
Robotics and Autonomous Systems 68 (2015) 72–85
Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Sensor-based globally exponentially stable range-only simultaneous
localization and mapping
Pedro Lourenço a,∗, Pedro Batista a, Paulo Oliveira a,b, Carlos Silvestre c,a, C.L. Philip Chen d

a Institute for Systems and Robotics, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
b Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
c Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau
d Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau

h i g h l i g h t s

• A novel filter for range-only SLAM is proposed.
• Sensor-based formulation of SLAM and state augmentation allow LTV Kalman filtering.
• The error dynamics of the filter are globally exponentially stable.
• Global convergence of undelayed initial guesses is guaranteed.

a r t i c l e i n f o

Article history:
Received 18 July 2014
Received in revised form
7 January 2015
Accepted 19 January 2015
Available online 7 February 2015

Keywords:
Simultaneous localization and mapping
Robot navigation
Autonomous vehicles
Nonlinear systems
Range data

a b s t r a c t

This paper proposes the design, analysis, and validation of a globally exponentially stable (GES) filter
for tridimensional (3-D) range-only simultaneous localization and mapping. For observability analysis
purposes, a nonlinear sensor-based dynamical system is formulated resorting only to exact linear and
angular kinematics and a state augmentation is exploited that allows the proposed formulation to
be considered as linear time-varying without linearizing the original nonlinear system. Constructive
observability results can then be established, leading naturally to the design of a Kalman Filter with
GES error dynamics. These results also provide valuable insight on the motion planning of the vehicle.
Experimental results demonstrate the goodperformance of the algorithmandhelp validate the theoretical
results presented. For completeness and to illustrate the necessity of a proper trajectory, simulation data
are included as well.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Simultaneous Localization and Mapping (SLAM) is the problem
of navigating a vehicle in an unknown environment, by building
a map of the area and using this map to deduce its location,
without the need for a priori knowledge of location. The solution
to this problem is of great importance to the field of autonomous
robots operating in GPS-denied environments, and therefore SLAM
has been a subject of intensive research by the community since
first proposed in the 1980s, when a series of seminal works such
as [1–3] were published. From that initial discussion, a myriad of
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approaches have arisen. The better known include EKF-SLAM [4],
graph-based solutions [5], and particle filters (see [6,7] for a two-
part survey on all these algorithms). Apart from varying in concept,
SLAM approaches also depend on different mapping sensors:
SONAR [8], LIDAR [9], monocular and stereo cameras [10] are
within the most common. These sensors involve obtaining range
and bearing information of the environment, and usually demand
the existence of a data association algorithm, due to the unknown
correspondence between the reality and the created map.

Although localization using distances to beacons is a very well
known subject, the number of SLAM algorithms using only ranges
is relatively small, especially when compared with the widespread
use of algorithms working on range and bearing, or on bearings-
only. On one hand, the Range Only SLAM (RO-SLAM) problem is
not prone to association errors, as are other SLAM formulations. In
fact, this is a very relevant topic in this area, as can be seen by the
variety of strategies proposed by the scientific community to min-
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imize spurious associations, from general purpose algorithms such
as the joint compatibility branch and bound [11] or more evolved
strategies that make use of the unique characteristics of the de-
tected features as the one proposed in [12]. RO-SLAMbypasses this
error source due to the nature of the ranging signals that are usu-
ally tagged. Another of the issues in SLAM with both bearing and
range information available that is avoided by RO-SLAM is the loop
closing [13]. This is the problem of recognizing that a previously
visited area is once again within the field-of-view of the vehicle.
It is closely related to the association problem and with the in-
consistency that some SLAM approaches suffer from, see [14]. In
RO-SLAM, this is also not an issue, as the information carried by the
ranging signals allows the unambiguous association of the mea-
surement and the corresponding state at all times. On the other
hand, one of the main problems in RO-SLAM is the initialization of
the algorithm, either due to the absence of global convergence re-
sults in EKF solutions such as [15], or the computational burden of
having a sufficiently representative prior belief, in particle filter so-
lutions [16]. Most of the RO-SLAM solutions include some form of
initializing procedure before inserting a new landmark in the state.
These include trilateration with ranges from different instants to
obtain a first estimate, usually through least squares, such as what
was proposed in [17]. Also, due to the sparse information extracted
from ranging, RO-SLAM algorithms are commonly designed for
2-D environments, e.g., a ground robot and landmarks at the same
height, see [18].

The common RO-SLAM formulation has similarities with the
problem of Sensor Networks (SN), in the sense that there is an
agent receiving signals from a network of sensors, and, therefore,
the two ideas have been used in conjunction in works such as
[19,20], where, along with agent-to-sensor ranges, sensor-to-
sensor ranges are also used.

This paper introduces a novel RO-SLAM algorithm that elimi-
nates the landmark initialization problem through the establish-
ment of global convergence results with a tridimensional (3-D)
sensor-based formulation that avoids the representation of the
pose of the vehicle in the state, as it becomes deterministic and
available by construction. Furthermore, the sensor-based approach
allows the direct use of odometry-like information that is usually
expressed in body-fixed coordinates. This is related with previous
results in the SLAM literature, such as the robocentric map join-
ing [21] in which the filtering process is centered on the vehicle,
while using an EKF to maintain estimates of both the map and the
inertial vehicle pose. Another related work is Linear SLAM [22],
in which the map joining procedure is followed, while the state
is transformed and augmented in order to achieve a linear least
squares formulation. The algorithm proposed in this paper relates
to these works in the sense that the filter is designed in a body-
fixed frame, while disposing of the vehicle pose. This solution is
influenced by the source-localization algorithm proposed in [23],
as the global convergence results are achieved through a similar
state augmentation.

The main contributions of this paper are the design, analysis,
and experimental validation of a 3-D RO-SLAM algorithm that
(i) has globally exponentially stable (GES) error dynamics;
(ii) resorts to the exact linear and angular motion kinematics;
(iii) uses as odometry-like measurements the linear and angular
velocities; (iv) solves a nonlinear problem with no linearizations
whatsoever; and (v) builds on the well-established linear time-
varying Kalman filtering theory. Note that, although the maps
provided by this filter are body-fixed, it is possible to obtain an
inertial estimate of both the map and the vehicle pose using, for
example, the algorithm proposed in [24], in which a methodology
was presented to obtain inertial estimates of the pose of the vehicle
and of the landmark map using only the sensor-based map. This
algorithm was successfully used with other purely sensor-based
SLAM filters such as [25,26].
The constructive observability and convergence results
achieved provide physical insight on what kind of trajectories the
vehicle must take in order for the RO-SLAM algorithm to be able
to perform accurately. These results were validated in real condi-
tions, using a Cricket [27] sensor network as landmarks and an op-
tical flow procedure to determine the linear velocity. Furthermore,
simulation results are also presented to illustrate the good verti-
cal performance when the trajectory is sufficiently rich, which was
not possible to perform in the experiments carried out.

This problemwas previously addressed by the authors in a pre-
liminary version in [28]. This paper introduces new results on the
observability of the designed nonlinear system, with the establish-
ment of necessary conditions for observability, stability, and con-
vergence that are important for trajectory planning. Furthermore,
expanded and revised proofs for the theoretical results are pre-
sented, andmore and better documented experiments are now re-
ported.

