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• Sideslip estimation was achieved using low-cost sensors.
• Testing was performed with data acquired from a Formula Student race car.
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• The Burckhardt Tire Model was used providing easier implementation on other vehicles.
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a b s t r a c t

This document details the implementation and test of a self-calibrating estimation architecture for the
sideslip of a Formula Student prototype. The proposed algorithm fuses several sensors being the most
relevant an Inertial Measurement Unit (IMU) and a Global Positioning System (GPS). It is presented a
comparison between a linear and a non-linear estimators, and their consequences. The algorithm is tested
with real data from a Formula Student vehicle, and validated with a differential GPS. It is also reported an
implementation of the proposed algorithm in a micro-controller, and tested with a radio-controlled (RC)
vehicle. These results are also validated with the data from a more accurate indoor motion system.

© 2019 Published by Elsevier B.V.

1. Introduction

For several years, the Formula Student has been challenging
university students from all around the world to develop and con-
struct single-seat formula style racing vehicles. From interaction
between students and teamswith the objective of building a better
and more advanced vehicle, and driven by the organization, the
competition has been evolving from year to year. Starting with
a simple steel chassis with a motorcycle combustion engine to
the more recent composite chassis and aerodynamic devices, with
self-developed electric motors with four-wheel drive, the Formula
Student has always strived to be side-by-side with the automotive
industry. On the summer of 2017, a new competition took place,
the Formula Student Driverless (FSD). This one is in all identical to
the previous, with the exception that the vehicles are completely
autonomous in the track. By participating in the Formula Student
team, itwas possible to learn about the innerworkings of cars, elec-
tronics, aerodynamics, how to manage and work in large projects.
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It also provides an opportunity to gain contacts with companies,
as a major part of the project is finding sponsors willing to provide
components for the prototype.

Since the adoption of electric motors, new control strategies
started to be implemented, being the more common ones the
traction control and torque-vectoring or electronic differential.

The implementation of these features in an automobile requires
new sensors and actuators to be installed, like wheel encoders and
IMUs.With the presence of a driver the implementationwas easier,
since he is able tomake small corrections to keep the car in a stable
condition. In this new driverless competition, the control problem
had to be rethought, and a new need arose for more sensors and/or
more information to compensate for the lack of a driver.

Due to the power weight ratio of the Formula Student vehicles,
they have a clear tendency to become unstable (loss of grip), espe-
cially in curves. This implies that it is necessary to have information
of the sideslip of the vehicle specially when using controllers that
work close to the stability limit of the vehicle as exposed in the
works [1–3]. In [1] the use of two second-order sliding-mode
controllers is compared against a feedforward controller combined
with either a conventional or an adaptive PID controller. In [2]
a control scheme based on a fuzzy rule-based body slip angle
(beta) observer is studied, while [3] proposes a differential braking
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control law based on vehicle planar motion using a three-degree-
of-freedom yaw plane vehicle model.

Themost direct method of observing the sideslip angle is to use
a dedicated sensor, such as a Differential Global Positioning System
(DGPS) or an optical sensor or optical flow like the Correvit R⃝

family sensor as used in [4], where a dynamic modeling and ob-
servation method to estimate tire-road forces and sideslip angle is
presented. These sensors have some issues associated with their
usage. Both systems are heavy and bulky in relation to a Formula
Student vehicle. The DGPS besides the clear line of sight to the
sky, also needs some warm up time to have some feasible data.
The optical flow sensors need regular calibrations tomaintain their
accuracy.

Due to the issues associated with the dedicated sensors, several
research groups try to create a sideslip observer using different
techniques. Most of these works use sensors like an IMU and/or
GPS like [5,6], and the dynamic equations of the vehicle. A method
that utilizes a two-antenna GPS system to provide direct measure-
ments of vehicle roll and heading, resulting in improved sideslip
estimation is proposed in [5], while [6] designed a sideslip observer
that has less tuning parameters and is less computationally de-
manding than an Extended Kalman Filter.Works regarding sideslip
observers commonly use the Kalman Filter [5] or the Extended
Kalman Filter, but some other works like [4] explore the use of the
Unscented Kalman Filter, or even neural networks as in [7], where
the neural network is used to identify the patterns in the accel-
erations that correspond to sideslip excursions during drifts. This
work presents the implementation of a self-calibrating estimation
architecture already presented for simulation in [8] and the first
results in [9]. The proposed architecture is composed of an Atti-
tude Complementary Filter, a Position Complementary Filter, and
a Vehicle Model Estimator. Additionally, the attitude estimation
relies on cheap sensors, namely a magnetometer and a gyroscope,
and provided satisfactory results. In these two papers, only lin-
ear approaches were considered for the Attitude Complementary
Filter. The proposed algorithm uses the fusion of an IMU with a
GPS, that uses kinematic equations. The estimators proposed are
both Kalman Filter and Extended Kalman Filter solutions [10]. This
document deals with the testing of the non-linear estimator in
comparison with the linear one, and the implementation of the
algorithm in a micro-controller.

