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Abstract—This paper presents a novel filtering technique to
estimate the position of a moving target based on discrete-time
direction and velocity measurements. The velocity is assumed to
be corrupted by an unknown constant bias, which is explicitly
estimated in the process. A nonlinear system is first designed,
describing the dynamics and observations associated to the
target, followed then by a state augmentation that yields an
equivalent linear time-varying system. An observability analysis
for the latter is conducted based on necessary and sufficient
conditions that are related to the target’s motion. The final
estimation solution resorts to a Kalman Filter with globally
exponentially stable error dynamics. Its performance is assessed
via realistic numerical simulations, including Monte Carlo runs
and a comparison with both the standard Extended Kalman
Filter and the Bayesian Cramér-Rao bound. A set of experimental
results achieved within the scope of a realistic underwater mission
scenario is also presented that allows to further assess the
proposed technique.

Index Terms—Source Localization, Global Exponential Stabil-
ity, Uniform Complete Observability, Kalman Filter, Bayesian
Cramér-Rao bound

I. INTRODUCTION

The task of determining the position of a moving target
poses many challenges, in particular in the fields of robotics,
and control and estimation theory, see, e.g., [1], [2]. Real-
world applications tend to lean on GPS-based systems, which
can provide accurate position and velocity measurements, of-
ten improved with the help of real-time kinematic corrections.
However, impracticality and unreliability of GPS signals in
underwater and indoor environments, respectively, affect the
development of robotic systems, which, naturally, shifts to
more complex sensor integrating techniques. A recurring solu-
tion in the target tracking paradigm, henceforward designated
as source localization problem, considers that the moving
source emits signals encoding information about the source’s
absolute or relative motion. One can then feed the decoded
information to algorithms whose filtered output is an estimate
of the position of the source with respect to a given frame.

This well-known problem of source localization has been
given a considerable amount of attention, with topics ranging
from passive bearings-only observations, see e.g. [3], [4], [5],
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to range-only measurements, see e.g. [6] and [7], where the au-
thors present a slight variation to the source localization prob-
lem by achieving circumnavigation. Whereas bearing measure-
ments comprehend the passive paradigm, range observations
imply an exchange of information between the source and the
receiver, often based on synchronized interrogation schemes.
However, velocity scaling and offsets, sensor position errors
or synchronization clock drifts are drawbacks common to
both paradigms, as evidenced in [8]. Correcting biases might
prove useful in the design of estimation techniques, see, e.g.,
[9], [10], especially when biases stem from the nonlinear
processing of non-perturbed measurements [11].

Other approaches to the problem of source localization rely
on the use of multiple receivers, as shown in [12] and [13].
Moreover, besides bearings and ranges, localization techniques
can take advantage of a myriad of sensors and observations,
for instance multi-beam Doppler Velocity Logs [14], Doppler
shifts [15] or wave energy [16].

Nonetheless, it is frequent to adapt the problem to search
and rescue scenarios consisting of a stationary source and a
mobile agent that aims to estimate its own relative position,
see [17], where only the measured distance from the source
is available. By having a mobile agent, one is allowed to
describe trajectories that induce persistent excitation, therefore
improving the performance of the estimators. Optimizing the
maneuvers described by the receiver for bearings-only tracking
is a topic addressed in [18]. In [19] it is reported a study
on the optimal observer trajectories for bearings-only tracking
by minimizing the trace of the Cramér-Rao lower bound.
Similarly, but using range measurements instead, an optimal
acoustic sensor placement technique for underwater tracking
in three dimensions is presented in [20].

In this paper, a discrete-time linear system is designed
for the problem of source localization based on discrete-time
direction and velocity measurements. The work presented in
the sequel builds on previous results obtained by the authors
[21]. Also from the authors, see: [22], where the problem
of source localization based on direction measurements was
studied in a continuous-time setting; and [23], where multiple
bearing measurements are considered as opposed to single
reading, which, despite being theoretically more demanding,
deems the proposed solution more attractive from a practical
point of view. Notwithstanding, in this paper, strong forms
of observability, namely uniform complete observability, are
ensured through a condition that closely relates to the motion
of the source. Most noticeably, in spite of a mild assumption
concerning a discretization approach, no strong assumptions
are made concerning the velocity of the source, apart from it
being assumed bounded, whereby most practical trajectories
are permitted. The problem addressed in this paper has also
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been considered in [24]. In a continuous-time framework, a
nonlinear observer for position and velocity bias estimation is
presented that achieves global practical stability.

In practice, bearing measurements consist in discrete-time
samples, as is the case of underwater applications. This reality
constitutes a challenge both in terms of observability analysis
and filter design. In this paper, resorting to a discrete-time
linear time-varying (DT-LTV) system, the design of an ob-
server follows naturally from using classic estimation tools for
linear systems. Thus, a Kalman filter is proposed that achieves
globally exponentially stable (GES) error dynamics.

This paper is organized as follows: Section II describes the
framework of the problem and outlines the system dynamics.
The filter design and proofs regarding observability properties
of the overall system are presented in Section III. Section IV
includes simulation results along with Monte Carlo runs and
a comparison with both the Extended Kalman Filter (EKF)
and the Bayesian Cramér-Rao Lower Bound (BCRLB). Ex-
perimental results within the scope of an underwater mission
scenario are shown in Section V. Finally, conclusions and a
summary of the main results of this paper are reported in
Section VI.

A. Notation

Throughout the paper, a bold symbol stands for a multi-
dimensional variable. Accordingly, the symbol 0 denotes a
matrix of zeros and I an identity matrix, both of appropri-
ate dimensions. A block diagonal matrix is represented as
diag(A1,...,An) and the set of unit vectors on R3 is denoted by
S(2). The determinant of a matrix is denoted by the operator
| · |. A positive-definite matrix M is identified as M � 0. In
R3, the skew-symmetric matrix of a generic vector a ∈ R3 is
defined as S(a), such that for another generic vector b ∈ R3

one has a× b = S(a)b, where

S(a) =

 0 −az ay
az 0 −ax
−ay ax 0

 .
Finally, for convenience, the transpose operator is denoted by
the superscript (·)T .

II. PROBLEM STATEMENT

Consider a mission scenario wherein a moving source
describes a trajectory whose evolution in time is unknown.
Let sk ∈ R3 be the position of the source at time t = tk ∈ R,
with tk+1 = tk + Tk, where k ∈ N0 is the time index, and
Tk is the sampling time, which is assumed not constant. On
the other hand, if Tk = T , for all k, then tk = t0 + kT ,
where t0 > 0 corresponds to the initial time. At time t = tk,
the source, whose position one aims to estimate, moves with
inertial velocity given by vk ∈ R3. Suppose that, at each
sampling instant, one has access to readings of this inertial
source velocity, denoted by vmk ∈ R3 (superscript m stands
for measurement). The latter are corrupted by an unknown
constant inertial velocity bias, denoted by bk ∈ R3, such
that vmk = vk − bk, for all k. Furthermore, assume that the

direction of the source relatively to the origin of the inertial
frame is also measured, and given by

dk =
sk
‖sk‖

∈ S(2). (1)

For the continuous-time case, the evolution of the source
position is computed by integrating the source velocity. Solv-
ing this integral is equivalent to solve an ordinary first order
differential equation with a given initial value. The final
solution for the discrete-time case is well approximated, under
certain conditions, by the explicit first order Euler method,
which motivates the following mild assumption:

Assumption 1. The motion described by the source is such
that

∀ tk ≤ t ≤ tk+1 :

∫ t

tk

v(σ)dσ = (t− tk)vk. (2)

Hence, the velocity is assumed to remain constant during the
sampling interval.

