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A Globally Exponentially Stable filter for Bearing-Only Simultaneous
Localization and Mapping in 3-D

Pedro Lourengo, Pedro Batista, Paulo Oliveira, and Carlos Silvestre

Abstract— This paper proposes a novel filter for sensor-
based bearing-only simultaneous localization and mapping in
three dimensions with globally exponentially stable (GES)
error dynamics. A nonlinear system is designed, its output
transformed, and its dynamics augmented so that the proposed
formulation can be considered as linear time-varying for the
purpose of observability analysis. This allows the establishment
of observability results related to the original nonlinear system
that naturally lead to the design of a Kalman filter with GES
error dynamics. The performance of the proposed algorithm is
assessed resorting to a set of realistic simulations.

I. INTRODUCTION

Navigation using directions to known sources has been
in use for centuries. Initially, in marine applications, several
tools to measure the elevation of stars such as sextants and
mariner’s astrolabes were employed to derive the position of
ships, and lighthouses were used in triangulation techniques.
In the last century, aviation brought into use more ad-
vanced technologies supported on bearings (azimuth and/or
elevation) readings: the automatic direction finder (ADF),
the VHF omnidirectional range (VOR), and the instrument
landing system (ILS) are the most common still in use
today. The advent of global positioning systems has gradually
replaced the use of these techniques, but in GPS-denied
environments, aided relative algorithms are still called for
to navigate unmanned vehicles. A family of algorithms that
addresses this issue is simultaneous localization and mapping
(SLAM), a concept introduced in the scientific community
in the 1980’s [1] and first coined in [2].

The most studied version of the SLAM problem is what
is called range-bearing SLAM, where the coordinates of
measured landmarks are readily available (see [3] and [4]
for a survey on this subject). This is known in the sci-
entific community as fully observable SLAM, as a single
measurement is sufficient to estimate landmark positions.
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However, there are versions of the problem that omit one
of the two informations available, either range-only SLAM
(RO-SLAM) or bearing-only SLAM (BO-SLAM). These
approaches are named partially-observable, as a single noise-
free observation provides only a line or surface as an estimate
for the position of a landmark. The bearing-only case is even
more difficult to treat than the range-only one, because an
observation corresponds to an unbounded region. This raises
serious issues on the initialization of a landmark, which
has been the main topic of research in partially-observable
SLAM, yielding mostly delayed solutions, i.e., algorithms
that try to obtain a preliminary landmark estimate from
readings at different viewpoints before introducing the initial
estimate in the filter. This can be done through triangulation
or more advanced probabilistic approaches, using, for exam-
ple, a sum of Gaussians [5] or deterring the initialization
until an approximately Gaussian estimate is achieved [6].
There are some notable exceptions in [7] and [8] that recur
to multiple hypothesis directly in the filter. Other common
trait in this field is the scarcity of tridimensional algorithms.

Although research in BO-SLAM is not as prolific as it is
in range-bearing SLAM, the community has provided several
approaches depending on the underlying filtering technique
and the sensors used. Most algorithms are based on extended
kalman filters (EKF). However, some methods are inspired
on expectation-maximization or particle filters (see [9] for a
comparison of these approaches). Another source of diversity
in BO-SLAM algorithms is the type of sensor used. Even
though bearing-only localization is historically related to the
computation of the angle-of-arrival of signals from beacons
through the time difference of arrival at different elements
of a receiving array, BO-SLAM is mostly associated with
monocular vision [10] or even catadioptric omnidirectional
systems [11].