In Section 2 the estimator architecture introduced by [8,9], with
the equations and assumptions used, is detailed, in Section 3 the
testing and validation of the algorithm is performed using real
data from a Formula Student prototype. Section 4 illustrates the
implementation of the algorithm in a micro-controller and the
results obtained during real test drive conditions are discussed.
Finally, in Section 5, a small overview of all the results obtained
is presented.

2. Estimator architecture

To obtain the sideslip estimate, the architecture presented in
Fig. 1 is used. This architecture is composed by three main filters.
The first is an Attitude Complementary Filter (ACF), that uses the
yaw readings from the magnetometer and the yaw rate reading
from a gyroscope to provide a filtered yaw angle of the vehicle and
an estimate of the yaw rate bias to correct the signal from the sen-
sor. The secondone is a PositionComplementary Filter (PCF),which
merges the position and accelerations to provide an estimate of
the velocity components. This filter is also self-calibrated since it
also accounts for the bias in the accelerometer. The last filter is the
Vehicle Estimator (VE). For this one, two types of estimators are
compared, one linear and one non-linear. These filters are based
on first physics principles that are used tomodel the planarmotion
equations of a vehicle, that rely on the velocity components, yaw

Fig. 1. Architecture of the estimator wheremr , ψ̇r , ar , pr , δr and Fx are respectively
the measurements from the magnetometer, gyroscope, accelerometer, GPS, steer-
ing encoder and force by the motors. Gray boxes represent data processing blocks
to be detailed.

rate and steering angle to provide the sideslip estimate. The non-
linear filter also uses the longitudinal force applied on the vehicle.

Alongside these three main filters, three signal pre-processors
are used to prepare the measurements. The first is a conversion
of the magnetic components of a magnetometer to the yaw angle,
assuming that the magnetic components are properly calibrated.
The second is to transpose the position of the receptor to the center
of gravity (CG). The third is the transformation of the acceleration
reading to a ∂v/∂t signal used by the PCF.

In this section, the three main filters are detailed and their
equations deduced. First the kinematic filters, and after the vehicle
estimators.

2.1. Attitude complementary filter

The ACF fuses the yaw angle measurements (ψr ) with the an-
gular velocity around the z-axis, or yaw rate (ψ̇r ), to deliver amore
accurate yawangle (ψ̂) value. It is considered that the yaw from the
magnetometer is already calibrated as proposed in [11]. The ACF
also provides a bias (bψ̇ ) estimate for the yaw rate reading, in order
to account for the static and dynamic offsets of the gyroscope. This
bias is later used to correct the yaw rate for the following filters.

This filter is based on the discrete kinematic equation for the
yaw angle given by (1), where k defines the time instant t = kT
being T the sampling time.

ψk+1 = ψk + T ψ̇k (1)

It is assumed that the yaw measurement ((2)a) is corrupted
by Gaussian white-noise (wψr ,k) as well as the yaw rate reading
(wψ̇r ,k), and the evolution of the bias ((2)b) is also driven by Gaus-
sian white noise (wbψ̇ ,k).

