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Abstract: This paper presents a novel approach to the design of globally asymptotically stable
(GAS) position and velocity filters for Autonomous Underwater Vehicles (AUVs) based directly
on the nonlinear sensor readings of an Ultra-short Baseline (USBL) acoustic system and two
triads of accelerometers and angular rate gyros, from an Inertial Measurement Unit (IMU). The
devised solution has its foundation on the derivation of a linear time-varying (LTV) system
that is shown to mimic the dynamical behavior of the original nonlinear system, and allows for
the use of powerful linear system analysis and filtering design tools, yielding GAS filter error
dynamics. Simulation results reveal that the proposed filter is able to achieve the same level of
performance of more traditional solutions, such as the Extended Kalman Filter (EKF), while
providing, at the same time, GAS guarantees which are absent for the EKF.

Keywords: Marine system navigation, guidance and control; autonomous underwater vehicles;
Kalman filtering techniques in marine systems control; nonlinear observer and filter design.

1. INTRODUCTION

Among several critical and key steps towards the suc-
cessful operation of autonomous vehicles, the design and
implementation of navigation systems certainly plays a
major role on the capability of such vehicles to perform
precision-demanding tasks. An interesting and detailed
survey on underwater vehicle navigation and its relevance
can be seen in Whitcomb [2000]. Acoustic based posi-
tioning devices step forward as the primordial choice for
accurate underwater navigation. As opposed to have only
one on-board acoustic receiver and a set of floating or
moored acoustic transponders, an Ultra-Short Baseline
(USBL) underwater positioning device is composed of a
small calibrated array of acoustic receivers installed on-
board the Underwater Vehicle (UV). This paper presents
an approach to the design of globally asymptotically stable
(GAS) position and velocity filters directly based on the
nonlinear range array sensor readings and inertial motion
measurements.

In the considered mission scenarios an underwater vehicle
is equipped with an USBL underwater positioning device,
and an Inertial Measurement Unit (IMU), that consists
of a triad of orthogonally mounted rate gyros and a triad
of orthogonally mounted accelerometers, and operates in
the vicinity of a fixed transponder, as depicted in Fig.
1. Given the proximity of the sensors in the receiving
array, hence the name Ultra-Short Baseline (USBL), the
USBL is capable of measuring more accurately the Range-
Difference-of-Arrival (RDOA) of the acoustic waves at the

? This work was supported by FCT (ISR/IST plurianual fund-
ing) through the PIDDAC Program funds, by the project FCT
PTDC/EEA-CRO/111197/2009 - MAST/AM of the FCT, and
by the EU Project TRIDENT (Contract No. 248497). The work
of Marco Morgado was supported by PhD Student Scholarship
SFRH/BD/25368/2005 from the Portuguese FCT POCTI pro-
gramme.

Fig. 1. Mission scenario

receivers compared to the actual distances between the
transponder and all the receivers installed on-board. To
reduce the impact of noisy measurements, the uncertainty
on the local gravity vector estimate, and the nonlinear
nature of the range measurements, a filtering solution is
required in order to correctly estimate the position of
the transponder in the vehicle coordinate frame and the
inertial velocity of the vehicle.

Recent advances in the area of underwater navigation
based on merging the information from acoustic arrays
and other inertial sensors, can be found in Rigby et al.
[2006], Willemenot et al. [2009], Batista et al. [2010]
and references therein. Classical filtering strategies often
resort to the well known Extended Kalman Filter (EKF),
see Morgado et al. [2006a], Particle Filters (PF), see
Rigby et al. [2006], which lack global asymptotic stability
properties, or to filtering solutions that use a precomputed
position fix from the USBL device using the range and
bearing and elevation angles of the transponder. The
computation of this position fix often resorts to a Planar-
Wave approximation of the acoustic wave arriving at the
receiving array, previously used by the authors in Morgado
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et al. [2006a]. The usage of this approximation undermines
(see Morgado et al. [2006b]) the convergence guarantees for
such traditional designs, which is a desirable feature if the
vehicle is to dock to a station or manoeuvre in the vicinity
of a transponder.

