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Experimental Validation

of a PCA-Based Localization
System for Mobile Robots

in Unstructured Environments

ABSTRACT

In this paper a new PCA-based positio-
ning sensor and localization system for
mobile robots to operate in unstructu-
red environments (e.g. industry, servi-
ces, domestic, . . . ) is proposed and ex-
perimentally validated. The positioning
system resorts to principal component
analysis (PCA) of images acquired by a
video camera installed onboard, looking
upwards to the ceiling. This solution has
the advantage that the need of selecting
and extracting features is avoided. The
principal components of the acquired
images are compared with previously
registered images, present in a reduced
onboard image database and the posi-
tion measured is fused with odometry
data. The optimal estimates of pesition
and slippage are provided by a Kalman
filter, with global stable error dynamics.
The experimental validaticn reported in
this work focus on the results of a set of
exhaustive experiments carried out in a
real environment, where the robot tra-
vels along straight lines. A small position
error estimate was always observed, for
arbitrarily long experiments, and slippa-
ge was estimated accurately in real time.

1. INTRODUCTION

The problem of localization has been
a great challenge to the scientific com-
munity in the area of mobile robotics;
see [6], [3] and the references therein. As
happens with persons or animals, for a
robot to navigate from a point to ancther
it is of great importance its ability to lock
at the environment and rapidly answer
the following questions: where am I? and
what am | facing? sLam (Simultaneous Locali-
zation And Mapping) s a process by which a
mabile robot can build a map of an envi-
ronment and at the same time to use this

map to estimate its localization. In SLAM,
both the trajectory of the platform and
the localization of all landmarks are esti-
mated online without the need for any a
priori knowledge of localization (6], [19].
However, substantial issues remain to be
solved in practice. One of the issues that
remain open is that of solutions relying
on landmarks or on any other features
that the robot may sense in the environ-
ment, and will subsequently be used for
robot localization. In practice, given one
environment, there is no guarantee that
the same features will be present in the
environment on subsequent visits of the
robot to the same localization (loop clo-
sure problem). For instance, fast corners
[24] are a very efficient way to detect
features in an image but the number of
comers actually found may depend on
many tuning parameters and different
corners may appear in different images
taken from the same localization at diffe-
rent times. Random Sample Consensus
(RANSAC) is considered the state of the
art technique to keep track of features
while disregarding outliers but in practi-
ce all these strategies rely on some struc-
ture of the environment [2], [16], [7].

This paper follows an alternative appro-
ach resorting to Principal Component
Analysis (PCA) that actually does not de-
pends on any predefined structure of
the environment. Of course, there should
always be something to distinguish data
acquired in one location to data acqui-
red in another location but no previous
assumptions on the predefined structure
of the environment needs to be conside-
red. The PCA data analysis corresponds to
the computation of the data orthogonal
components that will make each dataset
different. Hence, the localization is defined
based on the PCA of the large amount of

data taken from the unstructured environ-
ment. Experimental results in 1D are sho-
wn, proving the efficacy of the approach.

A. Current Practices

The use of vision systems for robot loca-
lization is very common [22], [21] due to
the ability to obtain information about
the environment. Many vision systems
compute the robot pose (position and
attitude) from features of the environ-
ment, either from the entire image [11],
extracting lines [15], simply getting
points of interest [12], [10], or extracting
scale-invariant features [17]. The compu-
tational complexity of such algorithms
to obtain features is not negligible: thus
the implementation in real-time systems
still demands the search for other appro-
aches of reduced complexity.

Very successful implementations of vi-
sual odometry are presented in [21],
where a robot was able to localize itself
outdoors based on a minimum number
of singular points that have to be present
in the environment. Although many ro-
bots use cameras to look around itself to
get its global pose in the environment
[23], [10], [14], others use a single camera
looking upward [12], [8], [25]. The use of
vision from the ceiling has the advantage
that images can be considered without
scaling, ie. a 2D image problem results
and will be pursued in this work.

B. PCA-based localization and opti-
mal estimation

Since feature based techniques are com-
putationally heavy, some researchers
have been working to find methods
to make this process more efficient. To
achieve reduced complexity algorithms,
the use of PCA in mobile robots for sel-
flocalization has been explored [14], [18],




[1]. However, all these approaches use
front or omnidirectional cameras, cau-
sing the algorithms to address problems
of occlusion or comparison with images
in different planes. In [20], PCA was used
for terrain reference navigation of un-
derwater vehicles. The PCA-based locali-
zation system that we present is this work
corresponds to a experimental validation
of the one proposed in [20], using a Du-
bins Car equipped with a video camera
looking upwards to the ceiling.