ψr,k =ψk + wψr ,k (2a)

ψ̇r,k =ψ̇k + bψ̇,k + wψ̇r ,k , bψ̇,k+1 = bψ̇,k + wbψ̇ ,k (2b)

With the combination of Eqs. (1) and (2), it is possible to write
the discrete attitude complementary filter (3), where K1 and K2
are the time-invariant Kalman gains identified, and vk the noise
associated with the yaw angle reading.[
ψk+1
bψ̇,k+1

]
=

[
1 −T
0 1

][
ψk
bψ̇,k

]
+

[
T
0

]
ψ̇r +

[
K1
K2

]
(yk − ŷk)

yk = ψr,k + vk , ŷk = ψ̂k

(3)

2.2. Position complementary filter

The PCF is used to estimate the velocity components in the
body referential. It uses the position provided by the GPS and the
planar accelerations from the on-board accelerometer. The yaw
angle from the ACF is applied to convert the components to the
body referential. This filter is also kinematic, as the previous, using
the equations of motion as described by (4), where Rk represents
the rotationmatrix thatmakes the conversion from the body frame
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to the global frame, using the yaw estimate from the ACF at the
instant k.

p̄G
k+1 =p̄G

k + T v̄Gk +
T 2

2
RkāBrk (4a)

v̄Gk+1 =v̄Gk + TRkāBrk (4b)

It is assumed that both measurements, position and accelera-
tion, are corrupted with Gaussian random white-noise, w̄pk and
w̄ak respectively. Besides that, it is also assumed that the accel-
eration readings also have bias, due to the sensor offset and the
influence of roll and pitch as described by (5), which is also driven
by Gaussian white-noise w̄bak.

āBrk =āBk + b̄B
ak + w̄ak (5a)

b̄ak+1 =b̄ak + w̄bak (5b)

Using Eqs. (4) and (5), then it is possible to write the PCF state
space system as (6), where I is a 2 × 2 identity matrix.⎡⎣ p̄G

k+1
v̄Bk+1
b̄B
a(k+1)

⎤⎦ =

⎡⎢⎣ I TRk −
T 2

2
Rk

0 I −TI
0 0 I

⎤⎥⎦
⎡⎢⎣ p̄G

k

v̄Bk
b̄B
ak

⎤⎥⎦ +

⎡⎢⎢⎣
T 2

2
Rk

TI

0

⎤⎥⎥⎦ āBrk

+

⎡⎢⎣ K1

RT
kK2

RT
kK3

⎤⎥⎦ ēk

ēk =(yp̄k − ŷp̄k) , ŷp̄k = p̂G
k , yp̄k = p̄G

rk + w̄pk

(6)

The gains K1, K2 and K3 are 2 × 2 diagonal matrices with the
Kalman gains identified using the discrete Kalman Filter with the
time-invariant equivalent of (6) where the estimated yaw is zero
(ψ̂k = 0).

2.3. Vehicle estimator

The vehicle estimator is based on the planar movement equa-
tions [12] which implies that no roll or pitch are considered. It is
assumed that the only forces applied on the vehicle are on the tires
as presented in Fig. 2(a).

Each tire is presumed to generate a longitudinal (Fx) and a
lateral (Fy) force in the wheel frame {w}. It is also assumed that
left and right tires generate the same forces and can be combined
as (7).

F F
x = F FL

x + F FR
x , FR

x = FRL
x + FRR

x

F F
y = F FL

y + F FR
y , FR

y = FRL
y + FRR

y

(7)

Eqs. (8) result from the balance of forces to the vehicle, Fig. 2(a).

v̇x =vyψ̇ −
1
m

[F F
y sin δ − F F

x cos δ − FR
x ] (8a)

v̇y = − vxψ̇ +
1
m

[F F
y cos δ + FR

y + F F
x sin δ] (8b)

ψ̈ =
1
Iψ

a[F F
y cos δ + F F

x sin δ] −
1
Iψ

bFR
y (8c)

For simplification purposes is assumed that the longitudinal
force is applied directly at the CG, and no longitudinal force is
generated by the front wheels. The lateral force is dependent of the
slip angle (αi) of the tire, Fig. 2(b). This slip angle is defined as the
difference between the sideslip angle of the vehicle projected in
the wheel (βi), and the steering angle of the wheel (δ), as given by
(9). The projection of the sideslip angle on the wheel is then given

by βi, where xi and yi are the coordinates from the CG to the wheel
i.

αi = βi − δi , βi = tg-1
(
vy + xiψ̇
vx − yiψ̇

)
(9)

2.3.1. Vehicle linear estimator
The Vehicle Linear Estimator (VLE), uses a linearization of (8)

with the assumption of small angles and a constant longitudinal
velocity (vx ≈ const). This is a widely used approximation as seen
in [13,14]. The lateral force generated by the tires is given by a
cornering stiffness approximation (10). This one is a linearization
to a typical tire model curve, also for small angles. The main issue
with this approximation is the lack of lateral force saturation. This
means that if the slip angle increases beyond the limits of the
approximation, the force will acquire unrealistic values.

