‖x2‖= 5.5822×10−4 m/s3. All these

results are in line with the simulation outcomes achieved for the first Kalman filter

in the cascade.
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Figure 7.9: x̃1 - Experimental estimation error of x̂1.
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Figure 7.10: x̃2 - Experimental estimation error of x̂2.

Time (min)

10 15 20 25 30 35 40 45 50 55
-1.5

-1

-0.5

0

0.5

1

1.5

2
10

-3

0 5
-6

-4

-2

0

2

4

6

Figure 7.11: ω̃E - Experimental estimation error of ω̂E .
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The plots with the evolution of the rotation matrix error and the corre-

sponding angle error are presented in Figures 7.12 and 7.13, respectively. As

opposed to the simulation results, it takes approximately 30 minutes for both er-

rors to reach steady-state. This might be related to the fact that accelerometers

feature typically higher noises than the simulated magnetometers. Nevertheless,

the results are very good, with the mean and the standard deviation, calculated

also for (t≥40 min), equal to 1.0255 and 0.5725 degrees, respectively.

Figure 7.12: z̃ - Experimental estimation error of ẑ.
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Figure 7.13: Experimental angle representation error.

7.6 Concluding remarks

In this chapter, a discrete-time attitude estimation solution featuring a cascade

of two linear time-varying Kalman filters was presented. The first filter in the
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cascade obtains an estimate of the Earth’s angular velocity from a set of measure-

ments that include angular velocity, provided by a triaxial high-grade rate gyro,

and a body-vector whose inertial counterpart is constant. The output of the first

Kalman filter, along with the same set of measurements, is feedforwarded to the

second Kalman filter, which estimates a rotation matrix. This rotation, in spite

of not belonging to SO(3), has its entries converging exponentially fast to the

manifold. The overall cascaded Kalman filter system was shown to be uniformly

completely observable, in turn ensuring global exponential stability. Simulation

and experimental results were presented that demonstrate the robustness of the

proposed solution, which can be very useful for space and underwater applica-

tions, where high accuracy is required while simultaneously using high-grade rate

gyros capable of sensing Earth’s rotation.

167



This page intentionally left blank.



Chapter No. 8

Attitude and Bias Estimation using Single Vector
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8.1 Introduction

At its core, the problem of dynamic attitude estimation aims to describe the

rotational motion of a rigid body with respect to a given frame. Areas where

this problem is of notable interest include navigation of autonomous (or manu-

ally guided) vehicles, tactical missile guidance, alignment of satellites that are

intended to be Earth oriented [Hug12], etc.

Inspiring the continuous development of attitude estimation solutions is

often a need to overcome the intrinsic limitations of low-cost strapdown sensors

[MS07], [GCMSD+13], or a need to deal with circumstances where particular sen-

sors become unreliable, for instance, the global positioning system in underwater

domains, or magnetometers in environments with strong magnetic signatures.

Aware of these pitfalls, the scientific community, in an attempt to simplify setup

designs, has been actively pursuing solutions that resort to single vector obser-

vations, see, e.g., [LLMS07], [BSO12a], and [VMBM15]. Moreover, being able to
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determine sensor biases, in particular concerning gyroscopes, is crucial in avoiding

accumulation of errors, which, if unattended, may compromise feasibility. Among

an extensive literature on this subject, the reader is referred to, e.g., [MPHS06],

[GFJS12] and [BSO12b].

Gradually, the advent of high-grade sensors, such as FOGs, opened the door

for a new class of attitude observers focused on applications where high accuracy

is a key demand, for instance, in the determination of true north for gyrocompass

applications, see [GCF+00], [AP17], [SW18] and references therein.

This chapter, similarly to previous ones, by assuming that the FOGs are

sensitive to the rotation of the planet, proposes a strategy for attitude determina-

tion of robotic platforms with simultaneous estimation of Earth’s angular velocity

and sensor offsets. In alternative to more conventional approaches, which make

use of the celebrated nonlinear complimentary filter, as seen in [ACF+15] and

[MHP08], this chapter introduces a cascade routine that features a Kalman filter

whose estimates are fed to a rotation matrix observer built on SO(3). Resort-

ing to single observations of a constant inertial reference vector, and to implicit

knowledge of the Earth’s spin about its own axis, the Kalman filter not only

estimates two sensor biases and the Earth’s angular velocity, but also filters out

noise from accelerometer data. This stage is then followed by a rotation matrix

observer that is shown to be AGAS in nominal terms, and Locally Input-to-State

Stable (LISS) with respect to the errors of the Kalman filter, which converge

asymptotically to zero.

Previous work by the authors, see [BSO14b] and [RBOS19a], addressed a

similar problem, but without considering biases over the measurements, which is

considerably less challenging from a theoretical point-of-view.

The rest of the chapter is organized as follows: in Section 8.2, an overview of

the problem statement is sketched followed by the design of an LTV system and

ensuing Kalman filter application. Section 8.3 is dedicated to the main result of

the chapter, where the attitude observer is shown to be LISS with respect to the
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errors of the Kalman filter. Section 8.4 presents simulation results that allow to

assess the achievable performance of the cascade. Finally, Section 8.5 elaborates

upon a few conclusions and discussions.

8.2 Earth velocity and bias estimation

Recall the problem statement in Section 4.2, only this time considering bias over

the angular velocity measurements and over the accelerometer data as well. Fur-

thermore, recall equation (4.1), which describes the dynamics of the rotation

matrix.

8.2.1 LTV system design

The measurements collected from the high-grade FOGs, denoted by ωm(t) ∈R3,

are given by

ωm(t) = ω(t) +ωE(t) +bω, (8.1)

where ωE(t)∈R3 is the angular velocity of the Earth about its own axis, expressed

in {B}, and bω is a constant bias offset. In turn, let the accelerometer data be

denoted by am(t)∈R3, which correspond to noisy sensor readings of the vehicle’s

true linear acceleration a(t) ∈ R3, i.e.,

am(t) = a(t) +na(t), (8.2)

where na(t) is assumed to be modeled from an additive white Gaussian noise dis-

tribution. As it is the case with most robotic applications, the gravitational field,

herein denoted by g(t)∈R3, often dominates the linear acceleration described by

the vehicle [MHP08]. Therefore, a(t) can be approximated by

a(t)≈ g(t) +ba,
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where ba ∈R3 is a constant bias offset that characterizes the triaxial accelerome-

ters. Let IωE and Ig be the inertial counterparts of ωE(t) and g(t), respectively,

such that 
ωE(t) = RT (t)IωE

g(t) = RT (t)Ig,

(8.3a)

(8.3b)

for all t≥ 0. For ease of notation, upper leading superscripts of body vectors were

dropped, hence ωE ≡ BωE .

Throughout the remainder of this chapter, consider once again Assump-

tion 4.1, with Im≡ Ig.

At any given latitude ϕ ∈ R, the vectorial representation of the Earth’s

angular velocity in the NED frame is given by

IωE =
∥∥∥IωE∥∥∥ [cos(ϕ) 0 sin(ϕ)]T .

Granted that this inertial vector does not span the North-East plane, write ωE(t)

as the sum of a North component and a Down component, i.e.,

ωE(t) = ωE,N (t) +ωE,D(t),

where 
ωE,N (t) = RT (t)

[∥∥∥IωE∥∥∥cos(ϕ) 0 0
]T

ωE,D(t) = RT (t)
[
0 0

∥∥∥IωE∥∥∥sin(ϕ)
]T
.

(8.4a)

(8.4b)

Observe that the norm of both vectors is constant, and, most noticeably, that(
ωE,N (t)

)T
ωE,D(t) = 0. Likewise, it is known that Ig lies exclusively along the

Down axis of the NED frame. This means that it is possible to write (8.4b) as

ωE,D(t) = αg(t) = α (a(t)−ba) , (8.5)

with α :=
∥∥∥ωE,D∥∥∥/∥∥∥Ig∥∥∥> 0. Next, take the derivative of (8.3b), and rewrite the
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result as

0 = Ṙ(t)(a(t)−ba) +R(t)ȧ(t).

Employing (4.1) into the previous equation and isolating the term ȧ(t) results in

ȧ(t) =−S
[
ωm(t)−ωE,N (t)−bω

]
(a(t)−ba) . (8.6)

Carrying out a similar process, compute the derivative of (8.4a), given by

ω̇E,N (t) =−S
[
ωm(t)−ωE,D(t)−bω

]
ωE,N (t). (8.7)

This result, in view of equation (8.5), can be rewritten as

ω̇E,N (t) =−S [ωm(t)−α (a(t)−ba)−bω]ωE,N (t).

In order to obtain, as intended, an LTV system, a few approximations must

now be carried through. Adopting the approach taken by [SW18], assume that

S
[
ωE,N (t) +bω

]
ba ≈ 0 and that S [ba−bω]ωE,N (t) ≈ 0 as well. In practice,

these mild assumptions state that the cross products between sensor biases, and

between each bias and the North component of the Earth’s angular velocity are

orders of magnitude smaller than the magnitude of the other vectors. Hence,

equations (8.6) and (8.7) can be simplified as

ȧ(t)≈−S
[
ωm(t)−ωE,N (t)−bω

]
a(t) +S [ωm(t)]ba (8.8)

and

ω̇E,N (t)≈−S [ωm(t)−αa(t)]ωE,N (t), (8.9)

respectively. Finally, the inner product of (8.5) with ωE,N (t) helps writing a con-

straint that will be convenient for the Kalman filter implementation. Specifically,

one has

0 =
(
ωE,N (t)

)T
(a(t)−ba)≈

(
ωE,N (t)

)T
a(t).

173



Define now the system state vector as

x(t) :=
[
aT (t) ωTE,N (t) bTa bTω

]T
∈ R12. (8.10)

In the absence of sensor noise, i.e., when, according to (8.2), am(t) ≡ a(t), a

general LTV nominal system can be formulated as


ẋ(t) = A(t)x(t)

y(t) = C(t)x(t)
, (8.11)

where

A(t) =



−S [ωm(t)] −S [am(t)] S [ωm(t)] −S [am(t)]

0 −S [ωm(t)−αam(t)] 0 0

0 0 0 0

0 0 0 0


∈ R12×12,

y(t) =

am(t)

0

 ∈ R4, (8.12)

and

C(t) =

I 0 0 0

0 aTm(t) 0 0

 ∈ R4×12.