The paper is organized as follows: in Section 2, the problem ad-
dressed in this paper is stated and the dynamics of the system to
be filtered are presented; the observability analysis of the system
is performed in Section 3 and filter implementation issues are de-
tailed in Section 4. The results of simulation and real experiments
are presented in Sections 5 and 6, respectively, and, finally, Sec-
tion 7 addresses some concluding remarks.
Notation. The superscript I indicates a vector or matrix expressed
in the inertial frame {I}. For the sake of clarity, when no superscript
is present, the vector is expressed in the body-fixed frame {B}.
In is the identity matrix of dimension n, and 0n×m is a n by m
matrix filled with zeros. If m is omitted, the matrix is square. S[a]
is a special skew-symmetric matrix, henceforth called the cross-
product matrix, as S[a]b = a × b with a, b ∈ R3.

2. Problem statement and system dynamics

Consider a vehicle moving in a static world where acoustic bea-
cons are installed at unknown locations. The vehicle is equipped
with a sensor suite capable of measuring the linear and angular
velocities as well as radio and acoustic signals from the static bea-
cons. The distances to the emitting beacons can then be computed
from the time differences of arrival. This section details the design
of a dynamical system as part of a simultaneous localization and
mapping filter using only, apart from vehicle motion information,
the distance to the beacons placed in the environment.

2.1. Problem statement

Assume the existence of two frames: a reference inertial frame
{I} and a body-fixed frame {B}. Points in the latter frame are
mapped to the former through a rotation, given by the rotation
matrix R(t) ∈ SO(3) and a translation, given by Ip(t) ∈ R3 that
represent, respectively, the attitude andposition of the vehicle. The
rotation matrix respects the relation Ṙ(t) = R(t)S [ω(t)], where
ω(t) ∈ R3 is the angular velocity of the vehicle expressed in the
body-fixed frame.

Let L := {1, . . . ,N} be a set of N landmarks fixed in the envi-
ronment, to be mapped, containing, in each instant, NO observed,
or visible, landmarks in the set LO, and NU unobserved, or invisi-
ble, landmarks in the setLU , such thatL = LO∪LU . Furthermore,
suppose thatpi(t) ∈ R3 corresponds to a sensor-based landmark in
the set L, i.e., the position of the ith landmark relative to the vehi-
cle expressed in {B}, given by pi(t) = RT (t)


Ipi(t) −

Ip(t)

, where

Ipi(t) ∈ R3 corresponds to the inertial position of the landmark.
Hence, the dynamics of any landmark expressed in the robotic ve-
hicle coordinate system {B} are given by

ṗi(t) = −S [ω(t)] pi(t) − v(t),
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where v(t) = RT (t)I ṗ(t) ∈ R3 is the linear velocity of the vehicle
in {B}. Both the linear and angular velocities are available through
sensor measurements. The distances to landmarks, henceforth de-
nominated ranges, are given by ri(t) = ∥

Ipi(t) −
Ip(t)∥ = ∥pi(t)∥

and are measured as well. Given that the landmarks positions are
unknown a priori, the ranges are not sufficient to obtain estimates
of the coordinates of the landmarks, raising the need for the knowl-
edge of the motion of the vehicle. That is why the linear velocity is
measured.

This informationmotivates the design of a systemwhose states
are the sensor-based landmarks and the linear velocity, and with
outputs that are the ranges to the landmarks and the linear
velocity. This system can be expressed through

ṗi(t) = −S [ω(t)] pi(t) − v(t)
v̇(t) = 0
ri(t) = ∥pi(t)∥
yv(t) = v(t)

(1)

with i ∈ L, and where the first two quantities are the system state
and the last two its output. Although the linear velocity in {B} is
measured, it is included as a state with zero derivative for filter-
ing purposes. Albeit being assumed constant in this deterministic
setting, in the filtering framework it can be seen as slowly time-
varying, depending on the process andmeasurement noise covari-
ances.

The problem addressed in this paper is that of designing a
navigation system for a vehicle operating in the environment
previously described, by means of a filter for the dynamics in (1),
assuming noisy measurements. The algorithm consists of an RO-
SLAM filter in the space of sensors and, therefore, the pose of the
vehicle is deterministic as it simply corresponds to the position and
attitude of the body-fixed frame expressed in the same frame.

2.2. Augmented system dynamics

The system derived in the previous subsection is clearly non-
linear, as there is a nonlinear relation between the output and the
system state. The strategy proposed to avoid this nonlinearity is
to augment the system state in order to obtain a linear relation be-
tween the system state and output, as it has been successfully done
in [23]. The resulting augmented state is

x(t) :=

xTL (t) xTV (t) xTR(t)

T
,

where xL(t) ∈ RnL is the vector built by stacking all the landmarks
present in the landmark set L, both the visible ones, xLO(t) :=

{xLi(t), i ∈ LO}, and the invisible ones, xLU (t) := {xLi(t), i ∈ LU },
xV (t) ∈ RnV represents the vehicle state, i.e., the linear velocity
of the vehicle in the body-fixed frame, and the vector xR(t) :=
xTRO(t) xTRU (t)

T
∈ RnR contains the ranges to all the landmarks

in the visible and invisible sets. The following expression
summarizes the relations that define the augmented state,xLi(t) := pi(t)
xV (t) := v(t)
xRi(t) := ∥xLi(t)∥,

(2)

where xLi(t) ∈ R3 and xRi(t) ∈ R are part of the full landmark and
full range states, respectively, for all i ∈ L. It is important to notice
that, both in the landmark and range states, the first NO quantities
are the visible ones, while the i ∈ {NO + 1, . . . ,NU } are the re-
maining. The state is chosen this way to simplify the forthcoming
analysis, without loss of generality.

The dynamics of the landmark and vehicle states have already
been defined in (1), hence, the derivative of the range, given by

ṙi(t) = −
1

ri(t)
vT (t)pi(t), (3)
is needed to derive the full dynamics. Note that, although the
systemoutput is now linear, the introduction of the ranges as states
has created another nonlinearity to the dynamics. On the other
hand, the velocity is directly available as a measurement, as is the
distance ri(t) if the corresponding landmark is visible, i.e., if i ∈ LO.
Therefore, it is possible to replace the dependence on the state for
one on the system output. Observing that the output is given by

y(t) =


yTv(t) yR1(t) · · · yRNO (t)

T
,

where yv(t) := v(t) and yRi(t) = ri(t) for every i ∈ LO, it is
possible to derive the dynamics of the augmented system, which
are given by
ẋ(t) = AF (xRU (t), y(t), t)x(t)
y(t) = CFx(t)

(4)

where

AF (xRU (t), y(t), t) =

 AL(t) ALV 0nL×nR
0nV ×nL 0nV 0nV ×nR

ARL(xRU (t), y(t), t) 0nR×nV 0nR


,

and

CF =


03×nL I3 03×NO 03×NU
0NO×nL 0NO×3 INO 0NO×NU


.

The dynamics matrix is composed by three block matrices, namely
one that relates the landmark state to itself, given by

AL(t) := diag (−S [ω(t)] , . . . ,−S [ω(t)]) ,

another that relates the landmark and vehicle states,

ALV :=

−I3 · · · −I3

T
,

and finally the relation between landmark and range states,

ARL(xR(t), y(t), t) :=

−diag


yTv(t)
yR1(t)

, . . . ,
yTv(t)
yRNO (t)

,
yTv(t)

xRNO+1(t)
, . . . ,

yTv(t)
xRN (t)


.