This is a common assumption. Naturally, it holds stronger
when considering short sampling intervals and/or slow maneu-
vers by the source, as is the case of most underwater robotic
operations. From (2), the evolution of the source position is
given by

sk+1 = sk + Tkvk. (3)

Thus, the nominal nonlinear discrete-time system dynamics
for source localization with velocity bias estimation can be
written as 

sk+1 = sk + Tkvk

bk+1 = bk

dk = sk‖sk‖−1

vmk = vk − bk

. (4)

Using the dynamics in (4), the discrete propagation established
in (3) can be rewritten as

sk+1 = sk + Tkbk + Tkv
m
k . (5)

To illustrate a practical situation, suppose the source is
an autonomous underwater vehicle (AUV) equipped with an
Inertial Measurement Unit (IMU) in addition to an Acoustic
Doppler current profiler. The latter provides velocity readings,
taken with respect to the fluid, which when combined with
the IMU outputs allow to compute a velocity expressed in
the inertial frame, i.e. vmk . Suppose also that the velocity of
the fluid (i.e. the ocean current) is given by bk, which is
assumed constant, and that the source emits an acoustic signal
which encapsulates vmk . In turn, let there be at the origin
of the inertial frame a receiver equipped, for example, with
an Ultra-Short BaseLine (USBL) acoustic positioning system.
Upon signal detection, the receiver computes a bearing and
simultaneously decodes the sampled signal, thus unwrapping
the vector vmk that had been coded before.

In short, the problem of source localization considered in
this paper is that of designing a filter with GES error dynamics
for the nominal nonlinear system (4), considering also additive
process and sensor noises.

In order to validate some of the results derived in the
remainder of this paper, the following assumption is made:
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Assumption 2. For all k, the motion kinematics of the source
is such that

dTk dk+1 > 0,

and all direction measurements are well defined and norm-
bounded by construction, implying, from (1), that sk 6= 0.

Notice that this is a mild assumption, as a variation of 90
degrees or more of direction measurements between consec-
utive instants is not expected. Furthermore, the source cannot
physically overlap the receiver.

III. SOURCE LOCALIZATION FILTER DESIGN

In this paper, sampling times can change over time and a
passive tracking paradigm is considered where the velocity
measurements correspond to the movement of the source with
respect to an inertial reference frame. By regarding the velocity
of the source as an external input of the system, one can
design a linear system that mimics both the dynamics and
observations as presented in previous work by the authors [21].

A. System Augmentation

This section details the procedures in obtaining a linear
system useful for the design of an estimator for the nonlinear
discrete-time system (4). In summary, the range to the source
is added to the system state vector, whereby the output, based
on this new augmented vector, is redesigned to become linear.
Moreover, velocity measurements are regarded as inputs to the
system, which allows to write the overall system dynamics as
a function of both the whole state vector and the system input.

Define as system state
x1,k := sk

x2,k := bk

x3,k := ‖sk‖
,

where the scalar x3,k corresponds to the distance from the
source to the origin of the frame. Then, from (4), the evolution
of the first two states is simply given by{

x1,k+1 = x1,k + Tkx2,k + Tkuk

x2,k+1 = x2,k

(6a)

with uk := vmk . The less intuitive state propagation concerns
x3,k, but from (1) it is possible to write

dk+1x3,k+1 = x1,k+1. (7)

Since dTk+1dk+1 = ‖dk+1‖2 = 1, the inner product of both
sides in (7) with dk+1 yields

x3,k+1 = dTk+1x1,k+1. (8)

Next, substitute (6a) in (8) and notice that x1,k = dkx3,k,
which allows to rewrite (8) as

x3,k+1 = dTk+1dkx3,k + Tkd
T
k+1x2,k + Tkd

T
k+1uk.

This is an interesting result in the sense that it expresses x3,k+1

as a linear function of its previous state, x3,k, in addition to
an external input.

Define now the augmented state vector

xk :=

x1,k

x2,k

x3,k

 ∈ R3+3+1.

From (7), the following holds:

0 = x1,k+1 − x3,k+1dk+1, (9)

whereby a vector of virtual null measurements is taken in place
of explicit direction measurements. Hence, with respect to the
nominal nonlinear dynamics in (4), by considering (9), by
discarding the original nonlinear output (1), and by regarding
the velocity measurements as an input (instead of a state) to
the system, one can write the DT-LTV system{

xk+1 = Akxk + Bkuk

yk+1 = Ck+1xk+1

, (10)

where the dynamics matrix Ak ∈ R7×7 is given by

Ak =

I TkI 0
0 I 0
0 Tkd

T
k+1 dTk+1dk

 , (11)

the input matrix Bk ∈ R7×3 is written as

Bk =

 TkI
0

Tkd
T
k+1

 ,
and, finally, the observations matrix Ck ∈ R3×7 can be written
as

Ck =
[
I 0 −dk

]
.

The following lemma is useful in the sequel.

Lemma 1. Three vectors v1,v2,v3 ∈ R3 are linearly inde-
pendent if and only if∣∣∣∣∣∣

vT1 v1 vT1 v2 vT1 v3

vT2 v1 vT2 v2 vT2 v3

vT3 v1 vT3 v2 vT3 v3

∣∣∣∣∣∣ > 0.

Proof. Define V := [v1 v2 v3] ∈ R3×3. The three vectors are
linearly independent if and only if rank(V) = 3. The latter is
verified if and only if |V| 6= 0. In turn, this is true if and only
if |VT ||V| = |VTV| > 0.

B. Observability analysis

Given k0, kf > 0, and letting kf ≥ k0 + 1, if any
initial state xk0 can be uniquely determined from the se-
quences of inputs and outputs, {uk0 ,uk1 , . . . ,ukf−1} and
{yk0 ,yk1 , . . . ,ykf−1}, respectively, then the DT-LTV system
(10) is said to be observable on [k0, kf ] ([25, Definition 25.8]).
Therefore, the main concern lies in selecting the shortest inter-
val for observability. The next theorem provides a necessary
and sufficient condition for the observability criterion.

Theorem 1. Under Assumption 2, and for any fixed k ≥ k0,
the DT-LTV system (10) is observable on [k, k + 3] if and
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only if the set of vectors D := {dk,dk+1,dk+2} is linearly
independent.