8.2.2 Kalman filter implementation

Based on (8.10), let

x̂(t) :=
[
âT (t) ω̂TE,N (t) b̂Ta b̂Tω

]T
∈ R12
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be the comprehensive system state estimate. Then, a classic Kalman filter for

the LTV system (8.11) is given by



˙̂x(t) = A(t)x̂(t) +K(t)(y(t)−C(t)x̂(t))

K(t) = P(t)CT (t)R−1

Ṗ(t) =−P(t)CT (t)R−1C(t)P(t) +A(t)P(t) +P(t)AT (t) +Q,

(8.13a)

(8.13b)

(8.13c)

where Q ∈ R12×12, with Q � 0, and R ∈ R4×4, with R � 0, are the covariance

matrices of the process and observation noises, respectively. Each of these two

matrices, herein assumed constant, depicts a different Gaussian noise distribution,

and can be seen as a tuning knob. Notice that, in the presence of sensor noise,

the premises on which the Kalman filter is built are no longer accurate, since

matrices A(t) and C(t) become sources of multiplicative noise, which overrules

the claim of optimality. This, in addition to approximations (8.8) and (8.9),

better characterizes this Kalman filter as a sub-optimal estimation solution.

Using the output of the Kalman filter (8.13), it is possible to reconstruct an

estimate of both the gravitational field and the Earth’s total angular velocity as


ĝ(t) = â(t)− b̂a

ω̂E(t) = ω̂E,N (t) +αĝ(t).

8.2.3 Observability Analysis

In order to guarantee that the output y(t), as given by (8.12), is enough to

uniquely determine the initial state x(t0) of the LTV system (8.11), the latter

must be observable. This notwithstanding, observability of (8.11) is also a nec-

essary condition for the Kalman filter (8.13) to work correctly.

The following proposition [BSO11a, Proposition 4.2] is useful in the sequel.

Proposition 8.1. Let f(t) : [t0, tf ] ⊂ R→ Rn be a continuous and i-times con-

175



tinuously differentiable function on T := [t0, tf ], T := tf − t0 > 0, and such that

f(t0) = ḟ(t0) = ...= f i−1(t0) = 0.

Further assume that there exists a nonnegative constant C such that ‖f (i+1)(t)‖ ≤

C for all t ∈ T. If there exist α > 0 and t1 ∈ T such that ‖f (i)(t1)‖ ≥ α, then

there exist 0< δ ≤ T and β > 0 such that ‖f(t0 + δ‖ ≥ β.

The following theorem encloses the main result of the observability analysis.

The LTV system (8.11) is observable on T if and only if

∫ t0+δ

t0
‖am(σ)‖2dσ > 0. (8.14)

Theorem 8.1

Proof. A sketch of the proof is presented, with observability condition (8.14)

shown to be simultaneously necessary and sufficient.

The transition matrix associated with matrix A(t) is given by

φ(t,t0) =



RT
ωm

(t) φ12(t,t0) I−RT
ωm

(t) φ14(t,t0)

0 RT
ψ(t) 0 0

0 0 I 0

0 0 0 I


∈ R12×12, (8.15)

where
φ12(t,t0) =−RT

ωm
(t)
∫ t

t0
Rωm(σ)S [am(σ)]RT

ψ(σ)dσ,

φ14(t,t0) =−RT
ωm

(t)
∫ t

t0
Rωm(σ)S [am(σ)]dσ,

and where Rωm(t) ∈ SO(3) is such that

Ṙωm(t) = Rωm(t)S [ωm(t)] ,
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with Rωm(t0) = I. Likewise, Rψ(t) ∈ SO(3) is such that

Ṙψ(t) = Rψ(t)S [ωm(t)−αam(t)] ,

with Rψ(t0) = I. Since, by construction, φ(t0,t0) = I, verifying (8.15) is a straight-

forward process if one recalls the following transition matrix property:

∂φ(t,t0)
∂t

= A(t)φ(t,t0).

The observability of the LTV system (8.11) is characterized by the Observ-

ability Gramian associated with the pair (A(t),C(t)), which can be expressed

as

W(t0, t) =
∫ t

t0
φT (τ,t0)CT (τ)C(τ)φ(τ,t0)dτ ∈ R12×12.

Consider now a unit vector d =
[
dT1 dT2 dT3 dT4

]T
∈ R12, with d1,d2,d3,d4 ∈ R3,

and further notice that

dTW(t0, t)d =
∫ t

t0
‖f(τ,t0)‖2 dτ ∈ R,

where

f(τ,t0) =

f1(τ,t0)

f2(τ,t0)

 ∈ R4×1, (8.16)

with
f1(τ,t0) = d1−

∫ τ

t0
Rωm(σ)S [am(σ)]RT

ψ(σ)dσd2+

+ (Rωm(τ)− I)d3−
∫ τ

t0
Rωm(σ)S [am(σ)]dσd4 ∈ R3,

(8.17)

and

f2(τ,t0) = aTm(τ)RT
ψ(τ)d2 ∈ R. (8.18)

177



The derivative of (8.17) in order to τ is given by

d

dτ
f1(τ,t0) =−Rωm(τ)

{
S [am(τ)]

(
RT
ψ(τ)d2 +d4

)
−S [ωm(τ)]d3

}
∈ R3.

For demonstration purposes, compute, according to (8.17) and (8.18), the first

and second derivatives, also with respect to τ , of (8.16). In turn, take their norms,

which, after a few algebraic manipulations, result in

∥∥∥∥∥ ddτ f(τ,t0)
∥∥∥∥∥=

∥∥∥∥∥∥∥∥
 S [am(τ)]

(
RT
ψ(τ)d2 +d4

)
−S [ωm(τ)]d3

ȧTm(τ)RT
ψ(τ)d2−aTm(τ)S [ωm(τ)]RT

ψ(τ)d2


∥∥∥∥∥∥∥∥ , (8.19)

and

∥∥∥∥∥ d2

d2τ
f(τ,t0)

∥∥∥∥∥=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



S [ωm(τ)]S [am(τ)]
(
RT
ψ(τ)d2 +d4

)
+ . . .

. . .−S [ωm(τ)]2 d3 +S [ȧm(τ)]
(
RT
ψ(τ)d2 +d4

)
+ . . .

. . .−S [am(τ)]S [ωm(τ)−αam(τ)]RT
ψ(τ)d2−S [ω̇m(τ)]d3

äTm(τ)RT
ψ(τ)d2− ȧTm(τ)S [2ωm(τ)−αam(τ)]RT

ψ(τ)d2 + . . .

. . .−aTm(τ)S [ω̇m(τ)]RT
ψ(τ)d2 + . . .

. . .+aTm(τ)S [ωm(τ)]S [ωm(τ)−αam(τ)]RT
ψ(τ)d2



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

(8.20)

To show that (8.14) is a necessary condition, suppose first that it does not

hold, which is equivalent to say that am(t) is constant. From (8.1) and (8.6), it

follows then that, in general, the body’s axis of rotation must be aligned with the

constant direction of gravity, i.e., ω(t) ‖ g. This includes the case when ω(t) = 0,

which means that the rotation is exclusively due to the Earth’s spin. In this

scenario, for d2 = 0, d1 = (I−Rωm(τ))d3 and d4 ‖ am, such that ‖d‖ = 1, it

follows that dTW(t0, t)d = 0, therefore the system is not observable.

Now, in order to demonstrate sufficiency of condition (8.14), suppose, by

contraposition, that the system is not observable, i.e., the Observability Gramian

is not invertible, which means f(τ,t0) must be identically zero. Start by evaluating
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‖f(τ,t0)‖ and (8.19) at τ = t0, which allows to obtain

‖f(t0,t0)‖=

∥∥∥∥∥∥∥∥
 d1

aTm(t0)d2


∥∥∥∥∥∥∥∥ ,

and ∥∥∥∥∥ ddτ f(t0,t0)
∥∥∥∥∥=

∥∥∥∥∥∥∥∥
S [am(t0)] (d2 +d4)−S [ωm(t0)]d3

ȧTm(t0)d2−aTm(t0)S [ωm(t0)]d2


∥∥∥∥∥∥∥∥ . (8.21)

Notice that, if d1 6= 0, then ‖f(t0,t0)‖2 ≥ ‖d1‖2 = c1 > 0. However, if d1 = 0, then

it must be d2 = 0 or d2 ⊥ am(t0) for ‖f(t0,t0)‖ to be zero. Consider the first case,

d2 = 0, and substitute this in (8.21) to conclude that it must be S [am(t0)]d4−

S [ωm(t0)]d3 = 0 in order for
∥∥∥ ddτ f(t0,t0)

∥∥∥ to also be zero. Next, suppose that

am(t0) and ωm(t0) are collinear, which entails

S [am(t0)]
(

d4∓
‖ωm(t0)‖
‖am(t0)‖d3

)
= 0. (8.22)

With d3 = 0, it must be d4 collinear to am(t0), therefore d4 =±am(t0)/‖am(t0)‖.

Then, from (8.20), it follows that

∥∥∥∥∥ d2

d2τ
f(τ,t0)

∥∥∥∥∥=
∥∥∥∥∥(S [ωm(τ)]S [am(τ)] +S [ȧm(τ)]) am(t0)

‖am(t0)‖

∥∥∥∥∥ .
As result, under the hypothesis of the theorem, it is possible to choose a t∗ ∈ T

such that
∥∥∥∥ d2

d2τ f(t∗,t0)
∥∥∥∥ ≥ c1 > 0. But that means, using Proposition 8.1, that if

d =
[
0 0 0 ±aTm(t0)/‖am(t0)‖

]T
, there exists a t2 ∈T such that ‖f(t2,t0)‖≥ c2 >

0. For the case when d4 = 0 and d3 =±am(t0)/‖am(t0)‖, it follows from (8.20)

that ∥∥∥∥∥ d2

d2τ
f(τ,t0)

∥∥∥∥∥=
∥∥∥∥∥(S2 [ωm(τ)] +S [ω̇m(τ)]

) am(t0)
‖am(t0)‖

∥∥∥∥∥ .
Once again, under the hypothesis of the theorem, it is possible to choose a t∗ ∈T

such that
∥∥∥∥ d2

d2τ f(t∗,t0)
∥∥∥∥≥ c1 > 0. Using Proposition 8.1, if

d =
[
0 0 ±aTm(t0)/‖am(t0) 0‖

]T
,
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then there exists a t2 ∈ T such that ‖f(t2,t0)‖ ≥ c2 > 0. When neither d3 or d4

are identically zero, then, according to (8.22), it must be d4 = ±‖ωm(t0)‖
‖am(t0)‖d3±

k am(t0)
‖am(t0)‖ , such that ‖d‖= 1. Then, from (8.20), it follows that

∥∥∥∥∥ d2

d2τ
f(τ,t0)

∥∥∥∥∥=
∥∥∥∥∥
{
± ‖ωm(t0)‖
‖am(t0)‖

(
S [ωm(τ)]S [am(τ)]+

+S [ȧm(τ)]
)
−S2 [ωm(τ)]−S [ω̇m(τ)]

}
d3

∥∥∥∥∥.
Under the hypothesis of the theorem, it is possible to choose a t∗ ∈T such that∥∥∥∥ d2

d2τ f(t∗,t0)
∥∥∥∥ ≥ c1 > 0. Therefore, using Proposition 8.1 allows to conclude that

there exists a t2 ∈T such that ‖f(t2,t0)‖ ≥ c2 > 0.