Beyond the problems of image proces-
sing for selflocalization, another challen-
ge is to deal with the fusion of the PCA-
based position with the odometry data
that is given by the robot kinematics. Mo-
bile robot kinematics (e.g. Dubins car) are
in general non linear. This fact prevents
the direct use of a Kalman Filter, which is
a linear optimal estimator. To tackle this
problem, many localization systems use
the Extended Kalman Filter (EKF) with
well characterized optimality and stabi-
lity limitations. Even though it can give
a reasonable performance, the EKF may
diverge in consequence of wrong lineari-
sation or sensor noise.

For the purpose of this paper, the Du-
bins Car model is restricted to one-
dimensional movement, thus avoiding
the non-linear model issues mentioned
above. Mareover, the filter also estima-
tes the slippage that is eventually pre-
sent in the reality. Many researchers
tend to neglect slippage: our approach
addresses the problem explicitly. As sli-
ppage is inevitable, we append a state
to our model to express the slippage ex-
plicitly. The filter estimates both slippa-
ge and robot localization. Furthermore,
the optimal estimate is achieved, under
the assumption that disturbance noise
can be modelled by Gaussian distribu-
tions, with global stable error dynamics
can be obtained (see [20], where howe-
ver no experimental results are given).
Further work will be carried out in the
near future to deal with 2D operation of
the Dubins car resorting to the recent
results that can be found in [4].

C. Advantages and drawbacks

The proposed PCA-based position sensor
and localization estimation has the follo-
wing advantages:

The robot is able to self-locate in an
indoor environment, only with on-
board sensors (no external sensors or
landmarks are required);
The algorithm is fast, thus it consumes
very few computational resources;
The database of images stored on-
board the mobile robot is of reduced
size, when compared with the total
number of images considered:;
The memory to allocate for the da-
tabase storage is flexible and related
with the required positioning error
accuracy;
No hypothesis is made about specific
features in the environment: thus this
system can operate in an unstructu-
red environment where the only
requirement is that images must be
different in each location;
Under Gaussian assumption for the
disturbances, the localization system
estimates in real time the position
and slippage with global stable error
dynamics.

Some of the limitations for the proposed

approach include:
The robots should work in buildings
with ceilings where rich information
can be found (e.g. building-related
systems such as HVAC, electrical and
security systems, etc.);
The ceilings should be static: the system
cannot be used outdoors as the sky is far
from static and changes randomly;
The system is formulated in a digital
discretised version as well as the PCA
approach pursued.

A general limitation of all vision-based sys-
tems is their sensitivity relative to lighting
conditions. This paper is organized as
follows: in section I, the principal compo-
nent analysis technique is introduced in
detail. In section Ill, the mobile robot kine-
matics model is presented and section IV
a set of experimental results are reported
to validate and assess the performance of
the proposed PCAbased positioning sen-
sor and localization system, resorting to a
Kalman filter. Conclusions and future work
are presented in section V.

1. PRINCIPAL COMPONENT
ANALYSIS

In this section the fundamentals of the
positioning system proposed in this work

will be introduced. The proposed metho-
dology resorts to optimal signal proces-
sing techniques, namely PCA, based on
the Karhunen-Lo'eve (KL) transform to
obtain a nonlinear positioning sensor.
Considering all linear transformations,
PCA allows for the optimal approxima-
tion to a stochastic signal in the least
squares sense. Furthermore, it is a well
known signal expansion technique with
uncorrelated coefficients for dimensio-
nality reduction. These features make the
KL transform interesting for many signal
processing applications such as data
compression, image and voice proces-
sing, data mining, exploratory data analy-
sis, pattern recognition and time series
prediction. For a thorough introduction
to this topic and a number of state of the
art applications see [13].