The main contribution of this paper lies on the design
of a globally asymptotically stable sensor-based filter to
estimate the position of the transponder in the vehi-
cle frame, the vehicle velocity in body-fixed coordinates,
whilst explicitly estimating the unknown local gravity vec-
tor present in the accelerometers specific force readings.
The solution presented in the paper departs from previous
approaches as the range measurements are directly embed-
ded in the filter structure, thus avoiding the planar-wave
approximation, and extends the framework presented in
Morgado et al. [2010], where a Doppler Velocity Log (DVL)
that measures the fluid relative velocity was considered
instead of an IMU. The DVL has the disadvantage of being
an active-acoustic device, as opposed to the passive nature
of the accelerometer readings. The framework presented
herein also follows related work found in Batista et al.
[2009], where single range measurements were considered
and persistent excitation conditions were imposed on the
vehicle motion to bear the system observable. In this paper
the framework is extended to the case of having an array
of receivers installed on-board the vehicle, which allows for
the analysis of the overall system without any restriction
on the vehicle motion.

The paper is organized as follows: Section 2 sets the prob-
lem framework and definitions. The proposed filter design
and main contributions of the paper are presented in
Section 3 where the filter structure is brought to full detail
and an extensive observability analysis is carried out. Due
to space limitations, only brief guidelines on the theorem
proofs are provided, and the full proofs are reserved for a
further extended version of this work. Simulation results
and performance comparison with traditional solutions are
discussed in Section 4, and finally Section 5 provides some
concluding remarks.

2. PROBLEM FRAMEWORK

In order to set the design framework, let {I} denote an
inertial reference coordinate frame and {B} a coordinate
frame attached to the vehicle, usually denominated as
body-fixed coordinate frame. The position of the transpon-
der r(t) ∈ R3 in the vehicle coordinate frame {B} is given
by

r(t) = RT (t)(s− p(t)), (1)

where s ∈ R3 is the position of the transponder in
inertial coordinates, p(t) ∈ R3 is the position of the
vehicle in inertial coordinates, and R(t) ∈ SO(3) is the
rotation matrix from {B} to {I} . The time derivative

of R(t) verifies Ṙ(t) = R(t)S (ω(t)), where ω(t) ∈ R3

is the angular velocity of {B} with respect to {I} ,
expressed in body-fixed coordinates, and S (ω(t)) is the
skew-symmetric matrix that represents the cross product,
i.e., S (ω) a = ω × a.

Time differentiation of (1) yields

ṙ(t) = −S (ω(t)) r(t)− v(t), (2)

where v(t) ∈ R3 is the vehicle velocity expressed in body-
fixed coordinates. The kinematics of the velocity of the
vehicle in body-fixed coordinates are modelled by

v̇(t) = a(t) + g(t)− S (ω(t)) v(t), (3)

where a(t) ∈ R3 is the accelerometer readings, v(t) ∈ R3

is the velocity of the vehicle in body-fixed coordinates, and
g(t) = RT (t)Ig(t) is the body-fixed representation of the
local gravity vector Ig(t) ∈ R3, considered to be constant,
that is, I ġ(t) = 0. Thus, in body-fixed coordinates comes

ġ(t) = −S (ω(t)) g(t). (4)

The distances between the transponder and the receivers
installed on-board the vehicle (as measured by the USBL)
can be written as

ρi(t) =‖bi − r(t)‖, i = 1, . . . , nr, (5)

where bi ∈ R3 denotes the position of the i-th receiver
in {B} , and nr is the number of receivers of the USBL.
Combining (2)-(5) yields the nonlinear system

ṙ(t) = −S (ω(t)) r(t)− v(t),

v̇(t) = a(t) + g(t)− S (ω(t)) v(t),

ġ(t) = −S (ω(t)) g(t),

ρi(t) = ‖bi − r(t)‖, i = 1, . . . , nr.

(6)

The problem addressed in this paper is the following.

Problem statement 1. Consider a robotic vehicle that is
equipped with an array of acoustic receivers that provide
multiple range measurements to a fixed transponder in
the mission operation scenario and an Inertial Measure-
ment Unit (IMU), that consists of a triad of orthogonally
mounted rate gyros and a triad of orthogonally mounted
accelerometers, providing measurements of the vehicle an-
gular velocity and linear acceleration. Design a filter or
state observer for the transponder position r(t), the body-
fixed vehicle velocity v(t), and the local gravity vector g(t)
in body-fixed coordinates, considering noisy measurements
for the vehicle angular velocity ω(t), the accelerometer
readings a(t), and the ranges ρi(t), with i = 1, . . . , nr.