Proof. From Lemma 1, and since ‖dk‖ = 1, it follows that
the DT-LTV system (10) is observable if and only if∣∣∣∣∣∣

1 dTk dk+1 dTk dk+2

dTk+1dk 1 dTk+1dk+2

dTk+2dk dTk+2dk+1 1

∣∣∣∣∣∣ > 0,

which is equivalent to

2dTk dk+1d
T
k dk+2d

T
k+1dk+2 −

(
dTk dk+1

)2 − (dTk dk+2

)2
+ 1−

(
dTk+1dk+2

)2
> 0.

(12)
In the remainder of this paper, (12) will be called the observ-
ability condition.

The proof of Theorem 1 resorts to the analysis of the
observability matrix O[k, k + 3] associated with the pair
(Ak,Ck) on [k,k + 3], given by

O[k,k + 3] =

 Ck

Ck+1Ak

Ck+2Ak+1Ak

 ∈ R9×7. (13)

The DT-LTV system 10 is observable on [k,k+ 3] if and only
if (13) is full rank. Let c = [cT1 cT2 c3]T ∈ R7 be a unit vector,
with c1,c2 ∈ R3 and c3 ∈ R, and write

O[k,k + 3]c =
[
OT

1 OT
2 OT

3

]T ∈ R3+3+3,

with
O1 := c1 − dkc3, (14)

O2 := c1 − TkS2(dk+1)c2 −
(
dTk+1dk

)
dk+1c3, (15)

and

O3 := c1 +
[
TkI− Tk+1S

2(dk+2)
]
c2

−
(
dTk+2dk+1

) [
Tk
(
dTk+1c2

)
dk+2 + c3

(
dTk dk+1

)
dk+2

]
,

(16)
where the projection operator S2(a) = aaT − I, for ‖a‖ = 1,
was used.

To prove that (12) is a necessary condition, suppose first
that it does not hold, i.e.

2dTk dk+1d
T
k dk+2d

T
k+1dk+2 −

(
dTk dk+1

)2 − (dTk dk+2

)2
+ 1−

(
dTk+1dk+2

)2
= 0.

(17)
This is to say, by contraposition, that (17) implies that the DT-
LTV system (10) is not observable. Consider now two different
cases:
• dk+1 = dk+2

Let c1 = 0, c2 = dk+2, and c3 = 0. Since S2(a)a = 0,
substituting c in (14)-(16) results in O[k,k + 3]c = 0, which
means that the observability matrix is not full rank and hence
the DT-LTV system (10) is not observable.
• dk+1 6= dk+2

Let c1 = dkc3,

c2 = α
c3

Tk + Tk+1
dk+1 +

c3
Tk

S2(dk+1)dk, (18)

with

α := − dTk dk+1

1−
(
dTk+1dk+2

)2 − Tk+1

Tk

(
dTk dk+2

)(
dTk+1dk+2

)
1−

(
dTk+1dk+2

)2
+

(
1+

Tk+1

Tk

) (
dTk dk+1

) (
dTk+1dk+2

)2
1−

(
dTk+1dk+2

)2 ,

(19)
and c3 6= 0. Again, substitute the unit vector c in (14)-(16).
The terms O1 and O2 are easily shown to be zero, while O3,
after tedious computations, can be written as

O3 =
c3

1−
(
dTk+1dk+2

)2 Tk+1

Tk

(
dk

[(
dTk+2dk+1

)2 − 1
]

+ dk+1

[(
dTk+1dk

)
−
(
dTk+2dk

) (
dTk+2dk+1

)]
+ dk+2

[(
dTk+2dk

)
−
(
dTk+2dk+1

) (
dTk+1dk

)] )
.

(20)
Now, since (17) holds, i.e. D is linearly dependent, there

are a,b ∈ R such that dk = adk+1 + bdk+2. Substituting this
in (20) allows to show that O[k,k + 3]c = 0, therefore the
observability matrix is not full rank and hence the DT-LTV
system (10) is not observable. Thus, it has been shown that if
(12) does not hold, the DT-LTV system (10) is not observable
on [k, k+ 3]. By contraposition, if the DT-LTV system (10) is
observable on [k, k+ 3], then (12) must hold, thus concluding
the proof of necessity.

The proof of sufficiency follows by contraposition as well.
Suppose that the DT-LTV (10) is not observable, which means
there exists a unit vector c such that O[k,k+3]c = 0. In turn,
this must imply that the observability condition (12) cannot
hold. From (14) it must be

c1 = dkc3. (21)

Consider first that c3 = 0. Then, from (21) it must be also
c1 = 0. Substituting that in (15) allows to conclude that it
must be c2 = ±dk+1. Substituting c1 = 0, c2 = ±dk+1, and
c3 = 0 in (16) gives

(Tk + Tk+1) S2(dk+2)dk+1 = 0, (22)

whose only solution, under Assumption 2 , is dk+1 = dk+2.
With dk+1 = dk+2 it follows that the set of vectors is not
linearly independent. Hence, it has been shown that if a unit
vector c exists, with c3 = 0, such that O[k,k+ 3]c = 0, then
(12) cannot hold. Consider now c3 6= 0 and substitute (21) in
(15) to obtain

TkS
2(dk+1)c2 = c3

[
dk−

(
dTk dk+1

)
dk+1

]
. (23)

Suppose first that c2 = 0. Then, from (23) it results

c3S
2(dk+1)dk = 0,

whose only solution, with c3 6= 0 and under Assumption 2,
is dk = dk+1, which means that the set of vectors D is
not linearly independent. Consider now c3 6= 0, c2 6= 0, and
decompose c2 as

c2 =
β

Tk + Tk+1
dk+1 + c′2, (24)
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where β ∈ R and c′2 ∈ R3 is orthogonal to dk+1. Substituting
(24) in (23) implies

c′2 =
c3
Tk

S2(dk+1)dk,

which means that it must be

c2 =
β

Tk + Tk+1
dk+1 +

c3
Tk

S2(dk+1)dk, (25)

for some β ∈ R. Next, substitute (21) and (25) in (16) and
apply further simplifications in order to get

−
(

1 +
Tk+1

Tk

)(
dTk dk+1

)
c3S

2(dk+2)dk+1

+
Tk+1

Tk
c3S

2(dk+2)dk − βS2(dk+2)dk+1 = 0.

(26)

Notice that (26) is a sum of terms projected onto a plane
orthogonal to dk+2. Consequently, the inner product of the
left side of (26) with dk+2 is always null, regardless of β.
Moreover, (26) is satisfied if and only if the inner product of
the left side of (26) with the remaining two direction vectors
is null. Thus, by computing the inner product of both sides of
(26) with dk+1 one can write

β
{

1−
(
dTk+1dk+2

)2}
=

{
− Tk+1

Tk

(
dTk dk+2

) (
dTk+1dk+2

)
− dTk dk+1 +

(
1+

Tk+1

Tk

)(
dTk dk+1

)(
dTk+1dk+2

)2}
c3.