Consider a set of M stochastic signals x,
ER%i=1;.. M, each corresponding to
the stacked version of an image acquired
with the video camera installed onboard
the mobile robot and represented as a
column vector with mean m, = E}z?; X

The purpose of the KL transform is to find
an orthogonal basis to decompose a sto-
chastic signal x, from the same original
space, 1o be computed as x = Uv + m;;
where vector v € R is the projection of
x in the basis, i.e. v = U (x-m,). Matrix U
=[ul uZ...u,]should be composed by
the N orthogonal column vectors of the
basis, verifying the eigenvalue problem

Ry U=A =1, N, m

I
where R, is the covariance matrix, com-
puted from the set of M experiments
using

-I M

Re= 127 &,

(x—m)x—m)". )
Assuming that the eigenvalues are orde-
red,ie. A, = A 2. = A, the choice of the
first n « N principal components leads to
an approximation to the stochastic sig-
nals given by the ratio on the covariances
associated with the components, ie. 3, A
/ Z, A, In many applications, where sto-
chastic multidimensional signals are the
key to overcome the problem at hand,
this approximation can constitute a large
dimensional reduction and thus a com-
putational complexity reduction.
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The advantages of PCA are threefold: i)
it is an optimal (in terms of mean squa-
red error) linear scheme for compressing
a set of high dimensional vectors into a
set of lower dimensional vectors; i) the
model parameters can be computed
directly from the data (by diagonalising
the ensemble covariance); and iii) given
the model parameters, projection into
and from the bases are computationally
inexpensive operations, ~O(nN). These
advantages suit our problem especially,
as the computation power, energy and
data storage onboard should be kept as
reduced as possible to augment the ope-
ration interval and reduce the cost of the
systems onboard.

Assume that scenario in the area of indoor
mobile robotics (e.g. industrial automa-
tion or robotic office applications), whe-
re a navigation system to be installed on
one or more mobile robots must be de-
veloped and operated. In this scenario it
is considered that there is data available
allowing to develop a positioning system
that recognizes the actual position of the
robot in real time. The steps to implement
a PCA-based positioning sensor using this
visual data will be outlined next.

Prior to the deployment of the robots,
the visual data of the area under conside-
ration should be partitioned in mosaics
with fixed dimensions N, by N,. After re-
organizing this two-dimensional data in
vector form, e.q. stacking the columns,
a set of M stochastic signals x, € R", N =
NN, results. The number of signals M to
be considered depends on the mission
scenario and on mosaic overlapping. The
KL transform can be computed, using
(1)-(2); the eigenvalues must be ordered;
and the number n of the principal com-
ponents to be used should be selected,
according with the required level of ap-
proximation.

The following data should be recorded

for later use:

1) the data ensemble mean m;

2) the matrix transformation with n ei-
genvectors

U =[u..ul 3)

3) the projection on the selected basis
of all the mosaics, computed using

Vf=UTn(X‘—m‘).f:1,---,M} (4)

4) the coordinates of the center of the
maosaics

Coydi=1,.., M 5)

During the mission, at the time instants

t, = Lk (where L is a positive integer), the

acquired images will constitute the input

signal x to the PCA positioning system.

The following tasks should be performed:

a) compute the projection of the signal
x into the basis, using

v=UT (x-m); (©)

b) given an estimate of the current
horizontal coordinates of the robot
position % and 9 , provided by the
navigation system, search on a given
neighborhood 6 the mosaic that ve-
rifies

vk y V=BT |

) < 0, rP:.a:mm HV_V.X
1

5

¢) given the mosaic i which is closest to
the present input, its center coordi-
nates (x; y) will be selected as the x_
and y measurements.

The relation f between r,., and the posi-
tioning sensor error covariance R (obser-
vation noise) to be used in the H, estima-
tion problem

R=fr, (8

will be chosen according to the chosen
environment. Note that the image-based
PCA positioning system described above
can be straightforwardly extended to in-
corporate data from other sensors instal-
led onboard mabile robots such as mag-
netometers and range information from
time-of-flight cameras or structured-light
3D scanners (e.g. Microsoft Kinect).

I1l. MODEL

The experimental validation of the pro-
posed positioning system was perfor-
med resorting to a low cost mobile ro-
botic platform [5], with the configuration
of a Dubins car. This platform has a PC
laptop that controls the motors through
a closed loop motor controller connec-
ted by a USB and has a webcam pointing

upwards to the ceiling (see figure 1). The
low replication cost for these platforms
will be instrumental during the future
tasks envisioned relying on cooperation
and multi-agent systems (mentioned
among future work in section V).

Figure 1. Mobile robot platforms used for experi-

mental validation

The mobile robot kinematic model that
describes the movementin a straight line
(1D)is

X =u+b+p i @
b =0+, (10)

considering the following assumptions:
the slippage velocity is constant or
slowly varying (i.e. b =0);
the noise in the actuation (motors
are in closed loop) and the slippage
velocity are assumed as zero-mean
uncorrelated white Gaussian noise,
u~N(@, a?).