The remainder of this proof follows similarly by exhaustively testing the

cases associated with all combinations of d that were not dealt with yet, conclud-

ing, finally, that if the system is not observable, then condition (8.14) cannot be

verified, therefore closing the proof. �

8.3 Rotation Matrix Estimation

Consider the following observer for the rotation matrix:

˙̂R(t) = R̂(t)S
[
ωm(t)− b̂ω− R̂T (t)IωE+

+kωES [ω̂E(t)]R̂T (t)IωE +kgS [ĝ(t)]R̂T (t)Ig
]
,

(8.23)

where kωE and kg are positive tuning constants, and where R̂(t)∈ SO(3) denotes

the estimates of R(t). Define the error variables

R̃(t) := R(t)R̂T (t) ∈ SO(3), (8.24)
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b̃ω := bω − b̂ω, ω̃E(t) := ωE(t)− ω̂E(t) and, finally, g̃(t) := g(t)− ĝ(t). The

derivative of (8.24) follows as

˙̃R(t) = Ṙ(t)R̂T (t) +R(t) ˙̂RT (t),

which, after taking into account equations (4.1) and (8.1), as well as the non-

linear observer (8.23), and the established error variables, results, after a few

straightforward computations, in

˙̃R(t,u) =u
(
t, b̃ω, ω̃E , g̃

)
−S

[(
I− R̃(t)

)
IωE

]
R̃(t)+

−kωES
[
S
[
IωE

]
R̃(t)IωE

]
R̃(t)−kgS

[
S
[
Ig
]
R̃(t)Ig

]
R̃(t).

(8.25)

with the perturbation function u given by

u
(
t, b̃ω, ω̃E , g̃

)
=−S

[
R(t)b̃ω(t)

]
R̃(t) +kωES

[
S [R(t)ω̃E(t)]R̃(t)IωE

]
R̃(t)+

+kgS
[
S [R(t)g̃(t)]R̃(t)Ig

]
R̃(t).

(8.26)

8.3.1 Local stability analysis

Similar to what was done at the beginning of Section 5.3, define the domain

D := [0, π], and consider the Euler angle-axis representation of the error associated

with R̃, as given in (5.5), as well as equation (5.6).

Next, recall the derivative of R̃(t), as expressed by (8.25), and write it as
˙̃R(t) = R̃(t)S[ω̃(t)], with

ω̃(t) :=
(
I− R̃T (t)

)
IωE + ω̃u(t)−kωES

[
R̃T (t)IωE

]
IωE−kgS

[
R̃T (t)Ig

]
Ig,

where

ω̃u(t) =−R̂(t)b̃ω(t) +kωES
[
R̂(t)ω̃E(t)

]
IωE +kgS

[
R̂(t)g̃(t)

]
Ig.
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Following in the steps presented in B.1, repeating said steps for Ig, and,

finally, substituting in (B.2), the vector part of the quaternion dynamics becomes

˙̃r(t) =
(
−S

[
IωE

]
+kωES2

[
IωE

]
+kgS2

[
Ig
])

r̃(t)+

+γ(r̃)r̃(t) + 1
2 (s̃(t)I+S [r̃(t)]) ω̃u(t).

(8.27)

where γ(r̃) = kωE

∥∥∥IωE× r̃(t)
∥∥∥2

+ kg
∥∥∥Ig× r̃(t)

∥∥∥2
. In turn, the dynamics associ-

ated with s̃(t) follow as

˙̃s(t) = γ(r̃)s̃(t)− 1
2 r̃T (t)ω̃u(t). (8.28)

Lemma 8.1. Consider ω̃u(t) ≡ 0. Consequently, the 1st-order approximation

of the nonlinear differential equation (8.27) yields an LTI system that can be

expressed as

ż(t) = Λz(t), (8.29)

with

Λ =
(
−S

[
IωE

]
+kωES2

[
IωE

]
+kgS2

[
Ig
])
.

Given Assumption 4.1, and kωE > 0 and kg > 0, then, for any c ∈ R3, c 6= 0,

it follows that

cTΛc = cT
(
kωES2

[
IωE

]
+kgS2

[
Ig
])

c

=−kωE

∥∥∥IωE×c
∥∥∥2
−kg

∥∥∥Ig×c
∥∥∥2
< 0.

This means Λ is Hurwitz, which suffices to say that the LTI differential equation

(8.29) is exponentially stable, i.e., z(t)→ 0 as t→∞. Therefore, the system

(8.25), considering unperturbed dynamics, is locally exponentially stable to I.

8.3.2 Main result

The following theorem is the main result of this chapter.
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Consider the attitude observer (8.23), the error definition (8.24), the FOG

measurements (8.1), and the estimates of the Kalman filter (8.13). Sup-

pose that Assumption 4.1 is verified and define the set Ω⊂ SO(3) as

Ω =
{
R̃(t), u

(
t, b̃ω, ω̃E , g̃

)
= 0 | tr

(
R̃(t)

)
=−1

}
.

In view of R̃(t) expressed in terms of the unit quaternion, see (B.1) in

Appendix, define as well the parameterized set

Θ(ζ) :=
{
R̃(s̃, r̃) ∈ SO(3) : s̃≥ ζ

}
.

Then: i) the set Ω is forward invariant and unstable with respect to the

observer dynamics (8.23); ii) when considering u
(
t, b̃ω, ω̃E , g̃

)
= 0, the

rotation matrix error R̃(t) converges locally exponentially fast to I, and

is AGAS to I; and, iii) fixing 0 < ζ < 1, the nonlinear error dynamics

(8.25) are LISS with (8.26) as input, and, for all initial conditions such

that R̃(t0) ∈Θ(ζ), R̃(t)→ I, i.e., R̂(t)→R(t).

Theorem 8.2

Proof. Let V : D→ R be a positive bounded Lyapunov-like candidate function

given by

V
(
θ̃(t)

)
= 1− cos

(
θ̃(t)

)
= 1

2tr
(
I− R̃(t)

)
.

The derivative of V
(
θ̃(t)

)
satisfies

V̇ =−1
2tr

( ˙̃R(t)
)
. (8.30)

Start by considering the unforced dynamics ˙̃R(t,u = 0). Then, noticing that

tr
(
S
[(

I−R̃(t)
)
IωE

]
R̃(t)

)
=0, equation (8.30) can be rewritten as

V̇ = kωE

2 tr
(
S
[
S
[
IωE

]
R̃(t)IωE

]
R̃(t)

)
+ kg

2 tr
(
S
[
S
[
Ig
]
R̃(t)Ig

]
R̃(t)

)
. (8.31)
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The cross-product property S [S [a]b] = baT −abT helps to reduce (8.31) to

V̇ =−kωE

2 ‖
IωE‖2 + kωE

2 tr
(
R̃2(t)IωEIωTE

)
− kg

2 ‖
Ig‖2 + kg

2 tr
(
R̃2(t)IgIgT

)
.

Replacing (5.6) in the previous expression yields

V̇ =−sin2
(
θ̃(t)

)(
kωE

∥∥∥IωE×ṽ(t)
∥∥∥2

+kg
∥∥∥Ig×ṽ(t)

∥∥∥2)
≤0.

Under Assumption 4.1, ṽ(t) cannot be simultaneously collinear with both IωE

and Ig, which means V̇ = 0 is satisfied only on two occasions, when: 1) θ̃(t) = π,

which, according to (5.5), corresponds to the condition tr
(
R̃(t)

)
= −1, with

R̃(t) = R̃T (t); and, 2) θ̃(t) = 0, which means R̃(t) = I. With θ̃(t) = π, the deriva-

tive of tr
(
R̃(t)

)
is zero, which asserts forward invariance of Ω. Accordingly, by

applying LaSalle’s principle to the solutions of (8.23), one concludes that R̃(t)

converges asymptotically to either I or some rotation matrix belonging to Ω. In

Lemma 8.1, in Appendix, local exponential stability of the isolated equilibrium

point I is shown through the linearization of the quaternion dynamics associ-

ated with the unforced error dynamics ˙̃R(t,u = 0), thus proving the theorem’s

statement ii).

Resorting again to the quaternion formulation, the forward invariant set Ω

associated with the unforced dynamics ˙̃R(t,u=0) is described by

Ω =
{

(s̃, r̃) | s̃= 0, r̃T r̃ = 1
}
.

Then, from (8.28), and in view of Assumption 4.1, it follows that the dynam-

ics of s̃(t) are unstable for any point s̃ 6= 0. Therefore, s̃(t) is a strictly increasing

function for all t≥ 0, which means the set Ω corresponds to an unstable equilib-

rium point. This proves the theorem’s statement i).

The third and last statement of the theorem is proved considering the

Lyapunov-like function V (r̃) := 1/2‖r̃(t)‖2. From (8.27), the derivative of this
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function is given by

V̇ (r̃,t) =−γ(r̃)
(
1−‖r̃(t)‖2

)
+ s̃(t)

2 r̃T (t)ω̃u(t).

Since γ(r̃)≥ ε‖r̃(t)‖2 (vide [Hua09, Lemma 11]), where

ε= kωEkg
kωE‖IωE‖2 +kg‖Ig‖2

∥∥∥IωE× Ig
∥∥∥2
> 0,

and since, by definition, s̃2(t) = 1−‖r̃(t)‖2 and s̃(t)≤ 1, it follows that

V̇ (r̃,t)≤−ε‖r̃(t)‖2
(
1−‖r̃(t)‖2

)
+ 1

2‖r̃(t)‖‖ω̃u(t)‖

=−ε‖r̃(t)‖
(
‖r̃(t)‖s̃2(t)− 1

2ε‖ω̃u(t)‖
)
.

(8.32)

Now, fix 0< θ < 1, and rewrite (8.32) as

V̇ (r̃,t)≤−ε(1− θ)‖r̃(t)‖2s̃2(t)−‖r̃(t)‖
(
θε‖r̃(t)‖s̃2(t)− 1

2‖ω̃u(t)‖
)
.

This allows to conclude that

V̇ (r̃,t)≤−ε(1− θ)‖r̃(t)‖2s̃2(t) ∀ ‖r̃(t)‖ ≥ β‖ω̃u(t)‖,

with constant β fixed as β := 1/(2εθζ2). As result of V̇ (r̃,t) ≤ 0 for all ‖r̃(t)‖ ≥

β‖ω̃u(t)‖, V (t) is non-increasing for all ‖r̃(t)‖ ≥ β‖ω̃u(t)‖, which means s̃(t)

is non-decreasing for all ‖r̃(t)‖ ≥ β‖ω̃u(t)‖. Therefore, for all initial conditions

R̃(t0) ∈Θ(ζ) and ‖r̃(t)‖ ≥ β‖ω̃u(t)‖, it follows that s̃(t)≥ ζ for all t≥ t0, which

implies V̇ (r̃,t) ≤ −ε(1− θ)‖r̃(t)‖2ζ2 for all ‖r̃(t)‖ ≥ β‖ω̃u(t)‖ and R̃(t0) ∈ Θ(ζ).