One of the greatest problems in any SLAM framework
is data association. In range-bearing SLAM this issue is
mostly solved and there are several different algorithms that
tackle it. In BO-SLAM, however, there are extra difficulties
in the initialization process. Some approaches try to deal
with all hypothesis when initializing [12], but vision-based
algorithms may use image information if the frame-rate is
high enough to disambiguate measurements. Data association
is not within the scope of this paper, and therefore the
measurements are assumed to be perfectly associated with
the corresponding state. This is not a troublesome assumption
as the bearings may be obtained from tagged signals coming
from beacons, for instance.
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This work solves the initialization problem by introducing
a BO-SLAM algorithm with exponentially fast global con-
vergence, which allows for undelayed initialization at any
depth. With its tridimensional (3-D) sensor-based approach,
the pose of the vehicle is eliminated from the filter state and
the inclusion of odometry-like measurements and relative
bearings is straightforward. This aspect, coupled with a
state augmentation and output transformation, leads to the
design of an LTV system whose observability is analysed
in this paper, resulting in constructive conditions with clear
physical insight that are important for motion planning.
The theoretical results are complemented by meaningful and
realistic simulations. The underlying idea of this paper is
influenced by the source-localization algorithm presented in
[13], as the proposed filter results from similar state and
output transformations.

II. THE BEARING-ONLY SLAM PROBLEM

Consider a vehicle operating in a static environment,
capable of measuring the relative azimuth and elevation of
landmarks installed in unknown locations, as well as its
linear and angular velocities in its own reference frame.
The landmarks can be artificial or natural, i.e., previously
installed or extracted from the scenery. This situation falls
under the scope of BO-SLAM, which is the problem of
navigating a vehicle in an unknown environment, building
a map of metric landmarks by measuring bearings and using
this map to deduce its location, without the need for a priori
information about landmark inertial location.

A. The sensor-based approach

The sensor-based approach, or, as it is commonly known
in the SLAM community, the robocentric approach to SLAM
has been proven more consistent than its inertial, world-
centric, counterpart [14]. Furthermore, previous observabil-
ity studies using piece-wise linearizations showed that this
approach becomes fully observable in two time steps, in
opposition to what happens in the world-centric case [15]. In
addition, in this family of problems where the measurements
are all expressed in local coordinates it makes sense to
operate in a sensor-based framework, as it is a way of
avoiding the inclusion of the pose of the vehicle in the filter
state, one of the main sources of nonlinearity. That is the
idea behind the nonlinear system that underlies the filter to
be detailed. However, inertial estimates can still be obtained
using an algorithm such as the one proposed in [16] or, using
at least two landmarks as anchors with known coordinates.

Recall the situation described above, and consider two
different reference frames. One fixed to the vehicle, denoted
as body-fixed frame { B}, and the other fixed in the environ-
ment, denoted as the inertial frame {I}. The two frames are
related through the rotation matrix R(t) € SO(3) and the
translation ‘p(¢) € R3. The former represents the attitude
of the vehicle and satisfies R(t) = R(t)S [w(t)], where
S [w(t)] is a skew-symmetric matrix that encodes the cross-
product and w(t) € R3 is the angular velocity of the vehicle
expressed in {B}. Similarly, the translation represents the

position of the vehicle in the inertial frame, coincident with
the origin of the body-fixed frame expressed in {I}.

The environment, i.e., the map, consists of N static
landmarks ‘p,(t) € R3 that compose the landmark set
L ={1,...,N}. Depending on the pose of the vehicle, some
of these landmarks may be visible or not, which motivates the
definition of two subsets of landmarks, £, = {1,...,No}
and £, = {No + 1,...,N}. The first contains the No
observed or visible landmarks while the latter contains the
unobserved, or non-visible, ones. Note that, without loss of
generality, the landmarks are ordered for simplicity of analy-
sis. In the body-fixed frame, the i-th landmark is denoted by
p;(t) = R (¢) ('p;(t) — 'p(t)) and its derivative satisfies
p;(t) = —S[w(t)]p;(t) — v(t), where v(t) € R3 is the
linear velocity of the vehicle expressed in its own frame.

From the problem definition, it is known that both the
linear and the angular velocities are measured, as well as
relative bearings to the landmarks. This last quantity is
described by the unit vector b;(¢) that defines the line
between the position of the vehicle and landmark ¢, and
is given by bi(t) = p;(t)|p;(t)|7" with i € L,. As
the information this measurement carries is limited, not
only several measurements from the same landmark are
needed to unambiguously determine its position but also
some measure of scale is required. This is provided by the
linear velocity measurements and it is the reason why they
must be available.