Fy = −Cαα (10)

Combining Eqs. (8) to (10), and applying the assumptions de-
scribed above it is possible to write the time-variant system (11)
which is the starting point for the VLE.

[
v̇y
ψ̈

]
=

⎡⎢⎢⎣ −
Cαf + Cαr

mvx
−

aCαf + bCαr
mvx

− vx

−
aCαf − bCαr

Iψ

−a2Cαf + b2Cαr
Iψvx

⎤⎥⎥⎦[
vy
ψ̇

]
+

⎡⎢⎢⎣
Cαf
m

aCαf
Iψ

⎤⎥⎥⎦ δ
(11)

For this estimator, four inputs are required. The sideslip com-
puted as β = tg-1

(
vy/vx

)
from the PCF and the yaw rate with the

bias correction from theACF are used as observations of the system.
The steering angle is used as a direct input, and the longitudinal
velocity is the element that makes this system time-varying, also
used as a direct input.

Since the main objective is to implement the estimators in
an on-board device, is useful to use discrete systems. To achieve
the discrete equivalent of (11), property (12) is used to make the
continuous to discrete conversion, where T is the sampling time, I
is the identitymatrix, Ak and Bk are the resulting discrete transition
and input matrices, respectively, at instant k.

exp
([

Ac Bc
0 0

]
T
)

=

[
Ak Bk
0 I

]
(12)

The continuous matrices Ac and Bc come from system (11). The
estimator can be written as (13), where K1 to K4 are the discrete
Kalman gains identified using the discrete equivalent system.[
v̂yk+1
ˆ̇ψk+1

]
=Ak

[
v̂yk
ˆ̇ψk

]
+ Bkδr +

[
K1 K2
K3 K4

] (
yk − ŷk

)
yk =

[
vyk
ψ̇k

]
+

[
wvyk
wψk

]
, ŷk =

[
v̂yk
ˆ̇ψk

] (13)

2.3.2. Vehicle Non-Linear Estimator
The Vehicle Non-Linear Estimator (VNLE) also uses system (8)

as a starting point, but without the small angle approximations.
Additionally, like the previous estimator, it is useful to have the
system in a discrete form, and for that (8) is discretized using
Euler method, where the accelerations are replaced by (14). Since
the sampling time is small, and the filter works in a close-loop,
the error induced by this approximation is negligible. The discrete
equivalent is then given by (15).

v̇x =
vxk+1 − vxk

T
, v̇y =

vyk+1 − vyk

T
, ψ̈y =

ψ̇k+1 − ψ̇k

T
(14)
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Fig. 2. (a) Forces applied on the Car; (b) Tire angles and frames, {w} for wheel and {c} for car.
Source: Image from [9].

vxk+1 =vxk + vyk ψ̇T −
1
m

[
F F
y sin δ − Fx

]
T (15a)

vyk+1 =vyk − vxk ψ̇T +
1
m

[
F F
y cos δ + FR

y

]
T (15b)

ψ̇k+1 =ψ̇k +
1
Iψ

aF F
y cos δT −

1
Iψ

bFR
y T (15c)

The lateral force for the VNLE is given by the Burckhardt tire
model [15] which is expressed by (16), where c1, c2, c3 and c5
are the dry asphalt values proposed by the model. This equation
already has two assumptions implemented. The first is the negli-
gence of the velocity influence for simplification. And the second
is the assumption of only driving and no braking. The Burckhardt
model was chosen, as it provides a simpler behavior, although
effective for the purposes at hand, than other alternatives, like
theMagic Formula. Additionally, the parameters of the Burckhardt
model can be obtained from a table of road conditions, without the
need for performing model identification for the tires.

Fy = sign(α)
(
c1

(
1 − e−c2sr

)
− c3sr

) (
1 − c5F 2

z

)
Fz , sr = |tanα|

(16)

TheVNLE is created it resource to theDiscrete ExtendedKalman
Filter [10]. It uses three observations, longitudinal velocity and lat-
eral velocity from the PCF and the bias corrected yaw rate from the
ACF. Also uses the steering angle as the input, and the longitudinal
force as a direct influence in the system. The equations of the VNLE
are not presented due to their extension.