(27)
Since c2 6= 0 is the case under analysis, from (27) one
concludes that dk 6= dk+1. On the other hand, if dk = dk+1,
then the set of vectors D is not linearly independent. Suppose
now that dk+1 6= dk+2. It follows from (27) that

β = αc3, (28)

with α as defined in (19). Substituting (28) in (26), computing
the inner product of both sides of (26) with dk, and simplifying
allows us to conclude that (17) holds, and hence the set of
vectors D is not linearly independent. On the other hand,
if dk+1 = dk+2, then (17) also holds, yielding the same
conclusion. Thus, it has been shown that if a unit vector c
exists, with c3 6= 0, such that O[k,k + 3]c = 0, then the
set of vectors D is not linearly independent. But that had
already been shown for c3 = 0. Hence, if a unit vector c
exists such that O[k,k + 3]c = 0 or, equivalently, if the DT-
LTV system (10) is not observable, then the set of vectors D
is not linearly independent. By contraposition, if the set of
vectors D is linearly independent, the DT-LTV system (10) is
observable, thus concluding the proof of sufficiency.

Corollary 1. If the observability condition (12) holds, then
the initial state xk is uniquely determined by the input
and output sequences {uk,uk+1,uk+2} and {yk,yk+1,yk+2},
respectively.

Before proceeding, it is important to stress that the non-
linearities presented in the original nonlinear discrete-time
system (4) were replaced by a set of virtual null measurements,
as indicated by (9). In addition, there is nothing imposing the

initial condition of (4) to match that of the augmented DT-
LTV system (10). Consequently, regarding the observability
properties derived for the DT-LTV system (10), care must
be taken when extrapolating the previous conclusions to the
nonlinear discrete-time system (4). The following theorem
addresses this issue.

Theorem 2. Consider Assumption 2 and suppose that the
observability condition (12) holds. Then:

1) the initial condition of (10) matches that of (4), i.e.
x1,k0 = sk0
x2,k0 = bk0
x3,k0 = ‖sk0‖

; (29)

2) the discrete-time nonlinear system 4 is observable in the
sense that, given the system input uk and the output dk,
for k = k0, k0+1, k0+2, its initial condition is uniquely
determined; and

3) an observer for the DT-LTV system (10) with GES error
dynamics is also an observer for the nonlinear system
(4), whose error converges exponentially fast to zero for
all initial conditions.

Proof. According to Theorem 1, the initial condition of the
DT-LTV system (10) is uniquely determined by the corre-
sponding system output and input for k = k0, k0 + 1, k0 + 2.
Proving 1) consists in comparing the outputs of both the non-
linear system (4) and the DT-LTV system (10) as a function of
their initial state, and then show that (29) explains the system
output, which is zero for this particular DT-LTV system, as
indicated by (9). First, let xk0 := [xT1,k0 xT2,k0 x3,k0 ]T . Write
the output of (10) as function of the initial state xk0 , resulting
in yk0

yk0+1

yk0+2

 = 0 =

 Ck0

Ck0+1Ak0

Ck0+2Ak0+1Ak0

xk0

+

 0
Ck0+1Bk0

Ck0+2Ak0+1Bk0

uk0 +

 0
0

Ck0+2Bk0+1

uk0+1.

(30)

In light of Theorem 1, since the DT-LTV system (10) is
observable, one needs only to show that the initial condition
(29) explains (30). If it does, then, because the DT-LTV
system is observable, there can be only one initial condition
to explain the system output and, therefore, (29) is unique.
Hence, substitute (29) in (30) to obtain the three following
equations:

0 = sk0 − dk0‖sk0‖; (31)

0 = sk0 −S2(dk0+1)Tk0 (bk0 +uk0)−dk0+1d
T
k0+1dk0‖sk0‖;

(32)
and, finally,

0 = sk0 +Tk0 (bk0 +uk0)− Tk0+1S
2(dk0+2) (bk0 +uk0+1)

− dk0+2d
T
k0+2dk0+1d

T
k0+1 (dk0‖sk0‖+ Tk0 (bk0 +uk0)) .

(33)
From (1) it follows that (31) is true. In turn, according also to
(1), equation (32) can be rewritten as

0 = −S2(dk0+1) (sk0 + Tk0 (bk0 + uk0)) ,
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which, according to (5), yields 0 = −S2(dk0+1)sk0+1. As
sk0+1 is aligned with dk0+1, then (32) must also be true.
Lastly, after simplifications, equation (33) becomes

0 = −S2(dk0+2) (sk0+1 + Tk0+1 (bk0 + uk0+1)) .

Once again resorting to (5), and as bk0 = bk0+1, the previous
result yields 0 = −S2(dk0+2)sk0+2. Likewise, as sk0+2 is
aligned with dk0+2, (33) must be true, thus concluding the
proof of 1). Regarding 2), in Theorem 1 the initial condi-
tion of the DT-LTV system (10) was shown to be uniquely
determined. Accordingly, due to the correspondence between
both systems, the initial condition of (4) is also uniquely
determined, and thus the proof of 2) is concluded. The proof
of 3) follows naturally: the estimates of an observer with GES
error dynamics applied to (10) approach the true state globally
exponentially fast. Notwithstanding, this true state has been
shown to correspond to the state of the nonlinear discrete-time
system (4), therefore those estimates approach the state of (4)
globally exponentially fast, thus completing the proof.

The previous analysis considered the shortest interval for
observability. The observability condition (12) expresses that,
considering three time instants, the direction vectors ought to
span R3. This is an expected result in terms of compulsory
motion, as for systems with linear dynamics the direction
measurements alone cannot render the system observable [26].
Nonetheless, if larger intervals are considered, this condition
can be relaxed, in particular the direction measurements need
only to span R2. This leads to a new observability condition,
which is enclosed in the following theorem.

Theorem 3. Consider the set of four consecutive and coplanar
direction vectors D+ := {dk,dk+1,dk+2,dk+3} and let there
be constants a, b, c ∈ R such that

adk + bdk+1 + cdk+2 = 0. (34)

The DT-LTV system (10) is observable on [k, k+4] if and only
if dk, dk+1, dk+2 are all non-collinear and, for a 6= 0,

dk+3 6=


b

ad

Tk+2dk+1

Tk+Tk+1
+
c

ad

Tk+1+Tk+2

Tk
dk+2, if dk+1 6= dk+2

dk+1, if dk+1 = dk+2

,

(35)

where d ∈ R\{0} is a normalizing constant such that the right
side of (35) has always unit norm.

Proof. The proof follows similar steps to those of Theorem
1, only this time resorting to the analysis of the observability
matrix O[k,k + 4]. Start by writing

O[k,k + 4]c =
[
OT

1 OT
2 OT

3 OT
4

]T ∈ R3+3+3+3,

where O1, O2 and O3 are the same as in (14)-(16), respec-
tively, O4 is given by

O4 :=c1 − dk+3d
T
k+3dk+2d

T
k+2dk+1d

T
k+1dkc3

+
[
(Tk+Tk+1+Tk+2)I−Tkdk+3d

T
k+3dk+2d

T
k+2dk+1d

T
k+1

−Tk+1dk+3d
T
k+3dk+2d

T
k+2 − Tk+2dk+3d

T
k+3

]
c2,

(36)

and c = [cT1 cT2 c3]T ∈ R7 is again a unit vector, with c1,c2 ∈
R3 and c3 ∈ R. To prove necessity, suppose that dk, dk+1,
dk+2 are all collinear or that (35) does not hold, i.e.

dk+3 =


b

ad

Tk+2dk+1

Tk+Tk+1
+
c

ad

Tk+1+Tk+2

Tk
dk+2, if dk+1 6= dk+2

dk+1, if dk+1 = dk+2

.