Then, invoking [Kha00, Theorem 5.2] proves, finally, that the dynamics ˙̃r(t) are

LISS with (8.26) as input. It follows that r̃(t)→ 0, or, equivalently, R̃(t)→ I,

thus concluding the proof. �
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8.4 Simulation Results

In this section, a realistic scenario is simulated within the scope of attitude estima-

tion of robotic platforms when high accuracy is a crucial demand. This typically

concerns smooth vehicle trajectories, where accelerations are dominated by the

gravitational field and where magnetometer readings can be heavily corrupted by

hard- and soft-iron effects, therefore not being dependable.

8.4.1 Setup

The simulations implemented in this section follow the generic setup reported in

Section 4.4, taking into account a reference vector associated with the Gravita-

tional Field. Furthermore, two bias offsets were considered as well, one arising

from the FOG measurements and another from accelerometer data. These two

offsets were set in accordance with the KVH 1775’s manufacturer’s worst speci-

fications, more specifically


ba = 0.5[−1 1 1]T mg

bω = [1 −1 −1]T deg/h.

In regard to the Kalman filter (8.13), the initial state estimate was set to

x̂(t0) = 0; the initial state error covariance matrix set to P(t0) = diag(I, 10I, I, I);

and, finally, the covariance matrices of the process and observation noises were set

to Q = diag(10−8I, 10−8I, 10−12I, 10−12I) and R = diag(10−2I, 1), respectively.

These values were adjusted empirically for the best performance.

8.4.2 Performance Analysis

The four plots in Figure 8.1 through Figure 8.4 display the 15-min evolution of the

errors that stem from the estimation of system state (8.10). Overall, convergence

times are quite fast, with all error sequences reaching steady-state behavior below
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the 4 minute mark. This duration is of utmost importance since the rotation

matrix observer is driven by the Kalman filter estimates. Table 8.5 provides

further statistical insight into the performance of the Kalman filter (8.13). For

30 min ≤ t≤ 60 min, the mean and standard deviation were computed for all four

error variables spanning the thee-dimensional Euclidean space and then averaged

over the coordinates x, y and z.
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Figure 8.1: Estimation error of a(t).
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Figure 8.2: Estimation error of ωE,N (t).

Next, recall the Euler angle-axis representation of R̃(t), given by (5.5). To

properly validate the robustness of the proposed attitude estimation solution, a

simulation routine where θ̃(t0) is very large was carried out. Assuming randomly

generated unit vectors ṽ(t), the initial angle deviation was set to θ̃(t0) = 175◦,

with the corresponding initial rotation matrix estimate computed accordingly.

The observer gains were set to kωE = 0.01/‖IωE‖2 and kg = 10/‖Ig‖2. The plots
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Figure 8.3: Estimation error of ba.
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Figure 8.4: Estimation error of bω.

Table 8.5: Steady-state statistics for 30 min ≤ t≤ 60 min

error mean sd. units
a− â 0.0022674 0.035822 mg

ωE,N − ω̂E,N -0.052528 0.44303 deg/h
ba− b̂a -0.019402 0.012592 mg
bω− b̂ω -0.026 0.055522 deg/h

in Figures 8.6 and 8.7 display the detailed evolution of R̃(t) and θ̃(t), respectively.

The observer converges rapidly, in line with the performance of the Kalman filter.

The rotation matrix error R̃(t) clearly converges to an identity matrix, while

the angle error θ̃(t) stays close to zero. However, it is evident that the initial

transient of this observer exhibits a somewhat erratic unfolding, which may be a

consequence of (8.26).
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Figure 8.6: Evolution of R̃(t) entries for θ̃(0) = 175◦.
Upper right corner: diagonal entries of R̃(t).
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Figure 8.7: Time evolution of θ̃(t) for θ̃(0) = 175◦.

8.5 Concluding remarks

This chapter presented a cascade solution for the problem of attitude and bias

estimation. The first part of the cascade consists in a Kalman filter applied

to an LTV system whose state includes acceleration data, two constant sensor

bias offsets and a component of the Earth’s angular velocity. The second part

of the cascade features a nonlinear attitude observer, built on SO(3), that is

driven by measurements of biased angular velocity provided by a set of high-

grade FOGs, and by the estimates of the Kalman filter. By regarding the rotation

error dynamics as a perturbed system with vanishing perturbation, the attitude

observer was shown to be LISS with respect to the errors of the Kalman filter.
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Simulation results were presented that illustrate the goodness of the proposed

solution.
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Chapter No. 9

Conclusions and future work

This thesis started by addressing the problem of source localization applied

to underwater targets. In a second part, four estimators were reported to solve

the problem of attitude estimation within the scope of robotic applications where

the rotation of the planet is taken into account. The principal contribution of

the work firstly described is the construction, in an open-source manner, of a

portable navigation tool for underwater scenarios, along with the theoretical de-

velopment, and practical validation of a novel filtering technique for estimating

the position of an underwater target based on discrete-time direction and biased

velocity measurements. In regard to the second part of this work, four different

attitude observers, in both discrete- and continuous-time frameworks, are pro-

posed that resort to measurements of only one reference vector, in contrast with

the existing solutions in the literature that require two or more reference vectors.

In practical terms, each observer can be considered as a cost effective replace-

ment for traditional gyrocompass based solutions, which are complex mechanical

systems requiring periodic maintenance.

Commercially available solutions for underwater applications do not often

grant access to the physical variables of the system, as opposed to the tool pre-

sented in Chapter 2, which poses as a versatile and highly-configurable alternative

that can be either used by scuba divers or mounted on a vehicle. This prototype

tool was then used to successfully validate the novel linear position and velocity

estimator with GES error dynamics presented in Chapter 3. An observability

analysis of the theoretical problem at hands was further conducted, allowing

to conclude that observability requirements can be relaxed when accounting for

larger sampling windows.
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All four attitude observers developed in the second part of this thesis have

one key aspect in common: they resort to measurements of only one reference

vector, in addition to being aided by readings from a set of triaxial high-grade

gyroscopes sensitive to the Earth’s rotation. In view of this setting, the first

attempt at solving the problem of attitude estimation is to construct a simple

nonlinear observer with a fixed gain. This was shown, in Chapter 5, to yield ex-

tremely slow convergence rates, although still compatible with some applications.

However, if one changes the observer design, either by considering time-varying

directional gains, as seen in Chapter 6, or by including an explicit estimate of the

Earth’s angular velocity, as seen in Chapter 7, convergence rates can be greatly

improved while still maintaining the same levels of high accuracy. Nevertheless,

by sharing the exact same setup requisites, each proposed observer offers a great

lead in terms of simplified mission design and reduced costs.

Finally, in this thesis’ penultimate chapter, the problem of attitude estima-

tion with biased measurements is briefly analyzed, with the details of a successful

simulated validation also presented herein. Exploring the collinearity between the

acceleration vector due to gravity and the vertical component of the Earth’s an-

gular velocity helps to devise a set of approximations which, in turn, allow for the

design of an LTV system comprising two constant bias vectors, one associated to

the high-grade gyroscopes and another to the accelerometer. Experimental tests

to assess the correct operation of the attitude and bias estimator will be con-

ducted in the future, in addition to an extended observability analysis in order

to comprehend whether there may exist trajectories deemed more helpful for an

enhanced observer performance.

The inertial reference vectors considered in this thesis are assumed constant,

which can restrict their range of applicability depending on the available sensors.

For instance, satellites often rely on measurements of the Earth’s magnetic field,

which changes in function of the satellites’ orbital position. However, from a

purely theoretical stance, constant reference vectors provide, over time, less spa-
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tial information than time-varying reference vectors, therefore exacerbating the

difficulty of the problem. Nonetheless, a possible direction for future work can

consist in adapting the techniques proposed in Chapter 5 through 8 to scenarios

where reference vectors are time-varying. This could potentially lead to more ad-

vanced attitude estimators, where the sensor attributes, in particular offsets and

misalignments, are better identified and handled without the need for rigorous a

priori calibration routines.
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Appendix A

Supplementary Material for Chapter 3

Contents

A.1 Derivation of O3 . . . . . . . . . . . . . . . . . . . . . . 195

A.2 Derivation of O4 . . . . . . . . . . . . . . . . . . . . . . 199

A.1 Derivation of O3

The derivation of O3 presented in this appendix concerns Theorem 3.1, in

particular the case when the auxiliary unit vector c is given by

c =
[
cT1 cT2 c3

]T
=
[
dTk

α
Tk+Tk+1

dTk+1 + 1
Tk

S2(dk+1)dTk 1
]T
c3. (A.1)

First, recall the dynamics (3.11) and observations (3.12) matrices associated with

the proposed DT-LTV system (3.10), and write O3 = Ck+2Ak+1Akc as

O3 =


I

(Tk +Tk+1)I−Tk+1dk+2dTk+2−Tkdk+1
(
dTk+2dk+1

)
dTk+2

−dTk+2
(
dTk+2dk+1

)(
dTk+1dk

)



T 
c1

c2

c3

 ,

which yields

O3 = c1+
[
TkI−Tk+1S(dk+2)2

]
c2

−
(
dTk+2dk+1

)[
Tkdk+2

(
dTk+1c2

)
+dk+2

(
dTk+1dk

)
c3
]
.

(A.2)
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Now, substitute (A.1) in (A.2) to obtain

O3 = dkc3 +
[
TkI−Tk+1S(dk+2)2

][
α

c3
Tk +Tk+1

dk+1 + c3
Tk

S2(dk+1)dk
]

−dTk+2dk+1

[
Tkdk+2dTk+1

(
αc3

Tk+Tk+1
dk+1+ c3

Tk
S2(dk+1)dk︸ ︷︷ ︸
⊥dk+1

)
+dk+2dTk+1dkc3

]
,

which is equivalent to

O3 =dkc3 +
[
TkI−Tk+1S(dk+2)2

][
α

c3
Tk +Tk+1

dk+1 + c3
Tk

S2(dk+1)dk
]

−dTk+2dk+1

[
Tkdk+2dTk+1

(
α

c3
Tk +Tk+1

dk+1

)
+dk+2

(
dTk+1dk

)
c3

]
.

In turn, the last result can be rewritten as

O3 =dkc3 + Tk
Tk +Tk+1

αc3dk+1 + c3S2(dk+1)dk−
Tk+1

Tk +Tk+1
αc3S2(dk+2)dk+1

− Tk+1
Tk

c3S2(dk+2)S2(dk+1)dk−
Tk

Tk +Tk+1
αc3(dTk+2dk+1)dk+2

− (dTk+2dk+1)(dTk+1dk)dk+2c3.