It is clear that the system now derived is still nonlinear, due to the
dependence of the dynamics on the velocity and on the ranges.
However, as both the first NO ranges and the linear velocity are
measured, the dependence of ARL(xR(t), y(t), t) in the full range
state can be substituted by a dependence on the system output.
This is done so that the observability analysis can be performed in
a linear fashion, as it will be seen in the next section. Notice also
that there are several singularities in the dynamics matrix, if one
or more of the ranges becomes null. To prevent that, the following
assumption is needed.

Assumption 1. The motion of the vehicle is such that

∀
i∈L

∀
t≥t0

∃
Rm,RM>0

: Rm < ri(t) < RM .

Even though this assumption is needed for the dynamicsmatrix
to be well-defined, it is straightforward to see that it is a very mild
assumption, as, in practice, the vehicle is never coincident with a
landmark nor can it be arbitrarily distant. Moreover, the values of
Rm and RM are not required for the filter design.

One final aspect important to retain is the fact that there is noth-
ing in the system dynamics imposing the state relations expressed
by (2), particularly the nonlinear relation xRi(t) = ∥xLi(t)∥. Al-
though they could be established through augmented nonlinear
outputs, that would invalidate the option to expand the system
state in order to obtain a linear time-varying system. Furthermore,
the next section presents a result that demonstrates that, in cer-
tain conditions, the dynamics of the system directly imposes these
constraints.
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3. Observability analysis

Before the RO-SLAM filter design can proceed properly, it is
necessary to ensure observability of the derived system, and to
validate theoretically the procedure of the state augmentation.
This section addresses the observability analysis of the nonlinear
system derived in the previous section, both in its original and
augmented forms. Sufficient conditions for the observability of the
system, with a physical insight on the motion of the vehicle, are
obtained, and global convergence results are established.

Although the introduction of the augmented system (4) has re-
moved the output nonlinearity existent in the original nonlinear
system (1), the presence of the ranges to invisible landmarks in
the dynamics matrix introduces another kind of problem. Further-
more, given that the only available information with which to ob-
tain xLi(t) and xRi(t) is the corresponding range, it is obvious that
the invisible landmarks and their ranges cannot be observable. For
this reason, and following the approach used in [26,25], the ranges
to invisible landmarks and the landmarks themselves are removed
from the system state, resulting in a reduced state, inwhich the dy-
namicsmatrix does not depend on the state as before, but solely on
the system output. Thus, as the output is known, this new system
may be regarded as linear time-varying for observability purposes.

For the sake of simplicity, and without loss of generality, in
this section it is assumed that there is only one visible landmark,
i.e., LO := {1}. This is possible due to the multi-single-range
character of the problem. Furthermore, as described, the invisible
landmarks are discarded and left out of the new system state. Let
z(t) =


zTL1(t) zTV (t) zR1(t)

T
be the new reduced state, and the

corresponding system be
ż(t) = A(t)z(t)
y(t) = Cz(t) (5)

where the dynamics matrix is given by

A(t) :=

 ALO(t) ALVO 0nO×nR
0nV ×nO 0nV 0nV ×nR
ARLO(t) 0nRO×nV 0nRO

 ,

and the output matrix is simply

C =


03 I3 03×1

01×3 01×3 1


.

Note that the blocks that constitute the dynamics matrix are the
ones defined in the previous section, while including only the
visible landmark. Also, the dependence on the system output and
input can be seen as merely a dependence on time, as the two
signals are known. This enables to consider (5) as a linear time-
varying system (LTV), as shown in [23, Lemma 1]. This will be used
throughout this section.

The following result addresses the observability analysis of
the LTV system, but before proceeding with the analysis it is
convenient to define Iv(t) = R(t)v(t) as the linear velocity of the
vehicle in the inertial frame {I}.

Theorem 1. Consider the LTV system given by (5) and let T :=

[t0, tf ]. If and only if there exist three instants {t1, t2, t3} ∈ T
such that the linear velocity of the vehicle expressed in the iner-
tial frame is linearly independent in those instants, i.e., det


Iv(t1)

Iv(t2) Iv(t3)


≠ 0, then the system is observable in the sense that,
given the system output {y(t), t ∈ T }, the initial condition z(t0) is
uniquely defined.

Proof. The proof starts by transforming the LTV system through
a Lyapunov transformation, to simplify the analysis. A Lyapunov
transformation (see [29, Chapter 1, Section 8] for details), preserves
the observability properties of the original system. Consider then
the transformation

T(t) = diag (R(t), I3, 1) ,

and the transformed system state given by

χ(t) = T(t)z(t). (6)

If it is considered that the angular velocity ω(t) is bounded, which
is a physically sound assumption, the transformation T(t) has
a continuous and bounded time derivative, while also having a
bounded determinant itself, and therefore it is indeed a Lyapunov
transformation. This means that it suffices to prove that the trans-
formed system is observable, an approach employed successfully
in the past, in works such as [23].

Before proceeding with the proof it is necessary to derive the
new system dynamics, by simply taking the first time derivative of
(6) and using the inverse transformation z(t) = T−1(t)χ(t), which
results in

χ̇(t) = A(t)χ(t)
y(t) = Cχ(t). (7)

It is a simple matter of computation to see that the dynamics ma-
trix of the transformed system is given by

A(t) =


03 −R(t) 03×1
03 03 03×1

−
yTv(t)
yR1(t)

RT (t) 01×3 0

 ,

while the output matrix of the transformed system is the same as
in (5).

The proof follows by computing the transition matrix of the
transformed system and subsequently the observability Gramian
that will help determine whether the system is observable or not.
The computation of the transition matrix can bemade either using
the Peano–Baker series or, in this case, by simply solving

φ(t, t0)χ(t0) = χ(t0) +

 t

t0
A(τ )χ(τ )dτ .

The computed transition is given by

φ(t, t0) =

 I3 −R[1](t, t0) 03×1
03 I3 03×1

−v[0](t, t0) v[1](t, t0) 1

 , (8)

where the following auxiliary quantities are introduced to simplify
this expression,

R[1](t, t0) =

 t

t0
R(τ )dτ

v[0](t, t0) =

 t

t0

yTv(τ )

yR1(τ )
RT (τ )dτ

v[1](t, t0) =

 t

t0

yTv(τ )

yR1(τ )
RT (τ )R[1](τ , t0)dτ .

The observability Gramian is given by

W (t0, tf ) =

 tf

t0
(Cφ(τ , t0))TCφ(τ , t0)dτ . (9)

Consider again [23, Lemma 1]. If the observability Gramian now
defined is invertible, then the transformed system is observable in
the sense that, given the system output {y(t), t ∈ T }, the initial
condition χ(t0) is uniquely defined. The proof follows by contra-
position, i.e., by establishing the hypothesis that the system (7) is
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not observable and then showing that, if the conditions of the the-
orem apply, the hypothesis cannot hold. Suppose then that the sys-
tem is unobservable. This, from thementioned lemma, implies that
W (t0, tf ) is singular, which means that there exists a unit vector
c =


cTp cTv cr

T
∈ Rnχ such that

cTW (t0, tf )c = 0. (10)

Then, the substitution of (9) in (10) yields

cTW (t0, tf )c =

 tf

t0
∥Cφ(τ , t0)c∥2dτ , (11)

where it is possible to substitute the argument of the norm in
the integral by a vector function f(τ , t0) such that f(τ , t0) =

diag

RT (τ ), 1


Cφ(τ , t0)c. Note that ∥f(τ , t0)∥ = ∥Cφ(τ , t0)c∥.