3. FILTER DESIGN

In this section the main results and contributions of the
paper are presented. In order to reduce the complexity
of the system dynamics a Lyapunov state transformation
is firstly introduced in Section 3.1. At the core of the
proposed filtering framework is the derivation of a linear
time-varying (LTV) system that captures the dynamics
of the nonlinear system, which is proposed in Section
3.2, by means of an appropriate state augmentation. The
nonlinear system dynamics are considered to their full
extent and no linearizations are carried out whatsoever.
The LTV model is shown to mimic the nonlinear sys-
tem, and ultimately allows for the use of powerful linear
system analysis and filtering design tools that yield a
novel estimation solution with GAS error dynamics. The
observability analysis of the LTV system and its relation
with the original nonlinear system is conducted in Section
3.3, and finally in Section 3.4, the design of a Kalman filter
is proposed in a stochastic setting for the resulting system.
Although outside the scope of this work, the addition of
an Attitude and Heading Reference System (AHRS) would
allow for the final solution to be expressed directly in
inertial coordinates.

3.1 State transformation

Consider the state transformation
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[
x1(t)
x2(t)
x3(t)

]
:= T(t)

[
r(t)
v(t)
g(t)

]
, (7)

where T(t) := diag (R(t),R(t),R(t)) is a Lyapunov state
transformation which preserves all observability properties
of the original system, see Brockett [1970].

The advantage of considering this state transformation is
that the new unforced system dynamics becomes time-
invariant, although the system output becomes time-
varying and it is still nonlinear{

ẋ1(t) = −x2(t), ẋ2(t) = x3(t) + u(t), ẋ3(t) = 0,

ρi(t) = ‖bi −RT (t)x1(t)‖, i = 1, . . . , nr,
(8)

where u(t) = R(t)a(t).

3.2 State augmentation

In order to derive a linear system that mimics the dynam-
ics of the original nonlinear system, a state augmentation
procedure follows inherited directly from the kinematics
of the nonlinear range outputs of (8). Thus, taking the
time-derivative of ρi(t) in (8) yields

ρ̇i(t) = 1/ρi(t) [bi
TS (ω(t))RT (t)x1(t) + bi

TRT (t)x2(t)

−x1
T (t)x2(t)] . (9)

Identifying the nonlinear part x1
T (t)x2(t) in (9) leads to

the creation of the augmented states that will mimic this
nonlinearity:

xnr+4(t) = x1
T (t)x2(t),

xnr+5(t) = x1
T (t)x3(t)− ‖x2(t)‖2,

xnr+6(t) = x2
T (t)x3(t),

xnr+7(t) = ‖x3(t)‖2,

(10)

which correspond to the augmented dynamics
ẋnr+4(t) = uT (t)x1(t) + xnr+5(t),

ẋnr+5(t) = −2uT (t)x2(t)− 3xnr+6(t),

ẋnr+4(t) = uT (t)x3(t) + xnr+7(t),

ẋnr+7(t) = 0.

(11)

Thus a new dynamic system is created by augmenting
the original nonlinear system with the ranges correspond-
ing states x4(t) := ρ1(t), . . . , xnr+3(t) := ρnr (t), the
augmented states defined in (10) and denoting the new
augmented state vector x(t) ∈ R13+nr by

x(t) = [ x1
T (t) x2

T (t) x3
T (t) x4(t) ... xnr+3(t) xnr+4(t) ...xnr+7(t) ] .

T

Combining the new augmented states dynamics with (8)
it is easy to verify that the augmented dynamics can be
written as

ẋ(t) = A(t)x(t) + B(t)u(t),
where

A(t) =

0 −I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 0 0 0 0 0

b1
T S(ω(t))RT (t)

ρ1(t)

b1
TRT (t)

ρ1(t)
0 0 − 1

ρ1(t)
0 0 0

...
...

...
...

...
...