3. Application on a formula student prototype

To test the algorithm, real data from a formula student car was
retrieved. At the time available for the tests, the algorithmwas still
not implemented in a micro-controller, and as a result this had to
be tested off-line.

The vehicle used was FST06e Fig. 3, a rear wheel drive electric
car with two independent motors. The vehicle itself is equipped
with a steering encoder, a GPS and an IMU with a 3-axis ac-
celerometer (ADXL345), a 3-axis gyroscope (L3G4200D) and a 3-
axismagnetometer (HMC5883L). The actual torque applied to each
driven wheel is retrieved from the motors. The vehicle was also
equipped with a DGPS to provide a ground truth of the sideslip
angle. The vehicle acquisition system, and theDGPS are completely
independent systems with separate logging units, and both data
are only crossed during the presented graphs. More detailed infor-
mation of the acquisition system can be found in [9].

The ACF and PCF results are shown and discussed in [9] and for
that reason a special focus will be given to the vehicle estimator in
this work. Since the data was used off-line, it was possible to have

Fig. 3. FST06e equipped for the presented tests. Orange: location of the vehicle
sensors. Blue: location of the DGPS parts.

Table 1
FST06e technical specifications.
Wheelbase Track Mass Yaw inertia Weight dist. Cornering stiffness

− tr m Iψ – Cαf Cαr
1.59 1.24 356 120 45–55 15270 19950
m m kg kg m2 – N/rad N/rad

all sensor sources at the same frequency for the vehicle, that was
defined as 100 Hz, which allowed the use of the algorithm at the
same frequency. The DGPS was logged at 10 Hz, and the presented
data is the raw values. The trajectory of the vehicle was limited to
a 60 × 20 meters area. It started moving at instant t = 164 s, with
some straight trajectories interspersed with curves. At t = 223 s
made several turns at a constant speed and radius for one side, and
at t = 265 s made the same to the other side.

First is presented the Vehicle Linear Estimator (VLE), which has
the advantage of being linear, and as such, easier to implement and
computationally lighter. The estimator usedwas already presented
(13), and is based on the linear system of the planar movement of
the vehicle (11). For this system, the technical specifications of the
FST06e, that are condensed in Table 1, were used. The gains applied
were identified using the discrete Kalman Filter theory, starting
with the variance of the noise used, and then fine-tuned by hand
for the application. Since the system chosen is time-varying, a set
of gains was identified a priori for each longitudinal velocity, and
then a lookup table was implemented.

The results obtained are presented in Fig. 4(a), where the data
from the DGPS is depicted in blue, and in orange the result of the
algorithm of Fig. 1 using the VLE. As can be seen, the VLE can
accompany the fast dynamics of the system quite well with little
error, apart from the constant speed and radius turns. In these
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Fig. 4. Results of the estimators (a) VLE and (b) VNLE. Ground truth in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 5. RC vehicle used to test the algorithm. (a) hardware (b) software and protocols.

turns, the VLE misses by far the oscillations, resulting in an almost
constant value. These oscillations are a result of a small banking in
the track, that combined with some road paint results in several
changes between slip and traction of the wheels.

For the VNLE, it was used the theory of the Discrete Extended
Kalman Filter. In this case, since the system is time-varying with
all the states, the gains had to be computed at each iteration. These
were identified using the same method of the VLE, starting with
the sensors variance, and then fine-tuned. The obtained results are
depicted in Fig. 4(b), and is clear that this is a noisier output than
the VLE. Until t = 220 s, the results of the VNLE are very similar to
the VLE, but themost significant difference is in the constant speed
and radius turns, where the estimate can follow the oscillations
quite well. Between the estimate and the DGPS output there is a
slight offset, easy to see around t = 226 s to t = 250 s. This
is associated with the time synchronization of the two logging
systems.

Comparing both estimators, it is clear that the VNLE has a better
performance compared with the VLE in the constant speed and
radius turns. However, using the Sprague and Geers metrics [16]
in Table 2, it is clear that the overall performance (C) of the VLE
is better than that of the VNLE. Therefore, the VLE proves to be an
option when the test conditions are inside the linearization limits.
In both figures, until the vehicle starts to move, the sideslip angle
is perfectly zero, this is due to a rule implemented for vx < 3 m/s
there is no sideslip, to protect the results fromnumerical instability
during low velocities.