In order for (10) to be true, both f(τ , t0) and its derivative must
be zero for all τ ∈ T . Consider now the expressions for these two
quantities, given by

f(τ , t0) =


cv

fr(τ , t0)


(12)

and

d
dτ

f(τ , t0) =


03×1

d
dτ

fr(τ , t0)


(13)

respectively. The component of f(τ , t0) associated with the range
output is given by

fr(τ , t0) = −v[0](τ , t0)cp + v[1](τ , t0)cv + cr ,

while its derivative is

d
dτ

fr(τ , t0) = −
yTv(τ )RT (τ )

yR1(τ )
cp +

yTv(τ )RT (τ )

yR1(τ )
R[1](τ , t0)cv.

Evaluating (12) at τ = t0 while equating the result to zero, au-
tomatically yields cv = 0 and cr = 0. Furthermore, for (10) to be
true, d

dτ f(τ , t0) must be zero. This, recalling Assumption 1, leads to
the final condition, expressed by
IvT (τ ) cp = 0, ∀τ ∈ T .

This condition can only be satisfied if cp = 0, which contradicts the
hypothesis of the proof (∥c∥ = 1), or if the linear velocity of the
vehicle in the inertial frame for any t1, t2, and t3 in T is such that

det

IvT (t1)
IvT (t2)
IvT (t3)

 = 0,

i.e., there do not exist three time instants such that the linear ve-
locity of the vehicle in {I} on these instants spansR3, which contra-
dicts the conditions of the theorem. Therefore, by contraposition,
if the conditions of the theorem hold, then W (t0, tf ) is invertible
on T , and, using [23, Lemma 1], it follows that (7) is observable.
Furthermore, the LTV system (5) is also observable, as it is related
with the system (7) through a Lyapunov transformation, thus con-
cluding the sufficiency part of the proof.

The proof that the observability of the system implies that the
conditions of the theorem hold, i.e., the necessity of those condi-
tions, is also done by contraposition. It is assumed that the condi-
tions of the theorem do not hold, and it is shown that, in this case,
the system is not observable. Consider then that the conditions of
the theorem do not hold. Therefore, the vehicle can only move in
a plane or a line, which means that the inertial velocity vector is
always in the same plane, i.e.,

Iv(t) = vγ (t)γ + vν(t)ν, ∀t ∈ T (14)
where vγ (t) and vν(t) ∈ R, and γ and ν are two orthonormal vec-
tors in R3 that define the plane or line (case defined by vν(t) = 0)
in which the vehicle moves. The computation of the explicit evolu-
tion of the output of the system (7) as a function of the initial state
χ(t0) is needed to proceed with the proof. Recall the definition of
the transitionmatrix in (8) and the output in (7), whichwhen com-
bined yield y(t) = Cφ(t, t0)χ(t0) or

y(t) =


χV (t0)

−v[0](t, t0)χL(t0) + v[1](t, t0)χV (t0) + χR(t0)


.

The scalar part of the output can be further expanded to read

yR(t) = χR(t0) + v[1](t, t0)χV (t0)

−

 t

t0

yTv(τ )RT (τ )

yR(τ )
χL(t0)dτ , (15)

and substituting (14) in (15) leads to

yR(t) = χR(t0) + v[1](t, t0)χV (t0) −

 t

t0

vγ (τ )

yR(τ )
dτ γ · χL(t0)

−

 t

t0

vν(τ )

yR(τ )
dτ ν · χL(t0). (16)

The observability of the system implies that any two different ini-
tial states are distinguishable using only the output, i.e., if two dif-
ferent initial states produce the same output, the system cannot be
observable. The proof follows by choosing two particular examples
of initial states that produce the same output for all time. For that
purpose, consider the two initial conditions

χ̃(t0) =

χT
V (t0) (ν × γ)T χR(t0)

T
and

χ̄(t0) =

χT
V (t0) (γ × ν)T χR(t0)

T
.

Observe that the range state χR(t0) is the same for both initial
states, which makes sense, as ∥ν × γ∥ = ∥γ × ν∥. Noting that
ν · (ν × γ) = 0 and γ · (ν × γ) = 0, it is straightforward to see
that the two integrals in (16) vanish for these two initial states,
rendering the output equal in both cases, i.e., χ̃(t0) and χ̄(t0) are
indistinguishable, as they lead to the same output for all t ∈ T .
Hence, if the conditions of the theorem do not hold, it is possible to
find at least two indistinguishable initial states, which means that
the transformed system (7) is unobservable in T , or, conversely, if
the transformed system is observable the theorem conditionsmust
hold. As the two LTV systems are related by the Lyapunov trans-
formation (6) which preserves observability properties, the proof
of the necessity of those conditions is concluded. �

Remark 1. This theorem establishes requirements for the motion
of the vehicle, as it allows to conclude that if there are at least three
velocity vectors that span R3, or, equivalently, if the trajectory
of the vehicle is not restricted to a line or a plane, the system
is observable. Note that, in a trilateration technique, ranges to
four non-coplanar vehicle positions are needed. In this system, the
motion of the vehicle provides those positions as Fig. 1 shows for
the bidimensional case (chosen for better visualization).

The LTV system (5) is a reduction of the augmented nonlinear
system (4) in the sense that it does not include the invisible
landmarks, and assumes the existence of only a single visible
landmark. Due to the independence of the landmarks, whichever
their number is, the two systems are completely equivalent in
terms of observability, discarding the invisible landmarks. Note
that the observability result of Theorem 1 when applied to the
multi landmark case requires each landmark to be visible in the
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Fig. 1. Trilateration for positioning a landmark in 2-D.

time instants when the velocity spans R3. This does not mean that
all landmarks must be visible at the same time, but that in the
time intervals in which each landmark is visible the conditions
of Theorem 1 must hold. Furthermore, care must be taken before
extending the observability results of this section to the original
nonlinear system (1). As there is nothing imposing the state
relations (2), it is not possible to apply the results to the original
nonlinear system without some reflection. The following result
addresses this issue: first, the equivalence of the state of the
nonlinear and LTV systems is performed in a similar fashion to
what was done in [23,28]. Second, it is shown that the nonlinear
relation zR1(t) = ∥zL1∥ is automatically imposed by the system
dynamics when the LTV system is observable.

Theorem 2. Consider the LTV system (5) and the original nonlinear
system (1). If the conditions of Theorem 1 hold, then

(i) the state of the original nonlinear system and that of the LTV
system are the same and uniquely defined, provided that the
invisible landmarks are discarded. Furthermore the constraints
expressed by (2) become naturally imposed by the dynamics; and

(ii) a state observer with uniformly globally exponentially stable error
dynamics for the LTV system is also a state observer for the
underlying nonlinear system, and the estimation error converges
exponentially fast for all initial conditions.

Proof. The proof of the first part of the theorem follows by con-
sidering the system output and its relation to the states of the two
systems in analysis, leading to a series of equations which, in the
conditions of the theorem, result in the correspondence between
the states, while imposing the algebraic constraints.