...
...

bnr
T S(ω(t))RT (t)

ρnr (t)

bnr
TRT (t)

ρnr (t)
0 0 − 1

ρnr (t)
0 0 0

uT (t) 0 0 0 0 1 0 0

0 −2uT (t) 0 0 0 0 −3 0

0 0 uT (t) 0 0 0 0 1
0 0 0 0 0 0 0 0


, (12)

and
B(t) = [03×3 I3 03×3 03×nr 03×4]

T . (13)

The following assumption is required so that (12) is well
defined.

Assumption 2. The motion of the vehicle is such that

∃
Rmin>0
Rmax>0

∀
t≥t0

i=1,...,nr

: Rmin ≤ ρi(t) ≤ Rmax.

From a practical point of view this is not restrictive since
the vehicle and the coupled array will never be on top
of a transponder, and neither will the ranges converge to
infinity. Moreover, the bounds Rmin and Rmax are not
required for the filter synthesis in the sequel. Note that the
RDOA at the receivers are considered to be measured more
accurately compared to the absolute distance between
the transponder and any given reference receiver of the
USBL. Selecting a reference sensor on the array, for
instance receiver 1 for now, all the other ranges are easily
reconstructed from the range measured at receiver 1 and
the RDOA between receiver 1 and the other receivers, that
is ρj(t) = ρ1(t)−δρ1j(t), where δρ1j(t) = ρ1(t)−ρj(t), with
j ∈ {2, . . . , nr}.
Taking into account that the augmented states x4(t), . . . ,
xnr+4(t) that correspond to the ranges are actually mea-
sured, it is straightforward to show from the outputs of
(6) that

ρ2i (t)− ρ2j (t) = ‖bi‖2 − ‖bj‖2 − 2(bi − bj)
TRT (t)x1(t),

with i, j ∈ {1, . . . , nr}, which leads to
2(bi−bj)

TRT (t)x1(t)
ρi(t)+ρj(t)

+ ρi(t)− ρj(t) =
‖bi‖2−‖bj‖2
ρi(t)+ρj(t)

or, equivalently
2(bi−bj)

TRT (t)x1(t)
ρi(t)+ρj(t)

+x3+i(t)−x3+j(t) =
‖bi‖2−‖bj‖2
ρi(t)+ρj(t)

, (14)

where the right hand-side of (14) is measured and the left
hand-side depends on the system state.

In order to complete the augmented system dynamics,
discarding the original nonlinear outputs in (8), and con-
sidering (14), define the new augmented system outputs
y(t) ∈ Rnr+nC as

y(t) =



[ x4(t) x4(t)−x5(t) ··· x4(t)−x3+nr (t)
T ]

2(b1−b2)TRT (t)x1(t)

ρ1(t)+ρ2(t)
+x3+1(t)−x3+2(t)

2(b1−b3)TRT (t)x1(t)

ρ1(t)+ρ3(t)
+x3+1(t)−x3+3(t)

...
2(bnr−1−bnr )TRT (t)x1(t)

ρnr−1(t)+ρnr (t)
+x3+nr−1(t)−x3+nr (t)

 ,
where nC = Cnr2 = nr(nr−1)/2 is the number of all possible
2-combinations of nr elements. Even though the observ-
ability analysis presented in the sequel does not require
all possible combinations to bear constructive results (a
subset of these combinations might yield the overall sys-
tem observable), the derivation is presented using all nC
combinations in order to exploit all available information
from the acoustic array in the filtering framework.

In compact form, the augmented system dynamics can be
written as {

ẋ(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t),
(15)

where

C(t) =

[
0nr×3 0nr×6 C0 0nr×4

C1(t)RT (t) 0nC×6 C2 0nC×4

]
,
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C0 =

 1 0 ··· 0
1 −1
... 0

. . . 0
1 −1

 , C2 =


1 −1 0 0 ··· 0
1 0 −1 0 ··· 0

...
0 ··· 0 1 0 −1
0 ··· 0 0 1 −1

 ,
and

C1(t) = 2
[

(b1−b2)

ρ1(t)+ρ2(t)

(b1−b3)

ρ1(t)+ρ3(t)
···

(bnr−1−bnr )

ρnr−1(t)+ρnr (t)

]
T . (16)

3.3 Observability analysis

The Lyapunov state transformation and the state augmen-
tation that were carried out allowed to derive the LTV
system described in (15), which ensembles the behavior
of the original nonlinear system (6). The dynamic system
(15) can be regarded as LTV, even though the system
matrix A(t) depends explicitly on the system input and
output, as evidenced by (12). Nevertheless, this is not
a problem from the theoretical point of view since both
the input and output of the system are known continuous
bounded signals. The idea is not new either, see, e.g.,
Celikovsky and Chen [2005], and it just suggests, in this
case, that the observability of (15) may be connected with
the evolution of the system input or output (or both),
which is not common and does not happen when this
matrix does not depend on the system input or output.