(A.3)

Next, recall α, which, according to definition (3.20), is given by

α :=
(

1+Tk+1
Tk

) dTk dk+1
(
dTk+1dk+2

)2

1−
(
dTk+1dk+2

)2 − dTk dk+1

1−
(
dTk+1dk+2

)2−
Tk+1
Tk

dTk dk+2dTk+1dk+2

1−
(
dTk+1dk+2

)2 .

(A.4)

Substitute (A.4) in (A.3), and, for the sake of readability, solve the resulting

196



equation in order to O3

(
1−

(
dTk+1dk+2

)2)
/c3, thus obtaining

O3
1−

(
dTk+1dk+2

)2

c3
= Tk
Tk+Tk+1

dk+1

−dTk dk+1−
Tk+1
Tk

(
dTk dk+2

)(
dTk+1dk+2

)

+Tk+Tk+1
Tk

(
dTk dk+1

)(
dTk+1dk+2

)2
− Tk+1

Tk +Tk+1
S2(dk+2)dk+1

−(dTk dk+1
)

− Tk+1
Tk

(
dTk dk+2

)(
dTk+1dk+2

)
+ Tk +Tk+1

Tk

(
dTk dk+1

)(
dTk+1dk+2

)2


− Tk
Tk +Tk+1

(dTk+2dk+1)dk+1

−(dTk dk+1
)
− Tk+1

Tk

(
dTk dk+2

)(
dTk+1dk+2

)

+ Tk +Tk+1
Tk

(
dTk dk+1

)(
dTk+1dk+2

)2
+

(
1−

(
dTk+1dk+2

)2)dk +S2(dk+1)dk

− Tk+1
Tk

S2(dk+2)S2(dk+1)dk−
(
dTk+2dk+1

)(
dTk+1dk

)
dk+2

,
which can be rewritten in a more extensive (though advantageous) way as

O3
1−

(
dTk+1dk+2

)2

c3
=dk+1

(
dTk+1dk

)
−Tk+1

Tk
dk+2

(
dTk+2dk+1

)(
dTk+1dk

)
+Tk+1

Tk
dk+2

(
dTk+2dk

)
+Tk+1

Tk
dk+1

(
dTk+1dk

)
−
(
dTk+1dk

)(
dTk+1dk+2

)2
dk+1︸ ︷︷ ︸

cancelled by T1

− Tk+1
Tk

dk−
(
dTk+2dk+1

)(
dTk+1dk

)
dk+2 +

(
dTk+1dk

)(
dTk+1dk+2

)2
dk+1︸ ︷︷ ︸

T1

+ Tk+1
Tk

(
dTk+2dk+1

)3 (
dTk+1dk

)
dk+2−

Tk+1
Tk

(
dTk+2dk

)(
dTk+1dk+2

)2
dk+2

− Tk+1
Tk

dTk+1dk
(
dTk+1dk+2

)2
dk+1−

(
dTk+2dk+1

)2
dk

+
(
dTk+2dk+1

)3
dTk+1dkdk+2︸ ︷︷ ︸

cancelled by T2

− Tk
Tk +Tk+1

(
dTk dk+1

)
dk+1−

Tk+1
Tk +Tk+1

(
dTk dk+2

)(
dTk+1dk+2

)
dk+1

+ Tk+1
Tk +Tk+1

S2(dk+2)
(
dTk dk+1

)
dk+1 + Tk+1

Tk
S2(dk+2)

(
dTk+2dk

)
dTk+1dk+2dk+1


− Tk+1

Tk
S2(dk+2)dTk dk+1

(
dTk+1dk+2

)2
dk+1 + Tk

Tk +Tk+1
dTk+2dk+1dTk dk+1dk+2

+ Tk+1
Tk +Tk+1

(
dTk+2dk+1

)2 (
dTk+2dk

)
dk+2−

(
dTk+1dk+2

)3 (
dTk+1dk

)
dk+2︸ ︷︷ ︸

T2

.
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Applying further simplifications allows to write this last equation as

O3
1−

(
dTk+1dk+2

)2

c3
=−Tk+1

Tk

[
dk+2dTk+2dk+1dTk+1dk−dTk+2dkdk+2−dTk+1dkdk+1

]
− Tk+1

Tk
dk−

(
dTk+2dk+1

)(
dTk+1dk

)
dk+2︸ ︷︷ ︸

cancelled by T2a + T2b

+ Tk+1
Tk

(
dTk+2dk+1

)3 (
dTk+1dk

)
dk+2︸ ︷︷ ︸

cancelled by T3

−Tk+1
Tk

dTk+2dk
(
dTk+1dk+2

)2
dk+2︸ ︷︷ ︸

cancelled by T4a + T4b

−Tk+1
Tk

dTk+1dk
(
dTk+1dk+2

)2
dk+1︸ ︷︷ ︸

cancelled by T5

− Tk
Tk +Tk+1

(
dTk dk+1

)
dk+1︸ ︷︷ ︸

T1a

− Tk+1
Tk +Tk+1

(
dTk dk+2

)(
dTk+1dk+2

)
dk+1︸ ︷︷ ︸

cancelled by T6

− Tk+1
Tk +Tk+1

(
dTk dk+1

)
dk+1︸ ︷︷ ︸

T1b

+ Tk+1
Tk +Tk+1

(
dTk+2dk+1

)(
dTk dk+1

)
dk+2︸ ︷︷ ︸

T2a

− Tk+1
Tk +Tk+1︸ ︷︷ ︸

T6

Tk+1
Tk

(
dTk+2dk

)(
dTk+1dk+2

)
dk+1 + dk+1

(
dTk+1dk

)
︸ ︷︷ ︸

cancelled by T1a + T1b

+ Tk+1
Tk +Tk+1

Tk+1
Tk

(
dTk+2dk+1

)2 (
dTk+2dk

)
dk+2︸ ︷︷ ︸

T4a

+Tk+1
Tk

(
dTk+1dk+2

)2
dk

+ Tk+1
Tk

(
dTk dk+1

)(
dTk+1dk+2

)2
dk+1︸ ︷︷ ︸

T5

−Tk+1
Tk

(
dTk+2dk+1

)3 (
dTk+1dk

)2
dk+2︸ ︷︷ ︸

T3

+ Tk
Tk +Tk+1

(
dTk+2dk+1

)(
dTk dk+1

)
dk+2︸ ︷︷ ︸

T2b

+ Tk+1
Tk +Tk+1

(
dTk+2dk+1

)2 (
dTk+2dk

)
dk+2︸ ︷︷ ︸

T4b

,

which, after tedious but straightforward computations, results in

O3
1−

(
dTk+1dk+2

)2

c3
= Tk+1

Tk

−(dTk+2dk+1
)(

dTk+1dk
)
dk+2

+
(
dTk+2dk

)
dk+2 +

(
dTk+1dk

)
dk+1

−dk +
(
dTk+1dk+2

)2
dk−

(
dTk+2dk

)(
dTk+1dk+2

)
dk+1

.
Finally, by solving in order to O3, expression (3.21) is obtained.
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A.2 Derivation of O4

The derivation of O4 presented in this section concerns Theorem 3.3, in partic-

ular the case when the auxiliary unit vector c is again given by (A.1). As done

in the derivation of O3, start by writing

O4 = Ck+3Ak+2Ak+1Akc

=



IT−Tk+2dk+3dTk+3−Tk+1dk+2
(
dTk+3dk+2

)
dTk+3 . . .

. . .−Tkdk+1
(
dTk+3dk+2

)(
dTk+2dk+1

)
dTk+3


−dTk+3

(
dTk+3dk+2

)(
dTk+2dk+1

)(
dTk+1dk

)



T


c1

c2

c3



= c1−dk+3
(
dTk+3dk+2

)(
dTk+2dk+1

)(
dTk+1dk

)
c3+

+
T−Tkdk+3

(
dTk+3dk+2

)(
dTk+2dk+1

)
dTk+1+

−Tk+1dk+3
(
dTk+3dk+2

)
dTk+2−Tk+2dk+3dTk+3

c2,

(A.5)

where, for ease of representation, it has been defined T := (Tk+Tk+1+Tk+2)I.

Next, substitute c, as given by (A.1), in (A.5) and solve in order to O4/c3 as

follows:

O4
c3

=−dk+3
(
dTk+3dk+2

)(
dTk+2dk+1

)(
dTk+1dk

)
− Tk+1 +Tk+2

Tk
dk + Tk +Tk+1 +Tk+2

Tk
dk+1

(
dTk+1dk

)
− Tk+1

Tk
dk+3

(
dTk+3dk+2

)(
dTk+2dk+1

)(
dTk+1dk

)
+ Tk+2

Tk
dk+3

(
dTk+3dk

)
+ Tk+1

Tk
dk+3

(
dTk+3dk+2

)(
dTk+2dk

)
− Tk+2

Tk
dk+3

(
dTk+3dk+1

)(
dTk+1dk

)
− Tk+2
Tk +Tk+1

dk+3
(
dTk+3dk+1

)
α−dk+3

(
dTk+3dk+2

)(
dTk+2dk+1

)
α

+ Tk +Tk+1 +Tk+2
Tk +Tk+1

dk+1α.
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Substitute now α, as given by (A.4), to obtain

O4
c3

=−dk+3
(
dTk+3dk+2

)(
dTk+2dk+1

)(
dTk+1dk

)
− Tk+1 +Tk+2

Tk
dk + Tk +Tk+1 +Tk+2

Tk
dk+1

(
dTk+1dk

)
− Tk+1

Tk
dk+3

(
dTk+3dk+2

)(
dTk+2dk+1

)(
dTk+1dk

)
+ Tk+2

Tk
dk+3

(
dTk+3dk

)
+ Tk+1

Tk
dk+3

(
dTk+3dk+2

)(
dTk+2dk

)
− Tk+2

Tk
dk+3

(
dTk+3dk+1

)(
dTk+1dk

)
+ 1

1−
(
dTk+2dk+1

)2

[
Tk+2

Tk +Tk+1
dk+3

(
dTk+3dk+1

)(
dTk+1dk

)

+ Tk+2
Tk +Tk+1

Tk+1
Tk

dk+3
(
dTk+3dk+1

)(
dTk+2dk+1

)(
dTk+2dk

)
− Tk+2

Tk
dk+3

(
dTk+3dk+1

)(
dTk+2dk+1

)2 (
dTk+1dk

)
+dk+3

(
dTk+3dk+2

)(
dTk+2dk+1

)(
dTk+1dk

)
+ Tk+1

Tk
dk+3

(
dTk+3dk+2

)(
dTk+2dk+1

)2 (
dTk+2dk

)
− Tk +Tk+1

Tk
dk+3

(
dTk+3dk+2

)(
dTk+2dk+1

)3 (
dTk+1dk

)
− Tk +Tk+1 +Tk+2

Tk +Tk+1
dk+1

(
dTk+1dk

)
− Tk +Tk+1 +Tk+2

Tk +Tk+1

Tk+1
Tk

dk+1
(
dTk+2dk+1

)(
dTk+2dk

)
+Tk +Tk+1 +Tk+2

Tk
dk+1

(
dTk+2dk+1

)2 (
dTk+1dk

)]
,

which, when solved in order to O4

(
1−

(
dTk+2dk+1

)2)
/c3, can be rewritten as
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O4
1−