Table 2
Sprague and Geers validation metric for the estimators.
Estimator M P C

VLE 0.1805 0.2145 0.2804
VNLE −0.2128 0.2485 0.3272

4. On-board implementation

To test the feasibility of running the algorithm in real-time
in a Formula Student Prototype, an implementation was made
in a RC car with a micro-controller. An RC car was used, as it
provided a method for verifying the viability of the algorithm in
an online application, allowed the use of an indoor multi-camera
motion capture systemwithmillimetric precision, and because the
availability and access of the FST06e vehicle were limited due to it
being an ongoing project. Additionally, it was intended to validate
that the algorithm could be processed at 100 Hz in real time by a
small micro-controller.

A 1:18 scale radio-controlled (RC) car, Fig. 5(a), with a single
motor and four-wheel drive was modified. The micro-controller
chosen is a Raspberry Pi 3 model B, due to the integrated wireless
capabilities. As depicted in Fig. 5(b), the Raspberry Pi is the center
of all computation with the created program divided in a main
cycle and three threads. The first one is connected to a computer
running the Qualisys R⃝ Track Manager software (QTM), that uses
six infra-red cameras to triangulate theposition of the fourmarkers
placed on the car, and then transmits it to the Raspberry Pi. The
second thread communicates through I2C to the IMU. The third
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Fig. 6. Sideslip estimation of VLE (orange), ground truth (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

thread receives through UDP (User Datagram Protocol) the inputs
from a remote controller and converts it to PWM (Pulse Width
Modulation) in order to control the motor and the steering servo
motor. Themain program receives the data fromall the threads and
runs the algorithm. The results are then sent by TCP (Transmission
Control Protocol) to a computer for visualization. Since it was not
viable to access the torque applied from this motor, it was not
possible to test the VNLE.

Since QTM can provide in real-time both positions and angles, it
is used as the ground truth for the implementation. During the tests
a problem was detected with the environment. Since the labora-
tory is full ofmachinery and electric equipment, themagnetometer
for the ACF could not provide a decent measurement. The solution
was to introduce the yaw angle measurement from the QTM in
parallel with the magnetometer reading.

For FST06e cornering stiffness values were known, but for this
vehicle cornering stiffness values were unknown so they had to
be identified. The test consisted in a trajectory performed at a
constant velocity andwith small steering angles as required by the
model, that resulted in the transition and input matrices depicted
in (17). These matrices were correlated with the base system (11)
and resulted in the continuous system (18) to be used in the VLE.
The gain identification for the filter had the same process as before,
and a lookup table implemented with the gains dependent of the
longitudinal velocity.

Aidentified =

[
−4.473 −0.114
−0.070 −8.633

]
, Bidentified =

[
1.174
22.87

]
(17)[

v̇y
ψ̈

]
=

[ 3.4576
vx

0.5298
vx

− vx

−0.07032 −6.6733

][
vy
ψ̇

]
+

[
1.371
22.87

]
δ (18)

The result of the estimation algorithm is depicted in Fig. 6 in
orange. The ground truth (blue) is given by the raw numerical
differentiation of the QTM position output. As can be seen, the
estimate output of the sideslip angle has results very close to the
validation signal, with only a slight offset for higher sideslip angles
as expected from the linear estimator. Even so, the estimate could
acquire all the dynamics of the system, even the fastest ones.

In Fig. 6 it is also possible to see two green zones (t = 37 s
and t = 41 s). In these intervals there is a lack of data, as if the
operating system had frozen. The problem was not identified, but
is likely linked to an insufficient source of power due to background
processes, as these flaws are not regular or periodic.

5. Conclusion

A self-calibrating algorithm for estimating the sideslip angle
of a Formula Student vehicle was presented in two versions, a
linear and a non-linear. This algorithm was tested with real data
from a Formula Student prototype and implemented in a micro-
controller. The test with real data had a differential GPS for ground
truth validation. The results from the non-linear estimator proven

to be considerably better than the linear. Nevertheless, the VLE
also produced acceptable results with a C (Sprague and Geers) of
0.2804, especially for lower sideslip angles,when theworking zone
is closer to the linearization assumptions. The implementation in
the micro-controller also fulfilled its objective of proving that the
algorithm could work in a small hardware at a high frequency
(100 Hz). The results of the estimate were also very satisfactory,
with the output close to the ground truth, even with the linear
estimator.
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