Consider the output of the LTV system (5), given by y(t)
= Cz(t), and that of the original nonlinear system, y(t) =
vT (t) ∥p1(t)∥

T . Recall that, in this section, it is assumed that
the visible landmark set has only one landmark. The comparison
of the two outputs shows that
zV (t) = v(t)
zR1(t) = ∥p1(t)∥.

For the purpose of finding the correspondence of the remaining
states, zL1(t) and p1(t), consider the time evolution of the rotation
of each of these states, given by

R(t)zL1(t) = R(t0)zL1(t0) − R[1](t, t0)zV (t0), (17)

and

R(t)p1(t) = R(t0)p1(t0) − R[1](t, t0)v(t0), (18)

respectively. These can be derived following the same reasoning
used to compute the transition matrix (8). The expressions in (17)
and (18) can be used to compute the derivative of the outputs of
the two systems in analysis related to the ranges. Recall that the
range output of the LTV system is the same as the range state of
that system. Then, using the dynamics of that state given by

żR1(t) = −
yTv(t)
yR1(t)

zL1(t),

replacing zL1(t) by RT (t)R(t)zL1(t), and using (17) yields

ẏR1(t) =
yTv(t)R

T (t)
yR1(t)


R(t0)zL1(t0) − R[1](t, t0)zV (t0)


. (19)

For the original system, recall the derivative of the range output
given by (3), and substitute p1(t) by RT (t)R(t)p1(t) in order to be
able to use (18) and reach

ṙ1(t) =
vT (t)RT (t)

r1(t)


R(t0)p1(t0) − R[1](t, t0)v(t0)


. (20)

It is possible to compare these two expressions for the derivatives
of the outputs of the two systems, if it is noted that zV (t) = v(t),
r1(t) = yR1(t), and

Iv(t) = R(t)yv(t) = R(t)v(t). Then, the com-
parison of (19) with (20) yields
IvT (t)
r1(t)

R(t0)

zL1(t0) − p1(t0)


= 0

for all t in T . When the conditions of Theorem 1 hold, this expres-
sion implies zL1(t0) = p1(t0) by the same reasoning used to prove
the sufficiency of these conditions to the observability of the LTV
system. Since the dynamics of these states are the same by con-
struction, the equivalence of the initial conditions implies that the
system states are equivalent. Hence, if the conditions for the ob-
servability of the LTV system apply, then the state of the system
(5) corresponds directly to that of the original nonlinear system,
disregarding the invisible landmarks. Furthermore, noting that it
is imposed by the output that zR1(t) is the norm of p1(t) and, if
the conditions of the theorem hold, that p1(t) = zL1(t), then the
constraint zR1(t) = ∥zL1(t)∥ becomes naturally imposed by the dy-
namics. Thus, the proof of the first part of the theorem is concluded.

The second part of the theorem follows naturally from the first
part. An observer for (5) with globally exponentially stable error
dynamics provides estimates that converge exponentially fast to
the true state. Therefore, if the state of the LTV system and that
of the original nonlinear system, when the invisible landmarks are
discarded, are one and the same, the estimates of the observer will
also tend exponentially fast to the true state of system (1) with the
same error dynamics. �

Theorems 1 and 2 provided sufficient conditions for the observ-
ability of the original nonlinear system while establishing a direct
relation between the augmented system (5) and the nonlinear one.
However, a stronger result can be accomplished by means of the
following theorem, which states that these conditions are indeed
necessary and sufficient.

Theorem 3. The nonlinear system (1) is observable, when discarding
the invisible landmarks, if and only if the conditions of Theorem1hold.

Proof. The sufficiency part of the proof is readily provided by
Theorems 1 and 2. The former establishes conditions for the
observability of the LTV system (5) and the latter relates the state
of that system to that of the nonlinear system in analysis. The proof
of the necessity part of the theorem is made in very similar terms
to that of the second part of Theorem 1 in the sense that the system
output, written as a function of the initial state using (18)

r1(t) = ∥R(t)p1(t)∥
= ∥R(t0)p1(t0) − R[1](t, t0)v(t0)∥,
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is shown to be the same given two different initial states. Squaring
this expression and expanding the result yields

r21 (t) = ∥R(t0)p1(t0)∥2
+ ∥R[1](t, t0)v(t0)∥2

− 2
 t

t0


vγ (τ )γ + vν(τ )ν


R(t0)p1(t0)dτ , (21)

where the definitions of R[1](t, t0) and Iv(τ ) = R(τ )v(t0) were
employed. Furthermore, the linear velocity in {I}was also replaced
in (21) by the negation of the conditions of the theorem expressed
by (14). Consider two initial states defined as

ξ̃(t0) =


RT (t0) (γ × ν)

v(t0)


and

ξ̄(t0) =


RT (t0) (ν × γ)

v(t0)


.

Then, it is possible to see that the integral in (21) vanishes for both
cases, and that these two initial states lead to the same output,
which implies that if the conditions of the theoremdo not hold, the
system is unobservable. This concludes the proof of the necessity
of the conditions of the theorem for the nonlinear system to be
observable. �

The previous results show that, if it is possible to design a glob-
ally exponentially stable observer for the LTV system, it will also
be suitable for the original nonlinear system. This has established
the ground to the design of such an observer, using a linear time-
varying Kalman filter, which, to assure the GES nature of the esti-
mation error dynamics, requires the pair (A(t), C) to be uniformly
completely observable. This can be shown using the Lyapunov
function V (t, z̃) = z̃T (t)P−1(t)z̃(t), where z̃(t) is the observer er-
ror and P(t) is the error covariance and demonstrating that it re-
spects all the conditions of [30, Theorem8.5] for global exponential
stability. The steps taken are similar to the ones in [30, Example 8.5]
and include showing that P−1(t) is positive definite using several
results of [31]. The following theorem addresses the uniform com-
plete observability of the pair (A(t), C). However, an additional as-
sumption on the linear velocity of the vehicle is required.

Assumption 2. The normof the linear velocity of the vehicle in the
inertial frame {I} is always bounded, i.e.,

∀
t≥t0

∃
VM>0

: ∥
Iv(t)∥ ≤ VM .

Although imposing definite bounds on the linear velocity, this
assumption is still amild one, as it is physically impossible to reach
arbitrarily large speeds. Moreover, the value of VM is not required
for the filter design.

Theorem 4. The pair (A(t), C) is uniformly completely observable if
and only if Assumption 2 is true and there exist δ > 0 and α∗ > 0
such that, for all t ≥ t0, it is possible to choose a set of instants
{t1, t2, t3} ∈ Tδ , with Tδ := [t, t + δ], for which the linear velocity of
the vehicle in the inertial frame respectsdet Iv(t1) Iv(t2) Iv(t3)

 > α∗. (22)

Proof. The concept of uniform complete observability implies
uniform bounds on the observability Gramian in time intervals of
length δ. Considering that the pair (A(t), C) is related to (A(t), C)
by a Lyapunov transformation, the uniform complete observability
of the latter implies the uniform complete observability of the
former, and thus the proof will focus on this pair.
Consider the previous definitions of the observability Gramian
in (9) and of the arbitrary unitary vector c, and note that these
are bounded. Then, the uniform complete observability of the pair
(A(t), C) may be expressed through the following statement,

∃
δ>0
α>0

∀
t≥t0

∀
c∈Rnχ
∥c∥=1

: cTW (t, t + δ)c ≥ α. (23)

The proof follows by exhaustion, i.e., it consists of studying
cTW (t, t + δ)c for every possible case of c and showing that (23)
is true for all of them.