In order to fully understand and couple the behavior of
both systems, the observability analysis of (15) is carried
out in this section, using classical theory of linear systems.
This analysis is conducted based on the observability
Gramian associated with the pair (A(t),C(t)), which is
given by (see Antsaklis and Michel [2006])

W(t0, tf ) =

tf∫
t0

ΦT (t, t0)CT (t)C(t)Φ(t, t0)dt,

where Φ(t, t0) is the state transition matrix of the LTV
system (15).

Before proceeding with the observability analysis, the fol-
lowing assumption is introduced which ultimately asserts
the minimal number of receivers and configuration require-
ments of the USBL array in order to render the system
observable regardless of the trajectory described of the
vehicle.

Assumption 3. There are at least 4 non-coplanar receivers.

The reasoning behind the need to have at least 4 non-
coplanar receivers is that this is the minimal configuration
that guarantees the uniqueness for the transponder posi-
tion r(t). The following theorem establishes the observ-
ability of the LTV system (15).

Theorem 4. The linear time-varying system (15) is observ-
able on [t0, tf ], t0 < tf .

Proof. The proof follows by establishing that the only
solution of

dTW(t0, tf )d = 0
is d = 0, which means that the system is observable. It is
omitted due to the lack of space.

Although the observability of the LTV system (15) has
been established, it does not mean that the original
nonlinear system (6) is also observable, and neither means
that an observer for (15) is also an observer for (6). This
however turns out to be true, as it is shown in the next
theorem.

Theorem 5. The nonlinear system (8) is observable in
the sense that, given {y(t), t ∈ [t0, tf ] and {u(t), t ∈
[t0, tf ], the initial state x(t0) = [ x1

T (t0) x2
T (t0) x3

T (t0) ] T

is uniquely defined. Moreover, a state observer for the
LTV system (15) with globally asymptotically stable error
dynamics is also a state observer for the nonlinear system
(8), with globally asymptotically stable error dynamics.

Proof. The observability of the LTV system (15) has al-
ready been established in Theorem 4, thus given {y(t), t ∈
[t0, tf ]} and {u(t), t ∈ [t0, tf ]}, the initial state of (15) is
uniquely defined. Let z(t0) ∈ R13+nr be the initial state
of the LTV system (15) and x(t0) ∈ R9 be the initial
state of the nonlinear system (8). The proof is accom-
plished by comparing the difference of the squared ranges
ρ2i (t) − ρ2j (t) for both systems, and concluding that given
{y(t), t ∈ [t0, tf ]} and {u(t), t ∈ [t0, tf ]}, the initial states
in x(t0) must match the corresponding initial states in
z(t0), which are uniquely defined, and therefore concludes
the proof. 2

Note that the usual concept of observability for nonlinear
systems is not as strong as that presented in the statement
of Theorem 5, see Hermann and Krener [1977]. Although
the observability results were derived with respect to the
nonlinear system (8), they also apply to the original non-
linear system (6) as they are related through a Lyapunov
transformation. Thus, the design of a filter for the original
nonlinear system follows simply by reversing the state
transformation (7), as it will be detailed in the following
section.

3.4 Kalman filter

The observer structure devised so far was based on a
deterministic setting providing strong constructive results,
in the sense that it was shown, in Theorem 5, that an ob-
server with globally asymptotically stable error dynamics
for the LTV system (15) provides globally asymptotically
stable error dynamics for the estimation of the state of the
original nonlinear system. However, in practice there exists
measurement noise and system disturbances, motivating
the derivation of a filtering solution within a stochastic
setting. Therefore, the design of a LTV Kalman Filter
(even tough other filtering solutions could be used, e.g.
a H∞ filter) is presented next. Before proceeding with the
derivation of the proposed filter, it is important to stress,
however, that this filter is not optimal, as the existence
of multiplicative noise is evident by looking into the LTV
system matrices.