Consider now three different cases:
• dk = dk+1 = dk+2

Let c1 = dkc3 and c2 = −dkc3/ (Tk + Tk+1 + Tk+2).
Hence, regardless of dk+3, O[k,k + 4]c = 0, which means
that for the DT-LTV system (10) to be observable dk, dk+1,
dk+2 must be all non-collinear.
• dk 6= dk+1 = dk+2

Choose c = [0 ± dTk+2 0]T . It follows from Theorem 1 that
O1 = O2 = O3 = 0. Furthermore, since (35) does not hold,
one has dk+3 = dk+2 = dk+1. Then, regardless of dk, O4 =
0. Therefore, O[k,k + 4]c = 0, which means that for the
DT-LTV system (10) to be observable, (35) must hold.
• dk+1 6= dk+2

Let c1 = dkc3, c2 be given by (18) and c3 6= 0. Suppose that
b = 0, which means that dk = dk+2 = dk+3, or, alternatively,
suppose that c = 0, which means that dk = dk+1 = dk+3. In
both situations, it follows from Theorem 1 that O1 = O2 =
O3 = 0. As to O4, it obeys

O4 =


b

a

Tk+2

Tk + Tk+1
c3S

2(dk+3)dk+1 = 0, c = 0

c

a

Tk+1 + Tk+2

Tk
c3S

2(dk+3)dk+2 = 0, b = 0

.

With both b and c different from 0 it is possible to check
by long, but straightforward computations that if (35) does
not hold, then O4 = 0, which means (10) is not observable.
Therefore, for the DT-LTV system (10) to be observable, (35)
must hold.

Regarding the sufficiency of (35) being true in addition to
dk, dk+1, dk+2 being all non-collinear, suppose that both
statements hold and that the DT-LTV (10) is not observable,
which is equivalent to say that there exists a unit vector c such
that O[k,k+ 4]c = 0. Thus, from (14) it must be c1 = dkc3.
Let c3 = 0, implying c1 = 0. For O2 to be zero, it must be
c2 = ±dk+1. Substituting c in (16) leads to (22), whose only
solution is, under Assumption 2, dk+1 = dk+2. Now, given
the current c and dk+1 = dk+2, setting (36) to zero yields
S2(dk+3)dk+1 = 0, whose only solution, under Assumption
2, is dk+1 = dk+3, but this means that dk+1 = dk+2 = dk+3,
hence (35) cannot hold. Next, let c3 6= 0 and c2 = 0. From
(15) and (16) one gets dk = dk+1 and dk+1 = dk+2,
respectively, but this means that having all three directions
being non-collinear cannot hold. Thus, let c2 6= 0, more
specifically decompose it as expressed by (25). Recall the
proof of Theorem 1: it was shown that, given the current value
of c, for O3 to be zero the original observability condition
(12) could not hold when assuming dk+1 6= dk+2. However,
having dk+1 = dk+2 does not prevent collinearity with dk
from being verified. Still, the only solution for O3 = 0 is
dk = dk+2, but in this case the three consecutive directions
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are all collinear. On the other hand, when dk+1 6= dk+2, and
further supposing that (12) does not hold, one has O3 = 0
for c1 = dkc3, and c2 and β as given by (25) and (28),
respectively. Finally, make the appropriate substitutions in (36)
and simplify in order to obtain

O4

1−
(
dTk+2dk+1

)2
c3

Tk
Tk+1

=

−
(

I− Tk+2

Tk + Tk+1
S2(dk+3)

)
dk+1d

T
k+1S

2(dk+2)dk

+
(

1−
(
dTk+2dk+1

)2)[Tk+2

Tk+1
S2(dk+3)− I

]
dk

− dk+3

(
dTk+3dk+2

)
dTk+2S

2(dk+1)dk.

According to (34), this previous result can be rewritten in a
simpler format as

O4 = −c3S2(dk+3)

[
b

a

Tk+2dk+1

Tk+Tk+1
+
c

a

Tk+1+Tk+2

Tk
dk+2

]
.

Due to Assumption 2 (two directions cannot oppose each other)
and to the fact that dk+1 6= dk+2, the term

b

a
dk+1

Tk+2

Tk + Tk+1
+
c

a
dk+2

Tk+1 + Tk+2

Tk
(37)

cannot be null, which means that for O4 to be zero, then (37)
must be aligned with dk+3, i.e.

dk+3 =
b

ad

Tk+2

Tk + Tk+1
dk+1 +

c

ad

Tk+1 + Tk+2

Tk
dk+2,

where d is the normalizing constant that ensures ‖dk+3‖ = 1.
Hence, the relaxed condition (35) cannot hold. Thus, it has
been shown that if a unit vector c exists, with c3 6= 0, such
that O[k,k + 4]c = 0, then (35) cannot hold. But that had
already been shown for c3 = 0, which allows to conclude
that if a unit vector c exists such that O[k,k + 4]c = 0 or,
equivalently, if the DT-LTV system (10) is not observable,
then (35) cannot be true. Therefore, by contraposition, if (35)
holds, the DT-LTV system (10) is observable, thus concluding
the proof of sufficiency.

Remark 1. The previous theorem studied the observability of
the DT-LTV system (10) when four consecutive and coplanar
direction vectors are considered. Conversely, in the absence
of coplanarity among these vectors, one simply resorts to
Theorem 1. Unfortunately, as opposed to Theorem 1, the
observability condition stated in Theorem 3 lacks an intuitive
geometric interpretation.

C. Kalman Filter

Section III-A introduced a DT-LTV system for source
localization based on direction and velocity measurements.
Its observability was then studied in Section III-B. Regarding
linear estimators, the Kalman filter follows as the natural
estimation solution and, because it is widely known, its design
is omitted in this paper.

Regarding the Kalman filter model, its system dynamics,
including additive system disturbances and sensor noise, can
be written as {

x̂k+1 = Akx̂k + nk

ŷk+1 = Ck+1x̂k+1 + wk+1

,

where nk ∈ R7 is zero-mean white Gaussian noise, with
E[nkn

T
j ] = Qkδk−j , Qk ∈ R7×7 being the positive semi-

definite covariance of the process noise, and where wk ∈ R3

is also zero-mean white Gaussian noise, with E[wkw
T
j ] =

Rkδk−j , Rk � 0, Rk ∈ R3×3 being the covariance of the
observation noise. The noises are assumed to be uncorrelated,
whereby E[nkw

T
j ] = 0, for all k and j, and they are also

assumed to be additive, despite the fact that it might not
correspond to reality. Thus, the proposed solution is regarded
as sub-optimal.

In order to ensure stability of the Kalman filter, stronger
forms of observability are required as this is a time-varying
system, in particular, uniform complete observability. As such,
a new condition is derived, closely related to the one es-
tablished in (12), but considering uniform bounds in time.
Consequently, as this new derivation takes boundedness into
account, Assumption 2 alone is not enough to support it, which
motivates the following updated (but still mild) assumption.