Recall the proof of Theorem1, and the expansion of cTW (t0, tf )c
therein, with the definition of f(τ , t) and d

dτ f(τ , t) in (12) and (13).
Then, it is possible to write

∥f(τ , t)∥2
= ∥cv∥

2
+

v[0](τ , t)cp − v[1](τ , t)cv − cr

2
. (24)

[32, Proposition 4.2] is of great importance in the establishment of
the result of this theorem. It states that if it is possible to find a
positive constant β such that ∥

∂ i

∂τ i g(τ , t0)∥ ≥ β then there exists

a γ > 0 such that ∥g(t0, t0 + δ)∥ ≥ γ as long as ∂ j

∂τ j g(τ , t0)|τ=t0 =

0 for all j < i and the norm of the (i + 1)-th derivative is
upper bounded. It is possible to see that this proposition applies
to cTW (t0, tf )c, and therefore it suffices to show that ∥f(τ , t)∥ is
lower bounded for every possible c.

The first condition to study is ∥cv∥ ≥ αv > 0 without any re-
striction on both cp or cr . In that case, the norm of f(τ , t) respects

∥f(τ , t)∥ ≥ ∥cv∥ ≥ αv,

and thus cTW (t, t + δ)c ≥ α1 > 0. The second case is |cr | ≥ αr >
0, again with no restriction on the remaining quantities. Then, it is
possible to evaluate f(τ , t) for τ = t which leads to

∥f(t, t)∥ ≥ |cr | ≥ αr .

The last case involves setting ∥cv∥ < αv and |cr | < αr , while
imposing ∥cp∥ ≥ αp > 0. For the purpose of analyzing this case,
consider the new function

fpv(τ , t) := v[0](τ , t)cp − v[1](τ , t)cv

such that fr(τ , t) = −fpv(τ , t) + cr . Then, it is possible to write

∥f(τ , t)∥2
≥ f 2r (τ , t)
≥ |fpv(τ , t)|(|fpv(τ , t)| − 2|cr |)
≥ |fpv(τ , t)|(|fpv(τ , t)| − 2αr).

Considering that fpv(τ , t) is lower bounded by some αpv , if the up-
per bound on cr is chosen to be smaller than 1

4αpv , then

∥f(τ , t)∥2
≥

α2
pv

2
,

and it suffices to show that the norm of the function fpv(τ , t) is
lower bounded. Then, one has fpv(t, t) = 0, and [32, Proposition
4.2] applies once more, i.e., if it is shown that

 d
dτ fpv(τ , t)

 ≥ α2,
then ∥f(τ , t)∥ is lower bounded as intended. The norm of the
derivative of fpv(τ , t) is given by d
dτ

fpv(τ , t)
 =

 IvT (τ )

r1(τ )
cp −

IvT (τ )

r1(τ )
R[1](τ , t)cv

 , (25)

where, in the definitions of v[0](τ , t) and v[1](τ , t), R(τ )yv(τ ) was
replaced by Iv(τ ) and yR1(τ ) by r1(τ ). The square of (25) can be



P. Lourenço et al. / Robotics and Autonomous Systems 68 (2015) 72–85 79
expanded to read d
dτ

fpv(τ , t)
2 =

 IvT (τ )

r1(τ )
cp

2 +

 IvT (τ )

r1(τ )
R[1](τ , t)cv

2
− 2

IvT (τ )

r1(τ )
cp

IvT (τ )

r1(τ )
R[1](τ , t)cv.

Consider now Assumptions 1 and 2. Using the bounds defined
therein, it is possible to write d
dτ

fpv(τ , t)
2 ≥

 IvT (τ )

r1(τ )
cp

  IvT (τ )

r1(τ )
cp

− 2
∥
Iv(t)∥ ∥cv∥

r1(τ )


≥

IvT (τ )cp


R2
M

IvT (τ )cp
− 2

RMVMαv

Rm


.

Assuming that
IvT (τ )cp

 ≥ α3 for some τ , if it is defined that
αv < Rm

4RMVM
α3, then the norm of this derivative respects d

dτ
fpv(τ , t)

2 ≥
1

2R2
M

α2
3 .

The proof follows now by showing that there is at least a t∗ such
that the absolute value of the inner product of the linear velocity in
{I}with cp in that instant is greater than some α3 for all ∥cp∥ ≥ αp.
Consider the sum of the mentioned inner product for the time
instants t1, t2, and t3. Given that cp cannot be perpendicular to all
velocities, as it is impossible according to the conditions of the the-
orem, the worst case occurs when cp is perpendicular to the two
velocity vectors that have the greatest cross product, say Iv(t2) and
Iv(t3). The condition of the theorem can be written asIvT (t1)S Iv(t2) Iv(t3)

 ≥ α. (26)

In the worst case now defined, cp = ±
S

Iv(t2)


Iv(t3)

∥S[Iv(t2)]Iv(t3)∥∥cp∥, which
can be substituted in (26) to yieldIvT (t1)cp ≥ α

αp

V 2
M

.

Hence, in the conditions of the theorem, the sum of the absolute
values of the inner products of the linear velocity in {I} with cp at
t1, t2, and t3 respects

3
i=1

IvT (ti)cp ≥ α
αp

V 2
M

.

This means that there exists at least a t∗ equal to t1, t2, t3 or any
combination of the three such thatIvT (t∗)cp ≥ α

αp

3V 2
M

,

which implies that d
dτ

fpv(t∗, t)
 ≥

ααp

3
√
2RMV 2

M

,

and, by [32, Proposition 4.2], |fpv(τ , t)| ≥ α3, which in turn implies
∥f(τ , t)∥ ≥ α4.

This concludes the enumeration of all the possible values for c,
and the proof that, for every possibility, cTW (t, t + δ)c is lower
bounded, thus proving the sufficiency of the conditions of the the-
orem for the uniform complete observability of the pair (A(t), C).
Being related to the LTV system (5) through a Lyapunov transfor-
mation, this result implies that (A(t), C(t)) is also uniformly com-
pletely observable, and thus the proof of the sufficiency part of the
theorem is concluded.
In the same manner of the previous necessity theorems, the
proof is made by contraposition, i.e., by showing that the nega-
tion of the conditions implies that the pair (A(t), C) cannot be uni-
formly completely observable. Consider then the negation of the
conditions of the theorem, stated by

∀
δ>0
α>0

∃
t≥t0

∀
t1,t2,t3∈Tδ

:

det
IvT (t1)

IvT (t2)
IvT (t3)

 < α

or Assumption 2 is false.