(
dTk+2dk+1

)2

c3
=−dk+3

(
dTk+3dk+2

)(
dTk+2dk+1

)(
dTk+1dk

)
︸ ︷︷ ︸

cancelled by T1

−Tk+1+Tk+2
Tk

dk

− Tk+1
Tk

dk+3
(
dTk+3dk+2

)(
dTk+2dk+1

)(
dTk+1dk

)
+ Tk+2

Tk
dk+3

(
dTk+3dk

)
+ Tk+1

Tk
dk+3

(
dTk+3dk+2

)(
dTk+2dk

)
− Tk+2

Tk
dk+3

(
dTk+3dk+1

)(
dTk+1dk

)
+dk+3

(
dTk+3dk+2

)(
dTk+2dk+1

)3 (
dTk+1dk

)
︸ ︷︷ ︸

cancelled by T4a + T4b

+Tk+1 +Tk+2
Tk

dk
(
dTk+2dk+1

)2

−Tk +Tk+1 +Tk+2
Tk

dk+1
(
dTk+2dk+1

)2 (
dTk+1dk

)
︸ ︷︷ ︸

cancelled by T3

+Tk+Tk+1 +Tk+2
Tk

dk+1
(
dTk+1dk

)

+ Tk+1
Tk

dk+3
(
dTk+3dk+2

)(
dTk+2dk+1

)3 (
dTk+1dk

)
︸ ︷︷ ︸

T4a

−Tk+2
Tk

dk+3dTk+3dk
(
dTk+2dk+1

)2

−Tk+1
Tk

dk+3
(
dTk+3dk+2

)(
dTk+2dk+1

)2 (
dTk+2dk

)
︸ ︷︷ ︸

cancelled by T5

+ Tk+2
Tk

dk+3
(
dTk+3dk+1

)(
dTk+2dk+1

)2 (
dTk+1dk

)
︸ ︷︷ ︸

cancelled by T2

+ Tk+2
Tk +Tk+1

dk+3
(
dTk+3dk+1

)(
dTk+1dk

)
− Tk +Tk+1 +Tk+2

Tk +Tk+1
dk+1

(
dTk+1dk

)
+ Tk+2
Tk +Tk+1

Tk+1
Tk

dk+3
(
dTk+3dk+1

)(
dTk+2dk+1

)(
dTk+2dk

)
−Tk+2

Tk
dk+3

(
dTk+3dk+1

)(
dTk+2dk+1

)2 (
dTk+1dk

)
︸ ︷︷ ︸

T2

+dk+3
(
dTk+3dk+2

)(
dTk+2dk+1

)(
dTk+1dk

)
︸ ︷︷ ︸

T1

+ Tk+1
Tk

dk+3
(
dTk+3dk+2

)(
dTk+2dk+1

)2 (
dTk+2dk

)
︸ ︷︷ ︸

T5

−Tk +Tk+1
Tk

dk+3
(
dTk+3dk+2

)(
dTk+2dk+1

)3 (
dTk+1dk

)
︸ ︷︷ ︸

T4b

− Tk +Tk+1 +Tk+2
Tk +Tk+1

Tk+1
Tk

dk+1
(
dTk+2dk+1

)(
dTk+2dk

)
+ Tk +Tk+1 +Tk+2

Tk
dk+1

(
dTk+2dk+1

)2 (
dTk+1dk

)
︸ ︷︷ ︸

T3

.
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Applying further straightforward simplifications to the previous result yields

O4
1−

(
dTk+2dk+1

)2

c3
=
([

Tk+2
Tk +Tk+1

− Tk+2
Tk

]
S2(dk+3) + Tk+1

Tk
I
)

dk+1
(
dTk+1dk

)
+
(

1−
(
dTk+2dk+1

)2)[Tk+2
Tk

S2(dk+3)− Tk+1
Tk

I
]
dk

− Tk+1
Tk

dk+3
(
dTk+3dk+2

)
dTk+2S2(dk+1)dk

−
(
dTk+2dk+1

)
(dk+2dk)

Tk+1
Tk

[
I− Tk+2

Tk +Tk+1
S2(dk+3)

]
dk+1.

Finally, it is possible to write

O4
1−

(
dTk+2dk+1

)2

c3

Tk
Tk+1

=−
(

I− Tk+2
Tk +Tk+1

S2(dk+3)
)

dk+1dTk+1S2(dk+2)dk

+
(

1−
(
dTk+2dk+1

)2)[Tk+2
Tk+1

S2(dk+3)− I
]
dk

−dk+3
(
dTk+3dk+2

)
dTk+2S2(dk+1)dk.

(A.6)

This notwithstanding, according to the statement of Theorem 3.3, dk = adk+1 +

bdk+2, which means that (A.6) is equivalent to

O4
1−

(
dTk+2dk+1

)2

c3

Tk
Tk+1

=−
(

I− Tk+2
Tk+Tk+1

S2(dk+3)
)

dk+1dTk+1S2(dk+2)(adk+1 + bdk+2)

+
(

1−
(
dTk+2dk+1

)2)[Tk+2
Tk+1

S2(dk+3)− I
]

(adk+1 + bdk+2)

−dk+3
(
dTk+3dk+2

)
dTk+2S2(dk+1)(adk+1 + bdk+2)

=−
(

I− Tk+2
Tk +Tk+1

S2(dk+3)
)

dk+1dTk+1S2(dk+2)adk+1

+
(

1−
(
dTk+2dk+1

)2)[Tk+2
Tk+1

S2(dk+3)− I
]

(adk+1 + bdk+2)

−dk+3
(
dTk+3dk+2

)
dTk+2S2(dk+1)bdk+2.

From the previous result, straightforward computations allow to obtain (3.39):

O4 = c3S2(dk+3)
[
adk+1

Tk+2
Tk+Tk+1

+bdk+2
Tk+1+Tk+2

Tk

]
.
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Appendix B

Supplementary Material for Chapters 5, 6 and 8

Contents

B.1 Unit Quaternion Representation . . . . . . . . . . . . 203

B.2 Local Stability Analysis . . . . . . . . . . . . . . . . . . 205

B.1 Unit Quaternion Representation

The quaternion representation, implemented as a way of expressing the attitude

of a rigid body, often proves very useful. Let q(t) ∈Q denote a unit quaternion

with real and imaginary parts expressed by s̃(t) ∈ R and r̃(t) ∈ R3, respectively,

with the group of unit quaternions defined as

Q :=
{
q =

[
s̃ r̃T

]T
| qTq = 1

}
.

Take now the representation of the rotation matrix error R̃(t) by means of the

unit quaternion, which, in view of the angle-axis representation in (5.5), is given

by

R̃(t) = I+ 2s̃(t)S [r̃(t)] + 2S2 [r̃(t)] , (B.1)

where s̃(t) = cos
(
θ̃(t)/2

)
and r̃(t) = ṽ(t)sin

(
θ̃(t)/2

)
. Next, recall the expression

for the derivative of R̃(t), as expressed by (5.4), and write it as

˙̃R(t) = R̃(t)S[ω̃(t)],
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with

ω̃(t) :=
(
I− R̃T (t)

)
IωE−α

(
R̃T (t)Im

)
× Im.

From this point forward, it is a simple matter of algebraic manipulations to show

that the dynamics of q(t) is given, in vector form, by


˙̃s(t) =−1

2 r̃T (t)ω̃(t)

˙̃r(t) = 1
2 (s̃(t)I+S [r̃(t)]) ω̃(t)

. (B.2)

Notice that, from (B.1), one can write

(
R̃T (t)Im

)
× Im = S

[
R̃T (t)Im

]
Im

=−2
(
ImT r̃(t)

)
(s̃(t)I−S[r̃(t)]) Im+ 2s̃(t)

∥∥∥Im∥∥∥2
r̃(t),

where a few properties related to the cross product were employed. Further notice

the equality R̃(t)r̃(t) = r̃(t). Moreover,

(
I− R̃T (t)

)
IωE = 2(s̃(t)I−S[r̃(t)])S[r̃(t)]IωE ,

which, finally, allows to write

ω̃(t) =2(s̃(t)I−S[r̃(t)])S[r̃(t)]IωE+

−α
[
−2

(
ImT r̃(t)

)
(s̃(t)I−S[r̃(t)]) Im+ 2s̃(t)

∥∥∥Im∥∥∥2
r̃(t)

]
.

Substituting this in (B.2), the vector part of the quaternion dynamics follows as

˙̃r(t) =
(
−S

[
IωE

]
+αS2

[
Im

])
r̃(t)+

−α‖r̃(t)‖2S2
[
Im

]
r̃(t)−α

(
ImT r̃(t)

)
S2 [r̃(t)] Im.

(B.3)

For completeness reasons, the dynamics associated with s̃(t) follows as
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˙̃s(t) = α
[∥∥∥Im∥∥∥2

‖r̃(t)‖2−
(
ImT r̃(t)

)2]
s̃(t). (B.4)

Remark B.1. The 1st-order approximation of the nonlinear differential equation

(B.3) yields an LTI system that can be expressed by

ż(t) =
(
−S

[
IωE

]
+αS2

[
Im

])
z(t).

Notably, as shown in the next section, the 1st-order approximation of (5.4) yields

an identical LTI system, for which any scalar α > 0 is proved to render the non-

linear error dynamics locally exponentially stable.

B.2 Local Stability Analysis

Consider a linear approximation of the system expressed by (5.4). In practical

terms, assume that only small perturbations of the rotation matrix exist.

First, let θ(t)∈R3 denote the Euler angles associated with R(t) and let u∈

R3 be a constant arbitrary vector. Second, consider the estimated rotation matrix

R̂(t) as the result of a slight perturbation over the nominal rotation matrix, and

regard it as a parameterization of R(t) in terms of the nominal Euler angles θ̄ and

of an infinitesimal deviation denoted by δθ. Hence, the Taylor-series expansion

of R̂(t)u = R
(
θ̄+ δθ

)
(t)u can be written as

R̂(t)u = R
(
θ̄
)

(t)u+ ∂ (R (θ)u)
∂θ

∣∣∣∣∣
θ̄

δθ(t) +h.o.t,

which, after applying a first order approximation, results in (vide [BFF11])

R̂(t)≈
(
I−S

[(
M
(
θ̄
)
δθ
)

(t)
])

R(t),

where M
(
θ̄
)
is the Euler-angle Rates to Body-axis Rates matrix, and, for the

sake of readability, R(t)≡R
(
θ̄
)

(t). Therefore, according to (5.2), it follows that
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R̃(t) = I+S[x(t)], (B.5)

where x(t) :=
(
M
(
θ̄
)
δθ
)

(t) is a pseudo rotation vector whose components cor-

respond to infinitesimal rotations about the three axis of the reference frame.