Assumption 3. Let there be positive constants τ1, τ2, δ1, δ2
such that, for all k ≥ k0,

δ1 < dTk dk+1 < 1− δ2, and τ1 < Tk < τ2.

The following theorem introduces a sufficient condition
that, if verified, deems the DT-LTV system (10) uniformly
completely observable (u.c.o.), thus guaranteeing that the
Kalman filter presents GES error dynamics.

Theorem 4. Given an integer N , consider any three consec-
utive direction measurements in the interval I := [k, k +N ],
given by {dk+l,dk+l+1,dk+l+2}, with 0 ≤ l ≤ N − 2. Then,
the DT-LTV system (10) is u.c.o. if

∃σ>0 ∀k≥k0 fObs ≥ σ, (38)

where,

fObs := 1 + 2dTk+ldk+l+1d
T
k+ldk+l+2d

T
k+l+1dk+l+2

−
(
dTk+ldk+l+2

)2 − (dTk+ldk+l+1

)2 − (dTk+l+1dk+l+2

)2
.

Proof. According to [27, Definition 7.153], the DT-LTV sys-
tem (10) is u.c.o. if

∃N>0
α>0
β>0

∀k≥k0 αI ≤ J [k +N, k] ≤ βI, (39)

with

J [k +N, k] =
k+N∑
i=k

ΦT [i, k+N ]CT
i CiΦ[i, k+N ],

where, for i ∈ [k, k + N ], the transition matrix Φ ∈ R7×7,
associated with the dynamics matrix Ak, is given by

Φ[k +N, i]=


k+N−i∏
l=1

Ak+N−l, i < k +N

I, i = k +N

. (40)
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Regarding (40), it is a simple matter of computations to show
that from (11) one can write, for i < k +N ,

k+N−i∏
l=1

Ak+N−l =

I Φ12[i]I 0
0 I 0
0 Φ32[i] Φ33[i]

 ,
with

Φ12[i] :=
k+N−1∑
l=i

Tl, (41)

Φ32[i] := dTk+N

k+N−1∑
l=i

Tl
k+N−1−l∏
m=1

l≤k+N−2

dk+N−mdTk+N−m

 ,

(42)
and, finally,

Φ33[i] :=
k+N−i∏
l=1

dTk+N−l+1dk+N−l. (43)

Furthermore, under Assumption 2, and since Ak is invertible
for every k, notice that

Φ[i, k +N ] = Φ−1[k +N, i],

which means, according to (41), (42) and (43), that it is
possible to write

k+N−i∏
l=1

A−1
k+N−l =

I −Φ12[i]I 0
0 I 0

0 −Φ32[i]
Φ33[i]

1
Φ33[i]

 .
Now, let there be a unit vector u = [uT1 uT2 u3]T ∈ R7, with
u1,u2 ∈ R3 and u3 ∈ R, such that, for all ‖u‖ = 1, (39) can
be rewritten as

α ≤ uTJ [k+N, k]u =

k+N∑
i=k

‖CiΦ[i, k+N ]u‖2 ≤ β. (44)

The right inequality in (44) is easily shown to be always true
since all matrices involved are norm-bounded and well defined
by construction. Regarding the left inequality in (44), start by
expanding the summation as follows

α ≤‖CkΦ[k, k +N ]u‖2 + . . .+ ‖Ck+lΦ[k + l, k +N ]u‖2

+‖Ck+l+1Φ[k + l + 1, k +N ]u‖2

+ ‖Ck+l+2Φ[k + l + 2, k +N ]u‖2 + . . .+ ‖Ck+Nu‖2.
Notice that, since all terms in the summation are nonnegative,
it suffices to show that the sum of three terms verifies the left
inequality, for instance, the ones that correspond to the three
consecutive directions mentioned above. Hence, the objective
is to show

α ≤ ‖Ck+lΦ[k + l, k +N ]u‖2

+ ‖Ck+l+1Φ[k + l + 1, k +N ]u‖2

+ ‖Ck+l+2Φ[k + l + 2, k +N ]u‖2,
which, in view of the composition property of the transition
matrix, can be rewritten as
α ≤‖Ck+lΦ[k + l, k + l + 2]Φ[k + l + 2, k +N ]u‖2

+‖Ck+l+1Φ[k + l + 1, k + l + 2]Φ[k + l + 2, k +N ]u‖2

+ ‖Ck+l+2Φ[k + l + 2, k +N ]u‖2.
(45)

For the sake of simplicity and readability, let

c :=
Φ[k + l + 2, k +N ]u

‖Φ[k + l + 2, k +N ]u‖
,

such that c = [cT1 cT2 c3]T ∈ R7 is a unit vector, with c1,c2 ∈
R3 and c3 ∈ R, and define henceforward d1 := dk+l, d2 :=
dk+l+1, and d3 := dk+l+2. Notice that c is well defined as the
transition matrix is always invertible. Likewise, let T1 := Tk+l

and T2 := Tk+l+1. Accordingly, (45) results in

ᾱ ≤ J1 + J2 + J3,

where
ᾱ =

α

‖Φ[k + l + 2, k +N ]u‖2
,

J1 = ‖c1 − d3c3‖2 ,

J2 =

∥∥∥∥c1 −
d2c3
dT3 d2

− T1

(
I− d2d

T
3

dT3 d2

)
c2

∥∥∥∥2

,

and

J3 =

∥∥∥∥c1 −
d1

dT3 d2dT2 d1
c3

−

[
(T1 + T2) I−

d1d
T
3

(
T2I + T1d2d

T
2

)
dT3 d2dT2 d1

]
c2

∥∥∥∥∥
2

.

Resorting to a proof by contraposition, start by assuming that
the DT-LTV system (10) is not u.c.o.. In other words, based
on (39) and Assumption 3, if it is true that

∀ᾱ>0 ∃ k≥k0
‖c‖=1

J1 + J2 + J3 < ᾱ,

then the condition (38) cannot be verified. From here onwards,
as the proof of sufficiency follows similar steps to Theorem 1,
but considering uniformity bounds, the remainder of the proof
is omitted.

IV. SIMULATION RESULTS

A numerical simulation is presented and discussed in
this section to evaluate the achievable performance with the
proposed solution for source localization with velocity bias
estimation based on direction and velocity measurements.
Section IV-A contains a description of the setup considered
in the simulations. The Bayesian Cramér-Rao lower bound,
computed to evaluate the performance of the proposed solu-
tion, is briefly described in Section IV-B. The tuning of the
Kalman filter parameters for the proposed solution is addressed
in Section IV-C. Finally, in Section IV-D Monte Carlo results
are discussed.