This section culminates naturally with the nonlinear sys-
tem that puts all this information together. The position of
the landmarks in the body-fixed frame and the linear velocity
are its states and the measured quantities are its outputs (v ()
and b;(t)). The linear velocity is included as a state with zero
derivative for filtering purposes, even though it is measured
directly. The resulting system dynamics is

pi(t) = =Sw(®)]p;(t) - v(t)

v(t)=0 0
b;(t) = p;(t)[p; ()]~
Yo(t) = v(t)

where i € £ and j € L,.

B. Problem statement

The problem addressed in this paper is that of designing a
navigation system for a vehicle operating in the environment
here described, by means of a filter for the dynamics in (1),
assuming noisy measurements. The algorithm consists of a
BO-SLAM filter in the space of sensors, and, therefore, the
pose of the vehicle is deterministic as, by construction, it
simply corresponds to the position and attitude of the body-
fixed frame expressed in that same frame.

III. PROPOSED SOLUTION: GES BO-SLAM

The system presented in the last section is still non-
linear, even though the sensor-based approach allowed to
avoid including the pose of the vehicle in the dynamics.
In some problems, where the nonlinearity occurs in the
output equation, a state augmentation can help to remove
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the nonlinearity, as was done successfully in [17], where the
idea was applied to RO-SLAM. In this paper, the proposed
solution relies on an output transformation that leads to a
state augmentation, inspired by the results presented in [13].

A. State augmentation and output transformation

The objective of this subsection is to obtain a linear-like
system that mimics the dynamics of the original nonlinear
system while avoiding the nonlinearity on the bearing output.
Consider then the simple manipulation of the output of (1)
that yields p,(¢t) — b;(¢)||p;(¢)]| = 0, i € L,. If the norm of
the ¢-th landmark is added as a state, this expression becomes
in fact linear. That is the idea behind the augmented state
xp(t) == [xE(t) xL(t) x%(t)]", where x,(t) € R™
is the stacking of all landmarks, both visible and non-
visible, xy/(t) € R3 is the linear velocity and xr(t) € R"%?
agglomerates all the norms of the landmarks, i.e., the range
from each landmark to the vehicle. These correspondences
are summarized by the state constraints

xr,(t) = p;(t)
xy(t) := v(¢) , 2)
zR,(t) =[x, ()]

for all i € L, where xz,(t) € R? and zg,(t) € R are
i-th components of the landmark and range state vectors,
respectively. Note that both the landmark and range states
are composed by visible and non-visible parts, denoted by
subscripts O and U respectively.

Consider the derivative of the range state, given by

x7, (1)
TR, (t)
which is needed to write the full state dynamics. When a
landmark is observed and its bearing is available, the quotient
x4, (1) can be replaced by the bearing b;(t) for all i € L,.

TR, (t)
Knowing this, the resulting system reads

xy (t)

TR, (t) ==

xp(t) = Ap(t,xr, (t), xRy (1) xp(t) 3)
y(t) = Cr(t) xp(t) 7
where the dynamics matrix is
Ap (tv XLy (t)v XRy (t)) =
AL (t) ALV OnL XNR
O3xny O3x3 O3xnr
OnRXnL ARV(tvxLU (t)vaU (t)) OnRX’ﬂR
with components Ay (t) = —diag (S[w(t)],...,S[w(t)]),
T
ALV = — [13 Ig} . and

Arv(t,xr,(t), xR, () =

T
xz. (t) X7, (t)
—diag [ bT(1),...,p% (1), ZL = . =Nott .
g( 1() No() le(t) xRN(t)
The output matrix is
03><nU I3

Cr(t) = [ngnO

OBXHRO OSXnRU ,
Ino Ono Xny Ono x3

Cu(t)

Ono Xnuy

with Cy(t) = —diag (b1(t),...,bn,(t)). Finally, the out-
putis y(t) = [v7(t) Orxng]”