This means that the linear velocity of the vehicle in the inertial
frame canmove inR3 even though the quality of the tridimensional
space it spans is degraded, i.e., considering that the inertial linear
velocity is, in general, given by Iv(t) = vγ (t)γ + vν(t)ν + vρ(t)ρ,
there is at least one direction ρ in R3 upon which the linear veloc-
ity is upper bounded and as small as wanted, |Iv(t) · ρ| < β for all
t ∈ Tδ and for all β > 0. The proof follows by showing that this
limitation on the linear velocity implies that the pair (A(t), C) is
not uniformly completely observable, i.e.,

∀
δ>0
ϵ>0

∃
t≥t0

∃
c∈Rnχ
∥c∥=1

: cTW (t, t + δ)c < ϵ. (27)

For that purpose, consider the substitution of (24) in the definition
of cTW (t, t + δ)c given by (11), which yields

cTW (t, t0)c =

 t+δ

t
∥cv∥

2dτ

+

 t+δ

t


v[0](τ , t)cp − v[1](τ , t)cv − cr

2
dτ . (28)

The statement (27) requires the existence of a single unit vector c
that satisfies it. Therefore, it is possible to choose particular values
for cp, cv , and cr that aid the development of the proof. For that
purpose, consider that cv and cr are both zero. In this case, (28) be-
comes

cTW (t, t + δ)c =

 t+δ

t

 τ

t

yTv(σ )RT (σ )

yR1(σ )
cpdσ

2
dτ ,

which, noting that Iv(t) = R(t)yv(t) and yR1(t) = r1(t) and using
the Cauchy–Schwarz inequality, allows to write

cTW (t, t + δ)c ≤

 t+δ

t

 τ

t

 IvT (σ )cp
r1(σ )

2
dσdτ .

If cp is chosen as the unit vector ρ previously introduced, it is pos-
sible to further simplify this expression, yielding

∀
δ>0
ϵ>0

∃
t≥t0

∃
c∈Rnχ
∥c∥=1

: cTW (t, t + δ)c <
β2δ2

2R2
m

:= ϵ,

where β :=
√
2ϵ Rm

δ
and Assumption 1 was used. From this it is

possible to conclude that if the conditions of the theorem do not
hold, the pair (A(t), C) is not uniformly completely observable.
This pair belongs to system (7), that is related to the LTV system (5)
by the Lyapunov transformation (6) that maintains observability
properties. Hence, it follows that if the pair (A(t), C) is uniformly
completely observable, the conditions of the theorem must hold,
thus concluding the proof of the necessity part of the theorem. �

Remark 2. The determinant in (22) can be written as IvT (t1)
S

Iv(t2)


Iv(t3). Together with Assumption 2, this condition can be

understood as a persistent excitation condition, i.e., the velocity at
t1 must be sufficiently out of the plane defined by the velocity at
t2 and t3 for the vector space defined by them not to degenerate in
time.
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Table 1
Kalman filter parameters.

Position Velocity Range

Q Ts10−3I3N Ts10−2I3N Ts10−5I3N
R – 10−3I3 INO

4. Filter design and implementation

This section addresses the design of the sensor-based RO-SLAM
filter. The theoretical results of the previous section were estab-
lished in a deterministic setting, and thus the presence ofmeasure-
ment noise raises the need for a filtering solution. Theorems 2–4
show that it is possible to design an observer with globally expo-
nentially stable error dynamics for the nonlinear system (1). Hence,
a Kalman filter follows naturally for the augmented nonlinear sys-
tem (4).

Due to the discrete nature of the available sensor suite, the cho-
sen solution is a discrete Kalman filter, and thus the continuous-
time system (4) must be discretized. In this section, any quantity
denoted as (.)k is the same as (.)(tk). Let Ts be the synchronized
sampling period of the sensor suite and t0 be the initial time. Then,
the discrete time steps can be expressed through tk = kTs+t0, with
k ∈ NO. The process employed was the Euler forward discretiza-
tion, with a small detail regarding the rotation of a landmark from
one instant to the following. For the purpose of obtaining this rota-
tion, it is considered that the angular velocity is constant over each
sampling interval. It follows that

RT
k+1Rk = exp (−S [ωk] Ts) ,

and thus it is possible to write the discrete system dynamics
xk+1 = Fkxk + ξk
yk+1 = Hk+1xk+1 + θk+1,

(29)

with

Fk =

 FLk TsALV 0nL×nR
0nV ×nL I3 0nL×nR
TsARLk 0nR×nV InR


,

FLk = diag

RT
k+1Rk, . . . ,RT

k+1Rk

, and Hk := CF (tk). The vectors ξk

and θk represent the model disturbance and measurement noise
vector, that are assumed to be zero-mean discrete white Gaus-
sian noise. In what concerns the observability of this new discrete
system, the applicability of the observability results of the previ-
ous section, derived for the continuous case, is not trivial, given
the nonlinear character of the system. Nevertheless, in a previous
work, the authors of [33] have designed a source-localization filter
in a discrete-time setting with dynamics very similar to (29), and
found observability conditions that are directly related to the ones
presented here, thus hinting at the applicability of the continuous
time conditions to the discrete system, and to the global exponen-
tial stability of the ensuing Kalman filter.

The signals received from the beacon landmarks are tagged, and
therefore, the association of measured data with state data is triv-
ial. For this reason, there is no need for a data association algorithm,
nor for a loop closure procedure, which means that the algorithm
is a standard discrete Kalman filter, (see [34]), with the detail that,
when a landmark is invisible and its range is unavailable, the esti-
mated range is used in the predict step, allowing the propagation
in open loop of the invisible landmarks.

5. Simulation results

In this section, results from a typical run in a simulation
setting are presented. The simulated environment consists of 20
landmarks spread randomly throughout a 16m×16m×3mmap.
Fig. 2. Picture of the estimated map rotated and translated using the true trans-
formation at t = 300 s. The real trajectory is the blue line and the green ellipsoids
represent the 3σ uncertainty of each landmark estimate.

The trajectory of the vehicle was designed in order to satisfy the
observability conditions, and it can be seen as the blue line in Fig. 2.
All the measurements are assumed to be perturbed by zero-mean
Gaussian white noise, with standard deviations of σω = 0.05 °/s
for the angular rates, σv = 0.03 m/s for the linear velocity, and
σr = 0.03 m for the ranges. The Kalman filter parameters were
chosen as indicated in Table 1.

The performance of the RO-SLAM filter can be assessed through
Fig. 3, where the norms of the estimation error of 5 landmarks
are presented: after the initial transient period, the error stays
within an interval with magnitude of 10 cm. The estimation
error of the velocity is understandably small, as the quantity is
directly observed. Its mean is below 10−4 m/s and its standard
deviation below 10−3 m/s. The range error, that grows for invisible
landmarks, has a mean of 0.0266 m and its standard deviation
is 0.0435 m. For better visualization, in Fig. 4 it is presented in
detail the estimated errors and uncertainty bounds of a single
sensor-based landmark. These results are in accordance with the
theoretical results of Section 3, as the visible landmarks, as well as
the other estimated quantities, converge both in uncertainty and in
error. The periodic pattern that can be observed there is due to the
increase and decrease of uncertainty that occurs when a landmark
is not seen and suddenly reappears in the sensors field-of-view, or
the persistent excitation conditions of Theorem 4 are not fulfilled.

Finally, an example of the estimated map is given in Fig. 2,
where the colored ellipsoids represent the uncertainty associated
(3σp) and the small circles mark the true coordinates of each
landmark. The yellow quadrotor marks the position of the vehicle
at the time of the estimation and the blue line solid line is the real
trajectory. The estimated map was rotated and translated to the
inertial frame. Note that the 3σ uncertainty ellipsoids surround the
true values, as they should in a consistent filter.

This simulation was designed to attest the validity of the theo-
retical results presented in this paper, as well as the convergence
properties of the RO-SLAM filter here proposed. It was shown that
the algorithm is able to produce a consistentmap, depicted in Fig. 2.
Moreover, the good performance of the algorithm for a sufficiently
rich trajectory was demonstrated.