A. Setup

Consider an AUV, moving in the presence of ocean currents,
that periodically emits an acoustic signal, which can be
sampled, for instance, by a receiver equipped with an USBL
acoustic positioning system placed at the origin of the inertial
reference frame. The initial position of the vehicle is set to
sk=k0 = [−100 − 50 0]T m, while the ocean current velocity
is set to b = [1.2 − 0.5 0.1]T m/s, both expressed in inertial
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coordinates. The vehicle describes a trajectory as shown in
Fig. 1, where one can notice its rich behaviour, in particular
it is possible to perceive that the direction of the source
with respect to the origin of the frame is always changing,
hence ensuring that, according to Theorem 3, observability is
attained. Furthermore, uniform complete observability is also
attained, as confirmed through a numerical inspection of the
dataset.

It is worth noticing that Theorem 3 alone provides a clear
insight as to what kind of trajectory one should avoid, more
specifically all trajectories where the source moves towards the
origin of the frame along the same direction. However, there
are simple trajectories that, despite verifying the observability
conditions of the problem, dramatically reduce the perfor-
mance of the proposed solution, for instance, any straight line
that does not pass through the origin. In this case, the direction
indeed keeps changing, but its almost indiscernible rate of
change, in addition to constant bias and velocity, undermines
any chances of good performance. What’s more, straight lines
are often related to increasingly longer distances, which, when
accounting for multiplicative noise in directions, correspond
to larger position deviations, thus preventing the filter from
converging.

30
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Figure 1: Trajectory described by the source.

A constant sampling period of T = 1 s was employed for
the direction and velocity measurements. The direction mea-
surements were rotated about random vectors of an angle that
follows a zero-mean white Gaussian noise distribution, with
standard deviation of 1◦. In turn, the velocity measurements
are assumed to be corrupted by additive zero-mean white
Gaussian noise, with standard deviation of 0.01 m/s. Upon
sampling, direction measurements are assigned to the output
yk of the DT-LTV system (10) in the form of (9), whereas
velocity measurements are assigned to the input uk.

B. Bayesian Cramér-Rao Lower Bound

The Kalman filter introduced in Section III-C for the DT-
LTV system (10) is sub-optimal in the sense that noise
sequences considered herein may not be additive in reality.
Moreover, since the final linear filter design stems from the
original nonlinear discrete-time system (4), a comparison in
terms of performance between the proposed solution and an

estimator for (4) is appropriate. For instance, in spite of not
guaranteeing stability, the EKF is one of the most widely
used tools to approach the design of estimators for nonlinear
systems, which still poses multiple challenges. However, in
a few cases, there exist theoretical bounds on achievable
performance. Recall the discrete-time system introduced in (4)
that features a linear process and nonlinear output. For this
particular system, while considering additive white Gaussian
noise, the BCRLB can be computed. The result provides, for
any given causal (realizable) unbiased estimator, a lower bound
on its covariance matrix [28].

Consider the general discrete-time system{
xk+1 = Fkxk + Bkuk + nk

yk = h(xk) + wk

, (46)

where xk is the state vector; uk is a deterministic system input;
yk is the system output, expressed nonlinearly in function of
the state vector through h(xk); nk corresponds to a zero mean
multivariate normal distribution with covariance Qk; and wk

corresponds to a zero mean multivariate normal distribution
with covariance Rk. The implementation of the EKF resorts
to a recursion which can be achieved in a almost identical
way for the case of the BCRLB, except that the Jacobian of
h(xk+1) is evaluated at the true state (see [28, Section 2.3.3]).
The BCRLB Bk obeys

Bk = J−1
k ,

where Jk satisfies the recursion

Jk+1 =
(
Qk + FkJ

−1
k FTk

)−1
+ Pk+1.

The covariance reduction due to the measurements is denoted
by Pk+1, which corresponds to an expected value determined
as

Pk+1 = Exk+1

{
H̃T (xk+1)R−1

k+1H̃(xk+1)
}
, (47)

where H̃(xk+1) is the Jacobian of the nonlinear observation
function evaluated at xk+1.

The computation of the expected value presented in (47) is
made according to xk+1. In view of this circumstance, Monte
Carlo simulations are often used in evaluating the computation.
However, when designing estimators for nonlinear systems,
evaluating the achievable performance along specific or nomi-
nal trajectories x̄k can be of interest. Since this paper addresses
that procedure, a simplified version of Pk+1 can be written as

Pk+1 = H̃T (x̄k+1)R−1
k+1H̃ (x̄k+1) .

As explained in [28], the EKF differs from the BCRLB only in
terms of Jacobians. Regarding the lower bound, the Jacobians
disregard the estimated trajectories and are instead computed
at the nominal trajectories x̄k. Considering additive noise in
the velocity measurements collected from the source, and
further considering that the direction measurements are rotated
about random vectors of an angle that follows a zero-mean
white Gaussian noise distribution, with standard deviation of
1◦, the discrete-time nonlinear system (4) can be written in the
form of (46). Hence, Bk can be computed, and it is shown in
the sequel.
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C. Kalman Filter application

Building on the results presented in Section III, a Kalman
filter is developed for the DT-LTV system (10), which yields
GES error dynamics. Regarding the tuning of the Kalman filter
parameters, they were set empirically in an effort to adjust the
performance of the proposed solution. Specifically, the process
covariance matrix Q was chosen as diag(10−3I, 10−4I, 9),
while the output noise covariance matrix R was set to 10I.

The initial condition of the filter was set to zero for all
system states. By doing so, the filter is initialized with large
position and range errors, and it practically holds no informa-
tion whatsoever on the unknown parameter that corresponds
to the velocity bias. In turn, the initial covariance of the filter,
Pk=k0 , was set to diag(104I, 10I, 104).

Fig. 2 depicts the initial convergence of the position and
velocity errors. As seen from both plots, the convergence rate
of the filter is moderate for this kind of application, which is
in line with the expectations when accounting for the chosen
(realistic) sampling time of 1 s. Notwithstanding, the error
converges to the neighbourhood of 0. Since sensor noise is
involved, the errors do not converge to 0. Fig. 3 depicts the
detailed evolutions of the position and velocity errors, where
dashed lines are used to illustrate the 1σ bounds obtained
from the covariance of the Kalman filter (corresponding to the
square root of the diagonal elements of Pk). In solid thicker
lines is plotted the 1σ BCRLB (more specifically, the square
root of the diagonal elements of Bk). From Fig. 3 one can
conclude that the achievable performance attained with the
proposed solution is consistent with the BCRLB.

For the sake of completeness, the evolution of the range
errors is shown in Fig. 4. As seen from the plot, the rate of
convergence for this particular error is quite high, and most
noticeably, in steady-state, the error remains below 0.5 m. The
1σ bound obtained from the covariance of the Kalman filter is
again depicted in dashed lines, which correspond to the square
root of the last diagonal element of matrix Q. Since the range
is not explicitly estimated for the nonlinear case, the BCRLB
for this state is not applicable.

D. Performance Comparison

The proposed solution was compared to the performance
achieved by an EKF applied to the original nonlinear system
(4). Due to the existence of a singularity in the EKF when the
source position is zero, the initial condition for the position
was set at x̂1

k=k0
= [100 100 0] m, while the velocity bias was

set to zero. The values of matrices Q, R and Pk=k0 were set
in an effort to deem the comparison with the proposed solution
as fair as possible.