Even though the output nonlinearity as first brought up
disappeared with the state augmentation and output transfor-
mation proposed in this section, the process introduced two
new non-linearities. The first is on the dynamics matrix, as
it depends both on a measured quantity, the bearing, and on
the state, when the measurement is not available. The second
is on the output matrix that also depends on a measured
quantity. However. the presence of the measurement in the
dynamics and output matrices is not really a problem, as,
for observability purposes, a system whose dynamics matrix
depends on the output can be seen as a linear time-varying
(LTV) system. The presence of the state in the dynamics
matrix only affects the non-visible landmarks (xr,, (¢) and
Xpg, (t)). These are not observable, and therefore will be
propagated in open loop.

Another important aspect that must be stressed is the
fact that the there is nothing in the augmented system (3)
that imposes the constraints (2), particularly the nonlinear
relation x g, (t) = ||xz, (t)||, and as such the relation between
the nonlinear and the augmented systems must be carefully
analysed.

B. Observability analysis

The subject of this subsection is the observability analysis
of the nonlinear and augmented systems presented previ-
ously. The augmented system (3) contains non-visible land-
marks and associated ranges that are clearly not observable
as the corresponding bearing is not available. Hence, in the
observability analysis, the non-visible landmarks and the
associated ranges are discarded, following the successful
approach first used by the authors in [18] and [19]. Fur-
thermore, the fact that each landmark-range-bearing group
is independent of the others allows to consider that only one
landmark is visible, i.e., £, := {1}, which simplifies the
analysis greatly.

The new reduced system is given by

(1) = A(t)x(t)
{ y(t) = Ct)x(t) @

where the dynamics matrix is

—Sw(®)] Iz  03x
A(t) = 03 03 Os3x1 |,
Oz —bi(t) 0
the output matrix is
03x3 I3 0O3x:
C(t) = .
®) I3 03 by(t)

The dependence of the dynamics matrix on the non-visible
landmarks and ranges has disappeared with the reduction
of the state of this system. However, both the dynamics
and the output matrices still depend on the visible bearing.
Given that this quantity is a known function of time, the
reduced system can be considered as linear time-varying for
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observability analysis and observer design. In fact, as shown
in [20, Lemma 1], if the observability Gramian associated
with a system whose dynamics matrix depends on the system
input and output is invertible, then the system is observable.
This result will be exploited throughout this subsection.

The forthcoming analysis requires the definition of
Tby(t) = R(t)by(t) as the inertial or absolute bearing, as
well as the following physically sensible assumption.

Assumption 1: The position of the vehicle cannot coincide
with a landmark, i.e., a visible bearing vector is always
defined.

This theorem addresses the observability analysis of sys-
tem (4) regarded as LTV.

Theorem 1: Take system (4), regarded as LTV, and let
T := [to,ts]. The system is observable in 7 if the absolute
bearing associated with the visible landmark is not constant
in 7T, i.e., there exists a t; € 7 such that Iﬁl(tl) #0.

Proof:  Consider the Lyapunov transformation (see
[21] for details) z(t) = T(t)x(t), where T(t) =
diag (R(t),I3,1), which preserves the observability prop-
erties of the original system. It is a simple matter of com-
putation to obtain the transformed system, given by

a(t) = A(t)z(t)
y(t) = C(t)z(t)

where the dynamics matrix is

03x3 —R(t) 03x1
A(t) = [03x3  O3x3z  O3x1
O1x3 —bi(t) 0
and the output matrix is
03><1

03 I
€= |RT(1) 0, bi(r)"

The proof, made by contraposition, follows with the trans-
formed system for simplicity of analysis. This system is
assumed not observable, which, using [20, Lemma 1] implies
that the observability Gramian is singular. Then it is shown
that the conditions of the theorem cannot hold. A similar
proof can be found in [17]. |

Remark 1: The sufficient condition introduced by this
theorem is in fact a requirement on the motion of the vehicle.
For the system to be observable, i.e., in order to be possible
to obtain the initial condition of a landmark, the trajectory
of the vehicle must not be restricted to the line described by
the absolute bearing.