Now, according to the linearization stated in (B.5), substitute in (5.4) all

terms expressed by R̃(t) and simplify in order to get

˙̃R(t) =−S
[
S
[
IωE

]
x(t)−αS2

[
Im

]
x(t)

]
(I+S[x(t)]) ,

where the property a×b =−b×a was employed. Neglecting once more all terms

of second order results in

˙̃R(t) =−S
[
S
[
IωE

]
x(t)−αS2

[
Im

]
x(t)

]
,

which, by comparison with ˙̃R(t) = S [ẋ(t)], as suggested by (B.5), allows to write

the LTI system

ẋ(t) = A(α)x(t), (B.6)

where A(α) :=−
(
S
[
IωE

]
−αS2

[
Im

])
.

The following theorem encloses the local stability analysis of the nonlinear

observer (5.1).

Consider the nonlinear attitude observer (5.1), the dynamics of the rota-

tion matrix error as given by (5.4), and the LTI system (B.6). Suppose

that α > 0 and that Assumptions 4.1 and 4.2 hold. Then the origin

of the nonlinear error dynamics (5.4) is a locally asymptotically stable

equilibrium point and, accordingly, the attitude estimates provided by

(5.1) converge locally asymptotically fast to the actual values.

Theorem B.1
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Proof. Finding, analytically and in function of the parameter α, the eigenvalues

of the matrix A(α), which is not symmetric and is extremely ill-conditioned, is

not a straightforward task. There are a few methods to infer about the stability

of an LTI system, such as the Routh–Hurwitz stability criterion, which encloses

a necessary and sufficient condition; this criterion is tested below.

Start by considering the third degree characteristic polynomial associated

with the eigenvalues λ ∈ C of the matrix A(α) given by

a3λ
3 +a2λ

2 +a1λ+a0 = 0, (B.7)

where a0,a1,a2,a3 ∈ R. Next, build the corresponding Routh-Hurwitz table,

which is given in Table B.1.

Table B.1: Routh-Hurwitz table for 3rd order characteristic polynomial.

a3 a1
a2 a0
b1 b2
c1 c2

After tedious, long, but straightforward computations, it is possible to write the

columns of Table B.1 as shown in Table B.2.

Table B.2: Routh-Hurwitz table associated with matrix A(α).

1 α2
∥∥∥Im∥∥∥4

+
∥∥∥IωE∥∥∥2

2α
∥∥∥Im∥∥∥2

α
∥∥∥IωE× Im

∥∥∥2

2‖Im‖2(
α2‖Im‖4+‖IωE‖2)−‖IωE×Im‖2

2‖Im‖2 0

α
∥∥∥IωE× Im

∥∥∥2
0

If there are no sign changes along the first column (pivot column) of the Routh-

Hurwitz table, Table B.2, and none of its elements is zero, then the roots of
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(B.7) are strictly negative. Hence, one immediately deduces that, under the

established assumptions, both terms 2α
∥∥∥Im∥∥∥2

and α
∥∥∥IωE× Im

∥∥∥2
are always

positive. Finally, it is left to verify that

2
∥∥∥Im∥∥∥2(

α2
∥∥∥Im∥∥∥4

+
∥∥∥IωE∥∥∥2)

−
∥∥∥IωE× Im

∥∥∥2
> 0,

which is quite obvious since

∥∥∥Im∥∥∥2 ∥∥∥IωE∥∥∥2
≥
∥∥∥IωE× Im

∥∥∥2
.

As result, it is implied that all the eigenvalues of A(α) have negative real part,

i.e., that the LTI system (B.6) is stable. Then, by invoking [Kha02, Theorem 4.7],

one can conclude that the equilibrium point x = 0 for the LTI system (B.6) is also

an equilibrium point for the original nonlinear system (5.4), which means that

R̃(t)→ I when t→∞, or, likewise, that R̂(t)→R(t) when t→∞. Therefore,

the nonlinear observer (5.1) is locally asymptotically stable, thus concluding the

proof. �
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Appendix C

Calibration of High-Grade Inertial

Measurement Units using a Rate Table

Contents

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 209

C.2 Calibration Methodology . . . . . . . . . . . . . . . . . 210

C.3 Calibration of a KVH 1775 IMU . . . . . . . . . . . . 215

C.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . 220

C.1 Introduction

The popularity of Micro-Electro-Mechanical Systems (MEMS) has allowed

for a quick dissemination and commercialization of low-cost IMUs, which

became paramount to navigational and guidance purposes, to name just a few.

Inherently tied to these developments, calibration procedures remained vital in

all systems equipped with sensors, whose measurements are innately corrupted

by faulty mechanical installations, external environmental disturbances, various

sensor non-idealities, etc. This notwithstanding, recent advances in ultra-high ac-

curacy IMUs, prompted by state-of-the-art FOG technology, have not overshad-

owed the need for sensor calibration, since novel applications urge for improved

accuracy requirements [CYSL16].

Although there exist several techniques for single calibration of accelerom-

eters [SPRN12], gyroscopes [PCV+17], or magnetometers [CLH05], in this ap-
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pendix a sole algorithm is presented that suits the three-sensor IMU ensemble.

In a similar fashion, the work in [ZHR14] carries out a comprehensive IMU cal-

ibration, although the techniques employed therein are distinct from each other

and rely on different strategies.

In this work, the gyroscopes included in the high-grade IMU are assumed

sensitive to the Earth’s angular motion, a technical realization that can be found

in the latest KVH 1775’s advanced proprietary FOGs. In turn, the IMU is sup-

posed to be mounted on an MRT, which provides ground truth-data with respect

to a table-fixed frame. This setup allows for the estimation of the angular velocity

of the planet as expressed in the latter frame of reference, regardless of whether

the IMU is subjected to either static or rotational motions. The proposed calibra-

tion methodology was experimentally validated, with the results deeming it ideal

for IMU calibration in high-performance navigation and guidance applications.

The rest of this appendix is organized as follows: Section C.2 introduces

the problem statement and the experimental setup, followed by a step-by-step

description of the general calibration procedure. Section C.3 presents some cali-

bration results associated with a set of gyroscopes and accelerometers from a KVH

1775 IMU, along with some discussions. Conclusions are reported in Section C.4.

C.2 Calibration Methodology

C.2.1 The Setup

Consider a high-grade IMU, e.g., the ultra-compact KVH 1775, mounted on top

of a tri-axial MRT, for instance, the Ideal Aerosmith Model 2103 HTC, as shown

in Figure 4.2.

The KVH 1775 IMU includes: three orthogonally-mounted advanced FOGs

that measure angular rate and are sensitive to the Earth’s rotational velocity;

three low-noise single-axis MEMS accelerometers that measure linear motion;

210



and, an integrated three-axis magnetometer providing magnetic field sensing.

Values of some of its most important attributes are summarized in Table C.1.

Table C.1: KVH 1775 IMU Specifications (Room Temperature)

Bias Offset Angle/Velocity Random Walk
Gyroscopes ±1 ◦/h ≤ 0.012 ◦/

√
h

Accelerometers ±0.5 mg ≤ 0.070104 m/s/
√
h

Magnetometers < 0.2 G not applicable

The goal set by this work consists in developing a calibration procedure

eligible for any of the three aforementioned sensors.

Consider now the following trio of coordinate frames: a local inertial1 frame

denoted by {I}; an MRT installation-fixed reference frame expressed by {T}; and,

a body-fixed frame represented by {B}. The existence of the coordinate frame

{T} is justified by installation errors associated with the MRT. This means that,

for all t≥ 0, the rotation matrix from body-fixed to inertial coordinates must be

carefully deemed as

R(t) = I
TR · TBR(t) ∈ SO(3), (C.1)

where T
BR(t) ∈ SO(3) is provided by the MRT, and I

TR ∈ SO(3) encodes a con-

stant table installation offset which, for this particular calibration approach, does

not need to be known. Throughout the remainder of this appendix, the NED

geographical coordinate convention is used to express inertial vectors. The MRT

used in this work was located at a latitude of ϕ = 38.777888 degrees North, a

longitude of λ= 9.09757 degrees West, and at sea level.

C.2.2 Calibration Procedure

In view of the experimental setup previously described, consider a general tri-axial

sensor mounted on an MRT characterized by frame {T}. Let the sensor measure-

ments, as expressed in the sensor’s body-fixed frame, be denoted by Bvm ∈ R3.
1not exactly inertial, but considered as such for this application because the apparent forces

due to the Earth’s movement are within the accelerometer’s error.
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Henceforward, for readability reasons, vectors expressed in {B} drop the leading

superscript, e.g., vm ≡ Bvm. Commonplace tri-axial sensor measurement models

often take into account a constant bias b ∈ R3 and a matrix of constant scaling

factors F ∈R3×3, which incorporates corrections for several sensor non-idealities.

Hence, the generic measurements model employed herein obeys, at each discrete

sampling instant, the following relation:

vm,k = F ·vk +b, k = 1, 2, 3, . . . , (C.2)

where vk ∈ R3 represents the ideal sensor readings at the k-th instant. In turn,

the ground-truth attitude information provided by the MRT, i.e., TBR, allows to

write

vk =
(
T
BRk

)T
· TvRef + v̄k,

with v̄k being a known quantity that may be identically zero, and with TvRef ∈R3

corresponding to the representation of an inertial reference vector expressed in

{T}. Indeed, since the MRT is affected by an installation error, only the vertical

direction of TvRef can be accurately known.
∥∥∥TvRef

∥∥∥=
∥∥∥IvRef∥∥∥ is also assumed

known a priori, which does not compromise the feasibility of this work. Therefore,

in addition to F and b, TvRef shall also be regarded as a calibration parameter.

Hence, rewriting (C.2) as

vm,k︸ ︷︷ ︸
known

=
unknown︷︸︸︷

F ·
[(

T
BRk

)T
︸ ︷︷ ︸

known

·

unknown︷ ︸︸ ︷
TvRef + v̄k︸︷︷︸

known

]
+

unknown︷︸︸︷
b , k = 1, 2, 3, . . . , (C.3)

is a more interesting depiction of (C.2), as it wholly underlies the relationship

between corrupted sensor measurements and all three unknown calibration pa-

rameters. For algorithmic purposes, rearrange (C.3) as

F−1 ·vm,k−
(
T
BRk

)T
· TvRef −F−1 ·b = v̄k,
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which can be represented conveniently in matrix format as

[
Dvm,k −

(
T
BRk

)T
−I
]


f
TvRef

b∗

= v̄k,

where

Dvm,k =


vTm,k 0 0

0 vTm,k 0

0 0 vTm,k

 ∈ R3×9, F−1 =


fT1

fT2

fT3

 ∈ R3×3, f =


f1

f2

f3

 ∈ R9,

and, finally, b∗ = F−1 · b. Next, collect N ≥ 5 measurements sets2, for k =

1,2, . . . ,N , and build a stack matrix X as given by

X =



Dvm,1 −
(
T
BR1

)T
−I

Dvm,2 −
(
T
BR2

)T
−I

... ... ...