The initial convergence of the position and velocity bias
errors are depicted in Fig. 5. Compared to the proposed solu-
tion, given the same initial conditions, the rate of convergence
of the EKF is much slower, and it shows much larger initial
transients. Fig. 6 depicts the detailed evolution of the position
and velocity errors, along with the 1σ bounds computed from
the EKF covariance matrix Pk and from the lower bound Bk.
In steady-state, the performance of the EKF resembles that
of the proposed solution, although presenting slightly larger
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Figure 2: Initial convergence of errors (Kalman Filter).

Table I: Performance comparison in terms of averaged standard
deviation.

Variable (Unit) KF EKF BCRLB
s̃x (m) 0.2311 1.8060 0.0727
s̃y (m) 0.1168 2.2499 0.0596
s̃z (m) 0.1210 0.5643 0.0266

b̃x (mm/s) 0.5825 5.6 0.1810

b̃y (mm/s) 0.5371 18.5 0.2434

b̃z (mm/s) 0.3795 4.9 0.1043

deviations. Nevertheless, the EKF does not offer guarantees
of global convergence.

Finally, to better assess the differences in the performance
between the proposed solution and the EKF, the Monte Carlo
method was applied. The simulation was carried out 1000
times with different, randomly generated noise signals. Con-
sidering significant statistical data extracted in steady state (for
k ≥ 500), the standard deviations of the errors were computed
for each simulation and averaged over the set of simulations.
Table I depicts the results obtained from both the proposed
solution and from the EKF. In addition, the 1σ lower bound
Bk was computed in steady state and averaged over the 1000
simulations. The result is shown in the table as well.

In terms of averaged steady-state performance, the EKF
exhibits larger standard deviations for all errors, while the
proposed solution achieves a performance that behaves closer
to that of the BCRLB.
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Figure 3: Steady-state evolution of errors (Kalman Filter).
Dashed Lines - ±

√
Pk(i,i).

Solid Lines - xk(i)− x̂k(i).
Solid Thick Lines - ±

√
Bk(i,i).

i = 1, 2, 3 for Position; i = 4, 5, 6 for Velocity Bias.

V. EXPERIMENTAL RESULTS

This section presents and discusses experimental results that
allow to assess the achievable performance of the proposed
filtering technique in a real world application.

The design of trajectories must take into account Assump-
tions 1 and 2 in particular; the claims of both Theorems 1 and
3; and, the fact that the characteristics of the real noise differ
from the ones assumed in the paper. In summary, under these
conditions, a trajectory spanning a confined three-dimensional
space and featuring time-varying velocities should yield a good
estimation performance.

Briefly, while in pursuit of a typical underwater mission
scenario, a set of trials was carried out in a shallow enclosed
lake wherein a surface vehicle equipped with a submerged
acoustic transponder described a trajectory as depicted in
Fig. 7.

The surface vehicle was equipped with a GPS antenna
in order to obtain ground-truth position and velocity mea-
surements. In turn, direction measurements were taken with
respect to a fixed USBL acoustic receiver, whose position was
regarded as the origin of the inertial reference frame. This
receiver consists of an integrated ultra-short baseline acoustic
positioning system aided by an inertial navigation system. It
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Figure 4: Evolution of range errors (Kalman Filter).
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Figure 5: Initial convergence of Extended Kalman Filter errors.
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Figure 6: Steady-state evolution of Extended Kalman Filter errors.
Dashed Lines - ±

√
Pk(i,i).

Solid Lines - xk(i)− x̂k(i).
Solid Thick Lines - ±

√
Bk(i,i).

i = 1, 2, 3 for Position; i = 4, 5, 6 for Velocity Bias.
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USBL Receiver

Figure 7: Trajectory described by the source. Color gradient indicates
evolution in time: light yellow - start; dark blue - end.

features an array comprising four hydrophones assembled in
a non-planar configuration in addition to an acoustic projector
that emits a known signal periodically, as seen in Fig. 8. The
reader is referred to [29] for further details about the design
and development of this underwater localization device.

Figure 8: USBL Receiver.

We remark that the purpose of this experiment is to assess
a posteriori the performance of the proposed linear time-
varying estimator in the presence of real data, more specifically
direction measurements based on acoustic signal propagation
and GPS velocities. Notwithstanding, given the properties of
the lake and the fact that both the receiver and the transponder
were at the same depth, the linear estimator was applied
considering a two-dimensional framework. In addition to the
previous considerations, a constant bias (b = [0.33 0.66]T )
was added over the GPS velocity readings to emulate water
currents, which were absent in the lake. The sampling times
associated with the measurements are shown in Fig. 9.
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Figure 9: Sampling times during the experiment.

The variation of the sampling time is fairly evident, with a
few occurrences above 5 s, which influences the performance
of the filter in light of Assumption 1. The non-constant
sampling time is primarily a result of the distance between the
emitter and the receiver changing over time. On top of that,
the lake properties induce sampling loss. Shallow waters and
bottom shoals are responsible for an increase in the number of
invalid measurements by causing strong multi-path reflections
which, due to their nature, are rejected by an on-line outlier
removal tool.

The initial condition for the position was set at x̂1
k=k0

=
[100 100]T m, while states corresponding to the velocity
bias and the range were set to zero. To tune the Kalman
filter, the state disturbance covariance matrix Q was chosen
as diag(10−2I, 10−2I, 10−2) and the output noise covariance
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matrix R was set to 10I. The initial convergence of the
position and velocity errors is depicted in Fig. 10, while the
detailed evolutions of the position and velocity errors are
depicted in Fig. 11, along with the 1σ bounds obtained from
the covariance matrix P, represented in dashed lines. For the
sake of completeness, the evolution of the range errors is
shown in Fig. 12. Overall, the filter presents a good rate of
convergence for both the position and velocity bias errors.
Most noticeably is that the position and velocity bias errors
remain, most of the time, below 2 m and 0.01 m/s, respectively,
which are quite good results considering the harsh conditions
imposed by the environment, specially when accounting for
large sampling rates, which strongly influence the quality of
the estimation. These large sampling rates are also responsible
for the spikes observed in the plots, which stem from the filter
holding to the same estimate for a long period of time.
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Figure 10: Convergence of errors.

VI. CONCLUSIONS

This paper addressed the problem of source localization
and velocity bias estimation based on direction and velocity
measurements. A discrete-time augmented linear time-varying
system was derived whose observability was addressed resort-
ing to a necessary and sufficient condition that is related to
the motion of the source. Moreover, based on the boundedness
of this same condition, a stronger form of observability was
ensured, in particular the system was shown to be uniformly
completely observable, hence allowing the design of a linear
estimator with GES error dynamics. A Kalman filter was
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Figure 11: Steady-state evolution of errors.
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Figure 12: Evolution of range errors.
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implemented and its performance was thoroughly assessed
resorting to realistic simulations considering additive white
noise. The proposed solution was then compared to both an
EKF and the BCRLB via Monte Carlo runs, exhibiting a
performance akin to that of the BCRLB. Finally, a set of
experimental results was featured that validates the proposed
filtering technique as a viable option for underwater tracking
solutions.
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