This theorem established sufficient conditions for the
observability of the system (4) that is a reduced version of
the augmented nonlinear system (3). Given that the discarded
states are not observable and do not influence the others, the
two systems are equivalent in what concerns observability,
when discarding the non-visible landmarks. Hence, this result
also applies to the augmented system.

As to the original nonlinear system, this observability
result cannot be extrapolated without special attention. Recall
that although the augmented system (3) mimics the dynamics
of the nonlinear one, there is nothing imposing the state

relations (2). The sequel addresses this aspect, following the
approach in previous works such as [13] and [17].
Theorem 2: If the conditions of Theorem 1 hold, then:

(i) the state of the original nonlinear system (3) and that
of the LTV system (4) are the same and uniquely
determined, and the constraints (2) are imposed by the
dynamics;

(ii) an observer for the LTV system with globally exponen-
tially stable error dynamics is also a state observer for
the underlying nonlinear system with error dynamics
that converge exponentially.

Proof: The proof of the first part of the theorem is
made by considering the system output and its relation to
the states of the two systems in analysis, leading to a series
of equations which, in the conditions of the theorem, result
in the correspondence between the states. A similar proof can
be found in detail [17], along with a proof for the second
part of the theorem.

|

C. Filter design

The results of the previous subsection show that, in certain
conditions with physical insight, the augmented system is
equivalent to the nonlinear system, and that if a filter with
GES error dynamics can be constructed to the LTV system,
it will also be applicable to the original nonlinear system. It
can be shown that the error dynamics of the linear time-
varying Kalman filter are globally exponentially stable if
the pair (A(t),C(t)) is uniformly completely observable,
a form of observability stronger than the ones addressed
previously. This result can be achieved following the steps
in [22, Example 8.5] and [23]. This last theorem addresses
the uniform complete observability of the LTV system.

Theorem 3: Let Ts := [t,t + ¢]. The pair (A(t),C(t))
associated with the system (4), regarded as LTV, is uniformly
completely observable if there exist positive constants § and
ay such that, for all ¢ > ¢, it is possible to find a t; € 75 for
which the absolute bearing to the visible landmark respects

ty

/Ibl(T)dT >y
t
Proof: The proof follows steps similar to those of
Theorem 1 and is omitted. However, the reader is referred
to [17] for a similar proof with slightly different dynamics.
|
An LTV Kalman filter can now be implemented for the
LTV system, and it is done so in its discrete version.
Considering additive disturbances, the discretized system for
time-steps of length T is given by

XFr41 = FFkXFk + £k:
b
Yi+1 = CFk+1XFk+1 + 0k+1

where the dynamics matrix is

“ FLk TSALV O’I’LL XNR
Fr, = | O3xn, I3 Onpxng | s
OnR Xnry, TSJARV;C InR
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with Fp, = diag(RgﬂRk,...,RfHRk) and

R{_HRk = ¢ SIwklT: The vectors &, and @) represent
the model disturbance and measurement noise, respectively.
They are assumed to be zero-mean discrete white Gaussian
noises with covariances =j and ®j. The prediction and
update equations are the standard LTV Kalman filter
equations [24], with one detail regarding the non-visible
landmarks which must be propagated in open loop. The
propagation of xp,, for all ¢ € £, was chosen to follow
the gradient of
XT, Vi
LRiki1 = TRiy +TS£;2711,€.

In this implementation of the algorithm, the bearing
measurements are assumed to carry some kind of tag, and
therefore the association of measurements with the corre-
sponding states is trivial. Furthermore, loop closures occur
automatically without any need for a special procedure.