6. Experimental results

6.1. Setup

This section details an experiment that took place in the Sensor-
based Cooperative Robotics Research Laboratory – SCORE Lab – of
the Faculty of Science and Technology of the University of Macau.
The experimental setup consists of an AscTec Pelican quadrotor in-
strumented with a Microstrain 3DM-GX3-25 inertial measurement
unit (IMU) working at 200 Hz, a Microsoft Kinect, at 10 Hz, a Cross-
bow Cricket receiver, and VICON markers. Furthermore, the labwas
equipped with 7 more Crossbow Cricket motes, emitting sequen-
tially one at a time at 10 Hz (each beacon emits every 700 ms), as
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(a) Norm of the error. (b) Uncertainty.

Fig. 3. Evolution of the estimation of 5 landmarks in time.
Fig. 4. The estimation error of a single landmark for all coordinates with 3σ uncertainty bounds.
Fig. 5. The flow of information in the proposed algorithm. The process employed to obtain linear velocity measurements is also explained.
(a) The experiment area. (b) The instrumented quadrotor.

Fig. 6. The experimental setup. The Cricket beacons can be seen on the left spread around the room. The Cricket receiver is mounted on the quadrotor on the right.
well as with a VICON Bonita motion capture system, providing ac-
curate estimates of the linear and angular motion quantities of the
vehicle, that was used for validation of the estimates provided by
the RO-SLAM algorithm.

The cricket (highlighted in red in Fig. 6(b)) is a small hardware
platform consisting of a Radio Frequency (RF) transceiver, a micro-
controller, and other associated hardware for generating and
receiving ultrasonic signals and interfacing with a host device [27].
Each cricket beacon emits simultaneously a radio and acoustic
pulse that are received by the cricket placed in the vehicle, thus
allowing the computation of the ranges through difference of time
of arrival of the two pulses using the speed of sound corrected by
on-board temperature sensors.

The facing down camera (highlighted in blue in Fig. 6(b)) is used
to compute the linear velocity of the vehicle, through the process
depicted in Fig. 5. An implementation of SURF, see [35], detects
features in the RGB images which correspond to tridimensional
points in the Kinect pointclouds. The Nk tridimensional features
(f(i)k ) of two subsequent frames are associated using a Sequential
Compatibility Nearest Neighbor [11] algorithm, and then used in
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(a) x component.

(b) y component.

(c) z component.

Fig. 7. The sensor-based landmark #1 estimate against ground truth with 3σ uncertainty bounds and observation instants.
a Least Squares procedure to obtain the linear velocity in 3-D
through the following equation:

vk =

I3 03

 
HTH

−1 HT fk+1 − fk
Ts

where H ∈ R3Nk×6 is composed of Hi =


−I3 S


f(i)k


. As seen in
Fig. 6(a), to try to circumvent possible lack of features, the floorwas
covered with newspaper thus providing a good ground for feature
detection.

It must be stressed that the experiments detailed in this section
were designed as proof of concept, and as such, alternative sensors
and processes for obtaining the linear velocity of the platform
could have been employed. One possible example of alternative
techniques are optical flow procedures, a common approach for
velocity estimation [36].

6.2. Results

The experiment here detailed consists of series of hand-driven
circular-like laps of the quadrotor in a 6m×4marea covered by the
Cricket constellation (see Fig. 6). The run lasts for 5min, comprising
a total distance of around 90m at 0.270m/s. The trajectory, shown
in Fig. 9 was intended to maximize the exposure to each of the
beacons, as well as to provide sufficient excitation to the filter.

Figs. 7 and 8 depict the estimated position (solid blue) with
3σ uncertainty bounds of two different landmarks against the
ground truth providedbyVICON (dashed red) representing the best
(landmark #1) and worst (landmark #7) estimation performance
in this experiment. These quantities are accompanied by black
dots indicating the observation moments, to provide better
understanding of what is going on. As mentioned, each beacon
emits once every 700 ms, and, due to the nature of the receiver,
only one beacon pulse is received at a time. Furthermore, neither
of the beacons nor receiver are omnidirectional, which means that
there may occur long time intervals without any measurement
from one beacon. The black dots in both Figs. 7 and 8 show
the moments where each landmark is observed. As explained in
Section 1, the initialization of the landmarks is one of the more
challenging issues in RO-SLAM procedures. In this work, however,
the global convergence results imply that this issue is solved as
whichever the initial guess the filter will converge. Figs. 7 and
8, where each landmark was initialized at a random point in the
sphere defined by the corresponding range measurement, depict
exactly this. It can be seen that the convergence is very fast in
the horizontal plane, represented by Fig. 7(a) and (b), for the first
landmark, and Fig. 8(a) and (b) for the seventh. Moreover, after
converging, the estimation is very close to ground truth in the first
landmark and with higher error in the seventh. However, in the
vertical axis, the estimation is much worse, and the convergence is
also slower, as it can be seen in Figs. 7(c) and 8(c) that represent the
quantities associated with the vertical coordinate. That is due to
the less rich trajectory in that axis, as Fig. 9 shows. The optical flow
procedure employed is somewhat noisy, and as its measurements
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(a) x component.

(b) y component.

(c) z component.

Fig. 8. The sensor-based landmark #7 estimate against ground truth with 3σ uncertainty bounds and observation instants.
Fig. 9. The position of the vehicle in time.
of the linear velocity are directly used in the dynamics matrix in
(29) as if theywere the true value, the noise canmake that direction
appear observable, even if the information is sparse.

Finally, an example of the estimated map in the body-fixed
frame is presented in Fig. 10. The top view of the sensor-basedmap
is shown along with the true landmark positions and the vehicle
path rotated and translated to the body-fixed frame. The colored
ellipses represent orthogonal cross-sections of 3σ uncertainty
ellipsoids, i.e., the estimation uncertainty, and the small circles
mark the true landmark positions.

These experiments show the good performance of the proposed
algorithm in realistic conditions, especially in the horizontal vari-
ables. The filter has some problems in the vertical coordinates due
to the less rich velocity profile and noisy optical flow measure-
ments, although in Section 5 a proper trajectory was designed and
the algorithm was shown to behave well. Therefore, these experi-
ments underpin the need for appropriate trajectories.

7. Conclusions

This paper presented a novel sensor-based range-only simulta-
neous localization and mapping filter with globally exponentially
stable error dynamics. This was achieved through state augmenta-
tion of a nonlinear system, which, along with the disposal of the
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Fig. 10. Top view of the estimated sensor-based map at t = 175 s.

non-visible landmarks, enabled regarding the resulting system as
linear time-varying. Thework focused on the observability analysis
of the resulting system, providing theoretical observability guar-
antees, and equivalence between the systems used in each step
of the analysis. The theoretical results include the derivation of
necessary and sufficient conditions for observability, stability and
convergence of the algorithm, establishing a constructive basis for
trajectory design. These results were followed by the design of a
Kalman filter with globally exponentially stable error dynamics.
Simulations allowed the validation of the results, and real world
experiments showed also the good performance of the proposed
algorithm in realistic conditions while demonstrating the need for
a properly designed trajectory.

Interesting points of future research are the extension of the
algorithm to make use of the full capabilities of a sensor network,
namely inter-sensor ranging, as well as the addition of other
sensors to improve the performance, such as accelerometers.
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