Dvm,N −
(
T
BRN

)T
−I


∈ R3N×15. (C.4)

The parameter estimation procedure can be divided into two scenarios. When

v̄k = 0, and in the presence of noise, one can resort to a constrained least-squares

minimization expressed by

x0 = arg min
‖x0‖=1

‖X ·x0‖ . (C.5)

The solution of this classic minimization problem is easily obtained from com-

puting the SVD of X, given by X = U ·S ·VT , where U and V are orthonormal

matrices, and S is a diagonal matrix whose elements are the so-called singular

values of X sorted in descending order. The unit-norm solution of (C.5) corre-

sponds therefore to the last column of V. Afterwards, both the magnitude and

2Since dim(vm) = 3, five measurement sets are needed to solve for the whole set of 15
unknown parameters.
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the information about the vertical direction of TvRef can be used to normalize

x0. On the other hand, when v̄k 6= 0, the parameters are simply the solution

of an overdetermined system as given by the linear least-squares approach. Let

β =
[
fT TvTRef b∗T

]T
∈R15, such that X ·β = V̄, where V̄ =

[
v̄T1 v̄T2 . . . v̄TN

]T
∈

R3N . Then

β =
(
XT ·X

)−1
·XT · V̄. (C.6)

Lastly, the range of inputs assigned to the MRT can be arbitrarily selected as

long as X, given by (C.4), attains the necessary rank to unambiguously estimate

all unknown parameters.

C.2.3 Mag Calibration: Application Example 3

The magnetometer model presented herein is discussed thoroughly in [VES+11].

Readers are referred to that paper for a rigorous formulation of the problem.

Briefly, let m denote the magnetic field vector expressed in {B}, and let Im

represent the known components of the magnetic field expressed in {I}. The

magnetic field, as a result of soft-iron interferences, is given by mSI = CSI ·
B
I R · Im, where CSI ∈ R3×3 is the soft-iron transformation matrix. In turn, let

hard-iron interferences be expressed by a bias, bHI ∈ R3. Overall, the combined

interferences produced by both soft- and hard-iron effects are given by mSI+HI =

mSI + bHI . Furthermore, let the nonorthogonality of the magnetometers be

expressed by CNO ∈ R3×3, and let their scaling and bias offset be denoted by

M ∈R3×3 and bO ∈R3, respectively. The k-th magnetometer reading, expressed

in {B}, is given by

mm,k = M ·CNO ·
(
CSI ·BI Rk · Imk +bHI

)
+bO.

3Due to the time-varying nature of the magnetic field distortions induced by the MRT, the
KVH 1775’s magnetometer was not experimentally calibrated.
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Using (C.1), the previous expression can be rewritten as

mm,k = FM ·
(
T
BRk

)T
· Tm+bM , (C.7)

where FM = M ·CNO ·CSI and bM = S ·CNO ·bHI + bO. Notice the direct

correspondence between (C.7) and (C.3), for the case when v̄k is identically zero.

Therefore, the SVD of a stacked matrix containing the magnetometer readings

and data from the MRT, as suggested by (C.4), yields estimates for the three

calibration parameters: FM , Tm, and bM .

C.3 Calibration of a KVH 1775 IMU

C.3.1 Fiber Optic Gyroscopes

Let ωE ∈ R3 denote the Earth’s angular velocity expressed in {B}. The angular

velocity measurements ωm ∈ R3, as read directly from the high-grade fiber optic

rate gyros, are given by

ωm,k = FG ·
(
ωE,k +ωk

)
+bG, k = 0,1,2, . . . . (C.8)

where FG ∈ R3×3 is a matrix of scaling factors, ωk ∈ R3 is the angular velocity

of {B} with respect to {T}, expressed in {B}, and bG ∈R3 is a bias assumed to

be constant. Bearing in mind that ωE,k =
(
T
BRk

)T
· TωE , equation (C.8) can be

rewritten as

ωm,k = FG ·
((

T
BRk

)T
· TωE +ωk

)
+bG, (C.9)

where TωE = I
TRT · IωE is the Earth’s angular velocity expressed in table-fixed

coordinates. Through a direct comparison of (C.9) with (C.3), and by using

(C.6), one obtains an estimate of FG, TωE , and bG. In order to validate this

approach, the KVH 1775 IMU was subjected to a rotational motion with angular

velocity as depicted in Figure 4.3. Data from the FOGs were sampled at 25 Hz.
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The calibration parameters were estimated as follows:

FG =


1.0004 0.0007 0.0007

−0.0006 1.0013 −0.0042

−0.0013 0.0044 0.9997

 ;

TωE =


−1.0755

−11.5266

−10.1612

 deg/h; and,bG =


−0.5434

0.1925

−0.0279

 deg/h.

This bias is within the manufacturer’s specifications. Given that
∥∥∥TωE∥∥∥= 15.4035

deg/h, the result compares similarly (2.69% of relative error) to the norm of the

Earth’s angular velocity, which, based on the length of time known as sidereal

day, is approximately
∥∥∥IωE∥∥∥ = 7.2921159× 10−5 rad/s, roughly 15 deg/h. Fur-

thermore, the Earth’s angular velocity, expressed in the NED frame, is given

by

IωE =
∥∥∥IωE∥∥∥


cos(ϕ)

0

−sin(ϕ)

=


11.7257

0

−9.4203

 deg/hour,

which corroborates the claim that the MRT is indeed affected by an installation

error. Figure C.2 shows the error associated to the gyro readings after calibra-

tion. Noise on the x-axis (North) is noticeably higher than on the other two axes.

This can be explained by vibrations originated from the fact that this axis corre-

sponds to the metallic mounting-platform, where sensor and cables are housed,

as seen from Figure 4.2. Still, all three standard deviations remain below 0.0475

degrees/second, which agrees with the ARW specified by the manufacturer, ac-

cording to Table C.1.

Nevertheless, preliminary calibration results showed that the bias bG changed

between consecutive tests, whereas FG and TωE remained consistent. A long

static calibration routine was thus carried out, consisting of 10 repeated itera-

216



0 10 20 30 40 50 60

Time (min)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
x

y

z

Figure C.2: Post-calibration Fiber Optic Gyros Error.

tions, each spanning a total time of approximately 1 hour. During each iteration,

the KVH 1775 IMU was subjected to N = 10 different known rotations. For

every static position characterized by
{
T
BR1, TBR2, . . . , TBR10

}
, angular velocity

data was collected and averaged over a period of 6 minutes. Figure C.3 displays

the evolution of the estimated parameter bG. In this static scenario, the norm

of the bias, despite its time-varying nature, remains below 1 degree/hour, which

is consistent with the manufacturer’s worst-case specifications, vide Table C.1.

Depending on the kind of application, the time-varying bias may or may not be

an issue. If it is indeed a crucial performance aspect, then calibration should be

performed prior to every test.
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Figure C.3: Evolution of bG.
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C.3.2 Accelerometer Calibration

Calibrating the accelerometers of the KVH 1775 can be done by subjecting the

IMU to N ≥ 5 different known rotations:
{
T
BR1, TBR2, . . . , TBRN

}
. At each static

position, the acceleration is caused exclusively by the gravitational field. Letting

the acceleration, expressed in {B}, be denoted by a ∈ R3, then a = g, with

g ∈ R3 being the gravitational acceleration vector, expressed in {B} as well.

The accelerometer model used henceforward follows from the work developed in

[BSOC11]. According to that model, the accelerometer readings am ∈ R3 are

given by

am,k = FA ·
(
gk + F̄A ·g2

k

)
+bA, (C.10)

where FA ∈ R3×3 is a matrix of scaling factors, F̄A ∈ R3×3 is a diagonal scaling

matrix associated with second order terms, and bA ∈R3 is a bias offset assumed

constant. Since, from (C.1), it must be gk =
(
T
BRk

)T
· ITRT · Ig, then (C.10) can

be rewritten as

am,k = FA ·
[
−
(
T
BRk

)T
· Tg + F̄A ·

((
T
BRk

)T
· Tg

)2]
+bA, (C.11)

where Tg = I
TRT · Ig is the acceleration of gravity expressed in table-fixed coordi-

nates, with Ig = [0 0 9.80061]T m/s2 for the above mentioned geographical loca-

tion. Ignoring second-order terms, equation (C.11) has a direct correspondence

with (C.3), for the case when v̄k = 0, which means the calibration parameters FA,
Tg, and bA are easily obtained from the SVD of a stack matrix containing the

KVH 1775 accelerometer readings. Otherwise, if second-order terms cannot be

neglected, a convergent iterative process should be carried out. In short, through

a slight modification of the stacked matrix, one can use the estimated parameter
Tg from the first-order model to obtain a new gravity estimate. For further de-

tails, the reader is referred to [BSOC11]. The estimated parameters, as result of
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a static calibration, were

FA =


1.000427 0.000121 0.001002

−0.000196 1.000291 −0.004034

−0.001121 0.004356 1.000529

 ,

F̄A = 10−4×


0.0972 0 0

0 −0.9478 0

0 0 −0.1764

 ,

bA =


0.9664

−0.4173

0.8803

 mg; and, Tg =


0.015499

−0.004079

9.800597

 m/s2.

These parameters were then used to correct the KVH 1775 accelerometers’ read-

ings associated with each static MRT configuration. A particular set of resulting

noise sequences, i.e., residuals, is shown in Figure C.4, where the highest standard

deviation is 0.3901 mg.
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Figure C.4: Post-calibration Accelerometers Error.

Similar to what was observed during the calibration of the FOGs, the ac-

celerometers’ bias offsets also changed between tests. Using the same long static

calibration routine as described in the previous section, the parameter bG was

estimated over the course of ten iterations, each lasting approximately one hour.

The results are shown in Figure C.5. Although after two iterations the bias
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seems to stabilize around a constant value, the jump between the first and sec-

ond iterations might be considerable depending on the application’s accuracy

requirements. Noticeably, the bias slightly exceeds the manufacturer’s worst spec-

ifications, but the source of this problem could be not only the accelerometers

performance but also the accuracy of the MRT.
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Figure C.5: Evolution of bA.

C.4 Concluding remarks

This appendix presented a calibration methodology for high-grade IMUs whose

FOGs are sensitive to the Earth’s angular velocity. A general algorithm was

described that suits the calibration of any triaxial sensor embedded in the IMU.

Using sensor readings in addition to ground-truth data provided by an MRT,

the calibration methodology yields, for any given triaxial sensor, a set of 15

parameters that involve: a matrix of factors, a bias offset, and a reference vector

expressed in table-fixed coordinates. Experimental trials, using the high-grade

KVH 1775 IMU were carried that allowed to validate the proposed calibration

procedure.
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