Nevertheless, the errors associated with the Kalman filter
estimates are GAS, as it can be shown that the sys-
tem is not only observable but also uniformly completely
observable, a sufficient condition for the stability of the
LTV Kalman filter, see Anderson [1971]. The following as-
sumption is introduced to guarantee the uniform complete
observability of the system.

Assumption 6. The position of the transponder in the
vehicle coordinate frame r(t), the angular and linear
velocities, ω(t) and v(t) respectively, and the specific
force that acts on the vehicle a(t), are bounded signals.
Moreover, the time derivatives of these signals (ṙ(t), ω̇(t),
v̇(t), ȧ(t) respectively), are also bounded, as well as the
derivatives of the ranges ρ̇i(t), with i = 1, . . . , nr.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

13645



From a practical point of view, Assumption 6 is not
restrictive since the systems presented herein are in fact
finite energy systems that ensemble realizable physical
vehicles and sensors. The LTV system (15) is finally shown
to be uniformly completely observable in the following
theorem.

Theorem 7. The linear time-varying system (15) is uni-
formly completely observable, that is, there exists positive
constants α1, α2, δ, such that α1I � W(t, t+ δ) � α2I for
all t ≥ t0.

Proof. The proof starts by noticing that the bounds on
the observability Gramian W(t, t + δ) can be written as

α1 ≤
∫ t+δ
t
‖C(τ)Φ(τ, t)d‖2dτ ≤ α2, for all t ≥ t0, and for

all d ∈ R13+nr such that ‖d‖ = 1. The existence of the
upper bound α2 is trivially checked, as under Assumption
6 the matrices A(t) and C(t) are norm-bounded and
‖C(τ)Φ(τ, t)d‖2 is integrated over limited intervals. By
selectively setting non-null parts of d, the lower bound α1

can be shown to exist for every possible d ∈ R13+nr such
that ‖d‖ = 1. 2

To recover the augmented system dynamics in the origi-
nal coordinate space, the original Lyapunov state trans-
formation (7) is reverted considering the augmented
state transformation Γ(t) := Tr(t)x(t), where Tr(t) :=
diag (RT (t),RT (t),RT (t), 1, . . . , 1) is a also Lyapunov
state transformation that preserves all observability prop-
erties of the LTV system (15).

Including system disturbances and sensor noise yields the
final augmented dynamics{

Γ̇(t) = AΓ(t)Γ(t) + BΓ(t)vr(t) + nx(t),

y(t) = CΓ(t)Γ(t) + ny(t),

where

AΓ(t) =

−S(ω(t)) −I 0 03×nr 0 0 0 0

0 −S(ω(t)) I 03×nr 0 0 0 0

0 0 −S(ω(t)) 03×nr 0 0 0 0

b1
T S(ω(t))

ρ1(t)

b1
T

ρ1(t)
0 01×nr − 1

ρ1(t)
0 0 0

...
...

...
...

...
bnr

T S(ω(t))

ρnr (t)

bnr
T

ρnr (t)
0 01×nr − 1

ρnr (t)
0 0 0

uT (t) 0 0 01×nr 0 1 0 0

0 −2uT (t) 0 01×nr 0 0 −3 0

0 0 uT (t) 01×nr 0 0 0 1
0 0 0 01×nr 0 0 0 0


,

CΓ(t) =

[
0nr×3 0nr×6 C0 0nr×4

C1(t) 0nC×6 C2 0nC×4

]
,

where BΓ(t) = B(t) is defined in (13), C1(t) is defined in
(16), and nx(t) and ny(t) are assumed to be uncorrelated,
zero-mean, white Gaussian noise, with E [nx(t)nx

T (τ)] =
Qx(t)δ(t− τ) and E [ny(t)ny

T (τ)] = Qy(t)δ(t− τ).

4. SIMULATION RESULTS

The performance of the proposed filter was assessed in
simulation using a kinematic model for an underwater
vehicle. The vehicle describes a typical survey trajectory
followed by a dive and approach towards the transponder,
as depicted in Fig. 2.