Expressing the model dynamics in a sta-

te-space system with x = [xb]’,

S N A
y=00x+y (12)

The cutput of this system y is the posi-
tioning sensor measurement described
in the previous section. Since the posi-
tion estimator is processed in a digital
processor, the discrete model is obtained
assuming that the vehicle velocity u is
constant (zero order hold assumption)
between two consecutive processing ti-
mes, resulting

=l T | T 772 0 13)
yik) = [1 01 x (k) + y(k) (14)

The design of a linear time-invariant Kal-
man filter for the underlying model des-
cribed above is by now classic and the
reader is referred to [9].




IV. EXPERIMENTAL RESULTS

The mobile robot self-localization me-
thodology proposed in this work is tes-
ted for the aforementioned mobile robot
travelling along a 3 m length straight
line. Ceiling images are captured with
a constant distance and referenced,
allowing for the creation of the PCA ei-
genspace (the image database referred
in the previous sections of the paper) to
capture the principal components of the
environment. To create the eigenspace,
gray scale images with 320 by 240 pixels
are subsampled (1 : 25) and transformed
into vectors, x €ERY, i=1,..., M, where M
stands for the number of images and N
stands for the number of pixels of each
image. (Notice that since this is a 1D ex-
periment only one coordinate is necessa-
ry, along the direction of movement.)

The covariances to be used in the Kalman
Filter design were considered as constant
and were obtained considering Q = Q(k)
and R = R(k) as the covariance error in
the actuation and the pose estimator,
respectively. The value of Q = 4.1x10°®
m? was obtained measuring the cova-
riance error of the robot motion along
one predefined path. The value of R =6.8
x 107 m? was obtained measuring the
covariance error of the pose estimator
(position given by the PCA positioning
sensor) when the robot moves along one
path with images in the eigenspace. This
process and sensor noises lead to a Kal-
man filter gain K= [0.0429 0.0188].

To study the PCA positioning sensor per-
formance, 31ceiling images (with a dis-
tance of 0.1 m) were captured with the
mobile robot travelling with a constant ve-
locity of 0.125 m/s along the straight line,
as mentioned above. The images have
been subsampled with a step of 5 pixels
in width and height to reduce the amount
of processing data (1 : 25). Analysing the
eigenvalues and selecting components
that explain the variability of the images in
an excess of 80%, results on an eigenspace
(image database) of 4 eigenvectors.

A. Monte Carlo Performance Tests

To assess the mobile robot self-localiza-
tion methodology proposed, a Monte
Carlo test composed of 10 experiments
as described above has been repeated.
Images were captured at 20 Hz and the

PCA position & KF localization estimates — Results of test no 2

w

-Ez- [EERE e S

% 1 “,,,;,,._—_-;—-,fr—'-f"*’:*"“ . %s:pcd;sﬁ?i::un |

=l '_,_,,-_,_,_-—./ [ KF estimated |oca|imgi9_q§|
0 5 10 15 20

Error (m)

My d{i? |12 e 1%
‘

T T 1
1

|
1]
W

.

0
Time (s)

20

Figure 2. Results of PCA-based positioning sensor and localization estimates from Kalman filter
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Figure 4. Results of positioning system when the robot starts 1 m ahead of the usual position

PCA-based positioning sensor was acqui-
red; figure 2 gives the localization results
obtained in one of those experiments.
The results show that the PCA algorithm
provides a good approximation to the
real robot localization. However, some
discontinuities in the acquired robot po-
sition are observed. Anyway, the devia-
tions observed in instants 65, 13 s and 22
s are due to disturbances. It is important
to remark that the results from the Kal-
man filter smooth out the position errors
present in the PCA-based positioning
sensor. The estimated errors for 5 experi-
ments are depicted in figure 3.

B. Stability Validation

A second test was performed to assess
the positioning system global stability
when the initial position coordinates do
not match the robot real initial position.
Thus it is possible to check that the es-
timator is able to correct the initial po-
sition error, as predicted by the stability
properties of the Kalman filter. In this

case, the robot was placed 1 m ahead
of the usual initial position. An Extended
Kalman filter could easily diverge under
such experimental conditions. The ej-
genspace was again created with a dis-
tance between acquire images of 0.1 m
(same 31 images as in the previous set of
tests) and the results show that the po-
sitioning system needs less than 1.5 s to
pravide an accurate estimate of the mo-
bile robot localization. Considering that
the robot moves at a constant velocity of
1.5 m/s, the positioning system is able to
identify the mobile robot real position at
the same time that the second image is
captured to the eigenspace (figure 4).