IV. SIMULATION RESULTS AND DISCUSSION

This section details the realistic simulations performed to
validate the algorithm proposed in this paper and assess its
performance. The results of a typical run in the simulated
environment are presented and discussed.

a) Setup: The chosen environment tries to emulate the
fifth floor of the North Tower at IST. It consists of a 16
m by 16 m by 3 m corridor. 36 landmarks where put
in notable places such as corners and doors, with random
heights. The aerial vehicle starts stopped at the ground, and
after taking off makes several laps around the corridor. It
completes a loop of 55 m in 124 s, and the total trajectory
is 5 loops at 0.440 m/s. In order to better approximate the
simulation to the reality, the field of view of the vehicle
was limited to 90° horizontally and vertically with a range
of up to 20 m. Furthermore, the effect of walls was taken
into account. This means that the landmarks are only visible
during a limited period of time in each loop. The bearing
measurements are obtained by rotating the true bearing about
random vectors of a random zero-mean angle with Gaussian
distribution with standard deviation of 1°. The remaining
measurements are corrupted with additive zero mean white
noise. The standard deviation of the noise corrupting the
linear velocity is 0.01 m/s, and that of the angular velocity
is 0.3°/s. All measurements are obtained at 20 Hz.

b) Typical run results: Figures 1(a) and 1(b) depict
the estimated map at the end of the run. The first is the
top-view of the map with the 95% uncertainty ellipses in
green and blue depending whether they are observed in that
instant or not, including the real trajectory of the vehicle
in dashed red, and the pose of the vehicle at that moment,
that is represented by the yellow quadrotor. The top right
figure shows the 3-D map with the real trajectory in blue, the
current pose of the vehicle depicted by the yellow quadrotor
and the true landmark positions at the solid dots inside the
95% ellipsoids. Note that the ellipsoids surround the true
values, as they should in a consistent filter. Finally, in Fig.
1(c) the estimation error for all the 36 landmarks is shown.

It can be seen that even though the initial estimate may be
far off, the error will converge until after 2 laps it is under
40 centimetres depending on how long each landmark is
observed.

I
Error H

~ A)
0.5f------ L e ;s .
d 'y e o= = - Uncertainty
0 g 1T | —— Observations
0-25 7777777 :7 ra 73777174;3'771 T :I& T T > Tr ;

Error in z [m]

Error in y [m]

Error in 2z [m]

Fig. 2. The estimation error of a sensor-based landmark with 20 uncertainty
bounds and observation instants.

To provide a better understanding of the behaviour of the
filter, Fig. 2 is included, where the estimation error and the
95% uncertainty bounds for all the three dimensions of one
selected landmark are presented along with the moments
where it was observed (black lines in the bottom graph).
The convergence of the estimates is clear in this figure, as
well as their consistency. Particularly, when the landmark
is once more reobserved, both the error and the uncertainty
decrease very fast. These results are in accordance with the
theoretical guarantees presented in Section III.

V. CONCLUSIONS AND FUTURE WORK

A novel sensor-based globally exponentially stable filter
for bearing-only simultaneous localization and mapping was
proposed in this paper. Making use of a state augmentation
and a simple output transformation on a nonlinear system,
while disposing of non-visible landmarks, paved the way for
the design of a linear time-varying system that mimics the
dynamics of the underlying nonlinear system. A thorough
and constructive observability analysis was performed, lead-
ing to the establishment of physically-grounded sufficient
conditions for observability, stability and convergence of the
Kalman filter that followed. These conditions are interesting
for trajectory design or motion planning. The theoretical
work which is the main focus of this paper was validated
through realistic simulations that demonstrated the good
performance of the algorithm.
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Fig. 1.
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(a) Top-view of the map.

Error norm [m]
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(b) 3-D view of the map.
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(c) Norm of the error.

The estimated landmarks. Picture of the estimated map rotated and translated using the true transformation at ¢ = 626 s, with 20 ellipsoids, on

the left. Top right: 3-D map. Bottom right: the evolution of the norm of the estimation error for all the 36 landmarks.

With respect to future work, the authors identify two main
courses of action. First, the extension of the observability
analysis to obtain necessary conditions, and second, the ex-
perimental validation of the algorithm with an aerial vehicle
equipped with an array of receivers and an environment
composed of a constellation of beacons.
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