The USBL receiving array is composed of 4 receivers that
are installed on the vehicle with an offset of 30 cm along

0
100

200
300

400
500

0

20

40

60

80

10

15

20

25

30

35

x (m)

y (m)

z 
(m

)

Fig. 2. Vehicle nominal trajectory (in blue) and transpon-
der position (in red)

the x-axis of the body-fixed coordinate frame {B} where
the IMU is also installed in a strap-down configuration.
Thus the positions of the receivers with respect {B} are
given in meters by b1 = [0.2 −0.15 0]

T
, b2 = [0.2 0.15 0]

T
,

b3 = [0.4 0 0.15]
T
, and b4 = [0.4 0 −0.15]

T
[m].

The triad of accelerometers is inspired on a realis-
tic commercially available sensor package, the Crossbow
CXL10TG3 triaxial accelerometer, and considered to pro-
vide specific force measurements corrupted by additive
uncorrelated, zero-mean white Gaussian noise, with a stan-
dard deviation of 0.6 mg, that is, 5.886 × 10−3 [m/s2] for
a gravity constant g ≈ 9.81 [m/s2]. The rate gyros are
also inspired on a realistic sensor package, the Silicon
Sensing CRS03 triaxial rate gyro, and are thus considered
to be disturbed by additive, uncorrelated, zero-mean white
Gaussian noise, with a standard deviation of 0.05 deg/s.

The range measurements between the transponder and
the reference receiver (receiver 1) are considered to be
disturbed by additive, zero-mean white Gaussian noise,
with a standard deviation equivalent to 0.2% of the slant-
range, whilst the RDOA between receiver 1 and the other
3 receivers is considered to be measured with an accuracy
of 6 mm. The transponder is located in inertial coordinates
at Ipt = [ 300 80 32 ]

T
[m]. The augmented states that

correspond to the ranges x4, . . . , x3+nr
are initialized with

the first set of measurements available, and the augmented
state estimate that corresponds to the squared norm of
the local gravity vector is initialized to xnr+7 = 100, an
approximate value of the squared gravity constant. The
filter position estimate is initialized with an offset of 20
m from the nominal position, the local gravity vector is
initialized to x3(t0) = [ 0 0 10 ]

T
, and the remaining initial

estimates are set to zero.

The output estimation error of the proposed filter is
depicted in Figure 3, where the fast initial convergence
of the estimates is evident. The augmented states of
the LTV Kalman Filter also exhibit a fast convergence,
evidenced in Fig. 4. The steady state response of the
filter is also compared to the classical Extended Kalman
Filter (EKF) that linearizes the nonlinear range and
RDOA measurements about the filter estimates in order
to compute a suboptimal Kalman gain, and it is shown
to attain the same performance level as this traditional
filtering solution. Although omitted due to the lack of
space, simulation results also evidenced that the proposed
filtering structure outperforms more classical solutions
based on the Planar-Wave approximation, in which the
feedback is accomplished by means of a precomputed
transponder position fix from the USBL that resorts
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to a planar-wave approximation, previously used by the
authors in Morgado et al. [2006a]. The solution presented
in this work has the advantage of being GAS, which is not
guaranteed for the other designs.
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5. CONCLUSIONS

The main contribution of the paper lies on the design
of globally asymptotically stable position filters based
directly on the nonlinear sensor readings of an USBL
acoustic positioning sensor and an IMU. At the core of
the proposed filtering solution is the derivation of a LTV
system that fully captures the dynamics of the nonlinear
system. The LTV model is achieved through appropriate
state augmentation allowing for the use of powerful linear
system analysis and filtering design tools that yield GAS
filter error dynamics. The implementation of the proposed
filtering solution in real-life hardware will require a discrete
setup that is able to cope with the different update rates
of the various sensors installed on-board, and will be ad-
dressed in future developments of this work. Nonetheless,

the proposed continuous-time framework allowed for the
development of strong constructive results in terms of
global asymptotic error stability.

The performance of the proposed filter was assessed in sim-
ulation and compared against a more traditional solution
based on the Extended Kalman Filter (EKF). Numerical
simulation results allowed to conclude that the proposed
filter is able to achieve the same performance level of the
EKF using realistic sensor noise and disturbances. Future
work will also include further evaluation of the system
performance and comparison with traditional solutions,
through extensive Monte-Carlo numerical simulations and
with experimental results. The advantage of the new filter
structure is nevertheless evident, due to its GAS properties
which is not guaranteed for the traditional solution.
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