C. Real-time Slippage Estimation

As a further assessment of the localization
system performance, a set of tests have
been conducted considering that the
mobile robot experiences a constant, arti-
ficially imposed, wheel slippage. Two tests
are reported considering that the mobile
robot travels with a slippage in the wheels,

robéticd n artigo cientifico
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PCA position & KF localization estimates with induced slippage of 0.1m/s — Results of test no 2
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Figure 5. Results of the positioning system when the robot moves with a slip velocity of 0.1 m/s

PCA position error with wheels slippage of 0.1m/s
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Figure 7. Results of the positioning system when the robot moves with a slip velocity of 0.2 m/s

that leads to a constant velocity below 0.1
m/s and 0.2 m/s, respectively in figures 5
and 7, relative to the commanded veloci-
ty. The estimation errors are depicted res-
pectively in figures 6 and 8.

Results show that the localization system
is able to accurately estimate the mobile
robot real position in all situations. The
Kalman filter estimates present initial
higher errors for higher values of slippa-
ge (above 0.2 m/s). After a transient of
about 5 s (see figure 9), the localization
system is able to estimate and correct
the wheels slippage in real-time and the
results obtained in the remaining of the
experiments have similar performance
as the cnes obtained in the experiments
without slippage.

D. Preliminary PCA Performance
Assessment

PCA has a number of parameters that
must be selected prior to the deploy-
ment of the positioning and localization
system. A trade-off will always be found
relating the number of images in the
database (eigenspace size) and the ac-
curacy of the positioning sensor propo-
sed. A preliminary study on the impact of
changing these parameters will be repor-
ted in this section. The results from a set
of tests where the image acquisition step
varies in the interval [0.05 0.4] m, i.e. using
between 61 and 8 images, respectively,
were performed creating different ei-
genspaces. Hence, the mobile robot po-
sitioning system performance has been
tested considering an increase between

TABLE I
PCA POSITIONING SENSOR AND LOCALIZATION SYSTEM WITH
DIFFERENT IMAGE ACQUISITION STEPS

Distance between  Sample Number of PCA localization ~ PCA with a Kalman
images (m) time (s) _images in PCA a2 (m?) Filter o2 (m?)
005 0.4 61 0.00545 0.00:
0.1 0.8 31 0.00683 0.00436
02 1.6 16 0.01063 0.00525
0.3 24 11 0.01360 0.00341
04 32 8 0.06428 0.03844

the eigenspace points used (Table I).

Results show that the PCA positioning
system with Kalman Filter were able to
identify the correct mobile robot posi-
tion based on ceiling captured images,
even when the distance between kno-
wledge points is increased, reducing the
number of images in the eigenspace
(figure 10). For a distance between fra-
mes up to 0.3 m, results show that the
position error is small, not exceeding 0.15
m. For longer distances between frames,
e.g.0.4 m, the position estimate accuracy
degrades gracefully. However, even in
this case, the error is below 0.4 m, which
allows to conclude that the error is less
than the granularity associated with the
image acquisition intervals.

V. CONCLUSIONS

A new positioning sensor and a localiza-
tion system for mobile robots to operate
in unstructured environments is propo-
sed and experimentally validated along a
straight line (1D). The positioning sensor
resorts to PCA, from the images acquired
by a video camera installed cnboard,
locking upwards to the ceiling. Several
tests were performed namely: i) Monte
Carlo performance study, ii) global stabi-
lity validation, iii) real-time slippage esti-
mation, and iv) PCA performance assess-
ment. All tests were successful and allow
to conclude that the proposed approach
can be useful in a number of mobile ro-
botic applications.

This paper represents the initial step to-
wards a multi-agent system based archi-
tecture where a large set of mobile robots
will be able to cooperate to perform navi-
gation and formation tasks, featuring obs-
tacle avoidance, human interaction and
search and rescue activities. For that pur-
pose, the next step taken was to consider
the robots in 2D. Currently, the theoretical
part of 2D version has been developed,
resorting to a set of recent results repor-
ted in [4], and will be subject to intensive
validation tests in the near future.
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PCA position error with wheels slippage of 0.2m/s

KF localization error with induced slippage of 0.2m/s
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